
Types for programs and proofs

Take home exam 2011

• Deadline 1 November 2011 at 16.00.

• Electronic answers should be sent by email to Peter (peterd@chalmers.se).
Handwritten answers can be left in Peter’s office (EDIT, 6467) 15.00 -
16.00 on 1 November. Agda code must be sent by email.

• Grades: 3 = 24 p, 4 = 36 p, 5 = 48 p. Bonus points from talks and
homework will be added.

• Note that the relevant sections in Pierce contain useful information for
solving the problems.

• Note that this is an individual exam. You are not allowed to help each
other. If we discover that you have collaborated, both the helper and
the helped will fail the whole exam. We will also consider disciplinary
measures.

• Please contact Peter if something is unclear.
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1. PCF is a small typed functional programming language which is often
used in research papers. It is based on the simply typed lambda calculus
with two base types Bool and Nat for truth values and natural numbers
respectively. There are the following constants (”combinators”):

True, False, Zero, Succ, if, pred, isZero, fix

where fix is the fixed point combinator which is used for encoding gen-
eral recursive definitions (cf the lectures and Pierce section 11.11). A
polymorphic version of PCF is presented in the lecture notes:

http://www.cse.chalmers.se/edu/course/DAT140_Types/PCF.pdf

(The link is on the course home page.) Note that this version of PCF is
a sublanguage of Haskell, so you can implement your PCF functions in
Haskell by restricting yourself to using variables, application, abstraction,
and the above constants.

See also the wikipedia page for ”Programming language for Computable
Functions” where a monomorphic version of PCF with only one base type
(nat) is presented.

(a) Define exponentiation in PCF! That is, define a function

power : Nat -> Nat -> Nat

such that powermn is mn.

(b) Define equality of natural numbers

(==) : Nat -> Nat -> Bool

in PCF.

(c) Define the minimum function

min : (Nat -> Bool) -> Nat

It takes a function f and returns the least value m such that f m =
True. Again, use fix!

The key point is to use PCF’s fixed point combinator to express recursion!
(7 p)
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2. System T is defined in ”Dependent types at work” section 2.5. Like PCF
it is based on the simply typed lambda calculus, and has the following
constants in common.

True, False, Zero, Succ, if

(In ”Dependent types at work System T is programmed in Agda, and these
constants are called true, false, zero, succ and if_then_else_ re-
spectively.) However System T does not have a fixed point combinator
fix for defining general recursive functions, but only a primitive recur-
sion combinator natrec. The key point in the following is to use natrec
to define functions.

(a) Define exponentiation in System T! That is, define a function

power : Nat -> Nat -> Nat

such that powermn is mn.

(b) The PCF-constants pred and isZero are not primitive in System T.
Show how they can be defined (using natrec)!

(c) Define equality of natural numbers

(==) : Nat -> Nat -> Bool

in System T.

(d) Which programming language is more powerful, PCF or system T
(we only consider well-typed programs)? A system is less powerful
than another if each partial function programmable in it is also pro-
grammable in the other. Are both systems equally powerful, or is
one of them strictly more powerful than the other, or is none of them
more powerful than the other? Motivate! Hint: Can you define the
minimum function in problem 1 (c) in System T?

(10 p)
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3. System F is presented in Sections 23.3 and 23.4 in Pierce.

(a) The swap combinator in untyped lambda calculus is defined as λfxy.f y x.

• Write the corresponding combinator in System F!
• What is its type in System F? This type should be as ”polymor-

phic” as possible.

(b) Red-black trees are binary search trees where nodes are colored red
or black. (Note that red-black trees can be empty.)

• Define a Haskell data type RedBlackTree for red-black trees!
(Remark: this data type does not need to encode the special
red-black tree properties, like the absence of ”double reds”, etc.)

• Define the corresponding (closed) type expression RedBlackTree
for red-black trees in System F. Hint: Look at the encoding of
lists in 23.5 in Pierce!

• Your Haskell type probably has two constructors. Define the
corresponding constructors for RedBlackTree in System F.

• Define a function which checks whether a red-black tree is empty!

(10 p)

4. Existential types are presented in chapter 24 in Pierce.

Use existential types for defining an abstract data type of bags of priority
queues, with operations minElement, addElement and removeElement.
Cf section 24.2, especially the solution of EXERCISE 24.2.1.

(5 p)

5. Agda. See

http://www.cse.chalmers.se/edu/course/DAT140_Types/ExamProblem5.agda

There is a preamble in

http://www.cse.chalmers.se/edu/course/DAT140_Types/Preamble.agda

(15 p)
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6. In Chapter 12 in Pierce there is a proof of normalization for the simply
typed lambda calculus (theorem 12.1.6). Exercise 12.1.7 Pierce is about
extending this proof to include booleans and products.

Your task here is to extend this proof to a proof of normalization for
System T. That is, you extend the simply typed lambda calculus with
natural numbers and the constants described in problem 2 above.

(13 p)
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