
Sockets

• The original method for process communication in UNIX
is pipes.

• A disadvantage with pipes is that they can only be used
by processes that have the same parent process.

• When communicating across a network a more general
method is needed.

• Sockets is a very general communications interface
developed at Berkeley.

• A socket is an endpoint of communication.

• A socket usually has an address bound to it.

• Different networks use different addressing methods.

• To handle different addressing methods a socket
belongs to a communication domain that determines
the addressing method to be used.

1

Sockets

Communication domains

All processes that communicates in the same
communication domain use the same address format.

Two communication domains are implemented in all
systems:

• AF UNIX. The UNIX domain. This domain is used for
local communication and uses file system path names
as addresses.

• AF INET. The Internet domain. This domain uses the
Internet protocols (TCP/IP) and Internet addresses (a
32 bit host number and a 16 bit port number).

2



Sockets

Socket types

There are several socket types, which represent classes of
service.

Each type may or may not be implemented in any
communication domain.

The socket type like the communication domain are
selected when the socket is created.

Examples of socket types are:

• SOCK STREAM. Provides reliable duplex sequenced
data streams (virtual circuit). In the Internet domain this
is supported by TCP (Transmission Control Protocol). In
the UNIX domain , pipes may be implemented as a pair
of stream sockets.

• SOCK DGRAM. Provides an unreliable datagram
service. Datagrams do not use a connection and
requires a complete address to be included in each
packet. Supported by UDP in the Internet domain.

• SOCK RAW. Raw sockets allow direct access to lower
level protocols. In the Internet domain, IP can be
reached with a raw socket (requires root privileges).

3

Sockets

System calls for sockets

There is a number of system calls specific to the socket
mechanism:

Socket Creates a socket. Returns a socket descriptor to
be used in the same way as a file descriptor.

bind Bind a socket to an address so it can be addressed
from another process.

listen Tells the kernel that the process is ready to receive
connections and how many pending connections to
queue until connections are refused.

accept Accept a single connection. Blocks until the socket
is called. Returns a new socket descriptor for the new
connection.

connect Connect to a named socket in another process.

sendto Send a message to a datagram socket.

recvfrom Receive a message from a datagram socket.

4



Socket - Server code
#include <sys/types.h>

#include <sys/socket.h>

#include <stdio.h>

#include <sys/un.h>

#include <unistd.h>

int main() {
int sd, ns, len;

struct sockaddr un server address, client address;

char buf[256];

//create a socket for the server

sd = socket(AF UNIX, SOCK STREAM, 0);

//Name the socket

server address.sun family = AF UNIX;

strcpy(server address.sun path, "sockname");

len = sizeof(server address);

if (bind(sd, (struct sockaddr *)&server address, len) < 0)

printf("Cannot bind\n");

//Create a connection queue and wait for clients.

listen(sd, 2);

while(1) {
//Accept a connection.

len = sizeof(client address);

ns = accept(sd, (struct sockaddr *)&client address, &len);

if (fork() == 0) { /* child */

close(sd);

read(ns, buf, sizeof(buf));

printf("server read %s\n",buf);
exit(0);

}
close(ns);

}
}

5

Socket - Client code

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <unistd.h>

int main ()

{
int sd, len;

struct sockaddr un address;

int result;

//create a socket for the client

sd = socket(AF UNIX, SOCK STREAM, 0);

//Name the socket as agreed with the server

address.sun family=AF UNIX;

strcpy(address.sun path,"sockaddr");

len = sizeof(address);

//Now connect our socket to the server’s socket

result = connect(sd, (struct sockaddr *)&address, len);

if(result == -1) exit (1);

write(sd, "hi guy", 6);

//Close the socked

close(sd);

return (0);

}

6



Network support

The network usually used for long distance communication
is the global Internet.

This network uses the Internet protocols which originate
from the Arpanet.

For performance reasons, the lower level protocols (IP,
TCP, UDP) are implemented within the kernel.

The upper level protocols on the other hand are
implemented by user level programs.

Examples of such protocols are:

FTP - File Transfer Protocol

Telnet - Remote login

Both FTP and Telnet originate from the early days of the
Arpanet (1971) and completely lack all security
mechanisms.

Today these protocols should be replaced with newer
encrypting protocols such as scp and ssh.

7

Network Support

The most well known model for describing communication
architectures is the ISO OSI model.

The Internet protocols are more related to the “Arpanet
Reference Model” ARM.

ARM was developed for Arpanet and is older than the OSI
model.

The OSI model usually have one protocol per layer.

ARM allows several protocols in each layer

ARM have the following layers:

Process/Applications Corresponds to the application,
presentation and session layers in the OSI model. The
ftp, telnet and ssh protocols are at this level.

Host-host Corresponds to the transport layer and part of
the network layer in the OSI model. TCP and IP are at
this level.

Network interface Corresponds to part of the network
layer and the data link layer in the OSI model. The
Ethernet driver is at this level.

Network hardware This level is not formally included in
the ARM model but every network has hardware
corresponding to the physical level in the OSI model.

8



Network support

Adding new protocols

Because TCP and UDP provides transparent
communication between two processes, changes in the
protocols above this level only impose changes in user
level programs.

Changes in the transport protocols (TCP, UDP) will require
changes in all involved operating systems.

Changing IP is a serious undertaking that will require
changes in all operating systems and in all routers (in the
world). (The work to replace IPv4 started in 1990 and still
IPv6 is only used by a fraction of all computers)

9


