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• Main principle: names stand for arbitrary 
expressions, not just their final values

• Consequence: an expression bound to a name must not 
be evaluated until the name is first referenced

• Optimization: an expression bound to a name must not 
be re-evaluated after the name is first referenced

Laziness



Laziness
• Note: a lazy language

- is fundamentally distinct from our strict 
core, with a different semantics

- may however be implemented by translation 
into our strict core

- may also reuse the syntax, type system, etc, 
of our strict core

• To emphasize distinction, we write a lazy e as e



Translating laziness

• Delaying evaluation can be implemented by 
creating 0-arity closures (a.k.a. thunks)

• Must be done for

- function arguments (bound to parameters)

- constructor arguments (bound to var-patterns)

- RHS of let-bindings

• Avoiding re-evaluation will require some form of 
memoization/mutation



Building/entering thunks

• Building a thunk:
    translate (e0 e1) =   (translate e0) (CL f ys)
where 
    ys = fvs(e1)
and f is a fresh top-level name defined as
    f = \xthis -> case xthis of CL _ ys -> translate e1

• Similarly for RHS of top- and let-bindings

• Entering a thunk:
    translate x   =   case x of CL f -> f x



Avoiding re-evaluation

• After translation, a variable will denote a thunk 
(a closure expecting no arguments) on the heap

• Referencing a variable means entering its closure, 
which triggers the delayed evaluation

• After evaluation, the thunk should mutate:

(a) either into a thunk that just returns the value

(b) or into the value itself!



Thunk mutation (a)

• Concretely, a thunk CL f ys, with
 f = \xthis -> case xthis of CL _ ys -> e
should mutate into CL fdone v when e has evaluated 
to v, and where
 fdone = \xthis -> case xthis of CL _ v -> v
is a a common run-time system function

• Advantage: uniform code for referencing a 
variable before/after mutation

• Disadvantage: persistent overhead of a fun-call



Thunk mutation (b)

• Here, a thunk CL f ys, with
 f = \xthis -> case xthis of CL _ ys -> e, 
may mutate into K vs when e evaluates into v and v 
is a pointer to (a sufficiently small) K vs on the heap

• Advantage: no overhead of indirect jumps after 
evaluation

• Disadvantage: slightly more complicated variable 
referencing code:
 translate x  =  case x of CL f -> f x; _ -> x



Thunk mutation
• Scheme (a) ≈ push/enter (with no push!)

• Scheme (b) ≈ eval/apply (with no apply!)

• Both schemes can however coexist with an 
overall eval/apply arity-matching strategy

• Scheme (a) might also be necessary as a last 
resort, unless all thunks are made big enough 
to hold the largest possible heap value

• Moreover, scheme (a) allows update with 
unboxed non-pointer values



Thunk mutation

• Scheme (a) in concrete C code:
 WORD f (WORD xthis) {
  WORD y1 = xthis[1]; ...; WORD ym = xthis[m];
  WORD v = <code for evaluating e>;
  xthis[0] = fdone;
  xthis[1] = v;
  return v;
 }

• Scheme (b) is similar, but must resort to (a) if v 
points to a node bigger than m+1 words



Function thunks
• What if a thunk evaluates to a closure? 

closureConvert (translate (x e1 ... em)) = 
 case (case x of CL f -> f x) of CL f n
   | m == n  -> f x e1 ... em
   | m < n  -> CL papn-m,m (n-m) x e1 ... em
   | m > n  -> applym-n (f x e1 ... en) en+1 ... em

• Observation: the ordinary closure-entry code 
works just as well for thunks (n = 0)! Equivalent:
 case x of CL f n
   | m == n  -> f x e1 ... em
   | m < n  -> CL papn-m,m (n-m) x e1 ... em
   | m > n  -> applym-n (f x e1 ... en) en+1 ... em

• Requires that thunks store a zero arity as param 2



Constructor thunks
• A common case with scheme (b):

    translate (h = \x -> case x of Ki xsi -> ei)  =  
        h = \x -> case (case x of CL f -> f x; _ -> x) of 
     Ki xsi -> translate ei

• Might be optimized into
        h = \x -> case x of CL f -> h (f x); Ki xsi -> translate ei

• That is, the cost of checking evaluatedness can 
be hidden in the ordinary code for branching

• Requires that closures are also given a tagged 
representation, with a globally unique tag



Simple optimizations

• A very common pattern:
 translate (e0 x)  =  (translate e0) (CL f x)
where
 f = \xthis -> case xthis of CL _ x ->
      case x of CL f -> f x

• But a closure that just enters x is equal to x!

• Thus:
 translate (e0 x)  =  (translate e0) x



Simple optimizations

• Literals are already evaluated:
 translate (e0 n)  =  (translate e0) (CL fdone n)

• Variables known to be evaluated may be 
treated the same way (scheme (a)):
 let x = K es in ... 
  translate (e0 x)  =  (translate e0) (CL fdone x)

• Or using scheme (b):
 let x = K es in ... 
  translate (e0 x)  =  (translate e0) x



Exploiting strictness
• Consider a function h = \x -> case x of Ki xsi -> ei and 

a call h (y 7)

• After translation we would have 
 h = \x -> case x of CL f -> h (f x); Ki xsi -> ei 
and the call would have become h (CL f y)
where f = \xthis -> case xthis of CL _ y -> y 7

• Clearly the thunk given to h will be entered 
right away, so an equivalent call is simply h (y 7)

• A function like h, which can be called "by value" 
just as well as lazily, is characterized as strict



Strictness
• Formally, a function h is strict if h e diverges 

for all non-terminating e

• In other words, h either always diverges, or it 
needs to inspect the value of its argument:
- branch according to its constructor tag, or
- feed it to a primitive operator, or
- apply it to other arguments

• (For higher arities, we say a function is 
strict/non-strict in argument 1, 2, ...)



Strictness analysis
• Despite many examples of obviously strict 

functions, the strictness property of functions in 
general is undecidable

• Still, even a coarse approximation to strictness is 
beneficial to the efficiency of lazy languages

• Many safe strictness analysis techniques exist 
(and every lazy language compiler implements one)

• The classic approach is based on abstract 
interpretation (example follows Wadler, 1987)



Abstract interpretation

• Reduce computations over big or infinite value 
domains to abstract computations over small and 
finite abstract domains

• Iterate abstract function behavior until fixpoint

• Choose the abstract domains so that they reveal 
intersting program properties

• For strictness analysis, let the abstract domains 
capture varying degrees of definedness



• Let the abstract domain of integers be
⟙ – any concrete integer value
⟘ - the undefined (non-terminating) integer

• Let the abstract domain of integer lists be
⟙∈ - a finite list with no undefined elements
⟘∈ - a finite list with some undefined elements
∞ - an infinite list (with an undefined tail)
⟘ - the fully undefined list

• Order elements as depicted!

Strictness analysis 
abstract interpretation



Strictness analysis 
abstract interpretation

• Let x# be the abstraction of value x

• Some abstract values:
0# = ⟙       1# = ⟙      99999# = ⟙       ⟘# = ⟘

[]# = ⟙∈      (1:2:[])# = ⟙∈     (1:⟘:[])# = ⟘∈      (1:⟘)# = ∞ 

• Let f# be the abstraction of function f

• Calculate abstract function tables using finite 
value enumeration, monotonicity, least upper / 
greatest lower bounds, fixpoint iteration, ...



Example

len = \us -> case us of [] -> 0; x:xs -> 0 + len xs
x# xs# (x:xs)#
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⟙ ⟘∈ ⟘∈

⟙ ∞ ∞
⟙ ⟘ ∞
⟘ ⟙∈ ⟘∈

⟘ ⟘∈ ⟘∈

⟘ ∞ ∞
⟘ ⟘ ∞

us# (case us ...)#
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⟘∈ len# ⟙∈

∞ len# ∞
⟘ ⟘
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in out
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⟘ ⟘

fixpoint

len#1len#1

in out
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∞ ⟘

⟘ ⟘



Example

• Conclusions from the abstract interpretation:

- len maps ⟘ to ⟘, so it's safe to evaluate its 
argument before the call

- len maps ∞ to ⟘, so it's also safe to evaluate 
all tails of the argument before the call

- len maps ⟘∈ to ⟙, so it's not safe to evaluate 
any elements of the argument before the call



Summary
• Laziness is straightforward to implement, but 

efficiency relies heavily on optimizations

• Strictness analysis is particularly useful, classic 
technique is based on abstract interpretation

• Course summary:

- Mapping a FL to C quite simple (modulo GC issues)

- Challenge lies in exploiting source-to-source 
transformations (including type-based ones)

- Hands-on experience is the only lasting value, 
complete your compiler projects!


