
Compiling functional
languages

Lecture 7
Lazy evaluation

Johan Nordlander

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

• Main principle: names stand for arbitrary
expressions, not just their final values

• Consequence: an expression bound to a name must not
be evaluated until the name is first referenced

• Optimization: an expression bound to a name must not
be re-evaluated after the name is first referenced

Laziness

Laziness
• Note: a lazy language

- is fundamentally distinct from our strict
core, with a different semantics

- may however be implemented by translation
into our strict core

- may also reuse the syntax, type system, etc,
of our strict core

• To emphasize distinction, we write a lazy e as e

Translating laziness

• Delaying evaluation can be implemented by
creating 0-arity closures (a.k.a. thunks)

• Must be done for

- function arguments (bound to parameters)

- constructor arguments (bound to var-patterns)

- RHS of let-bindings

• Avoiding re-evaluation will require some form of
memoization/mutation

Building/entering thunks

• Building a thunk:
 translate (e0 e1) = (translate e0) (CL f ys)
where
 ys = fvs(e1)
and f is a fresh top-level name defined as
 f = \xthis -> case xthis of CL _ ys -> translate e1

• Similarly for RHS of top- and let-bindings

• Entering a thunk:
 translate x = case x of CL f -> f x

Avoiding re-evaluation

• After translation, a variable will denote a thunk
(a closure expecting no arguments) on the heap

• Referencing a variable means entering its closure,
which triggers the delayed evaluation

• After evaluation, the thunk should mutate:

(a) either into a thunk that just returns the value

(b) or into the value itself!

Thunk mutation (a)

• Concretely, a thunk CL f ys, with
 f = \xthis -> case xthis of CL _ ys -> e
should mutate into CL fdone v when e has evaluated
to v, and where
 fdone = \xthis -> case xthis of CL _ v -> v
is a a common run-time system function

• Advantage: uniform code for referencing a
variable before/after mutation

• Disadvantage: persistent overhead of a fun-call

Thunk mutation (b)

• Here, a thunk CL f ys, with
 f = \xthis -> case xthis of CL _ ys -> e,
may mutate into K vs when e evaluates into v and v
is a pointer to (a sufficiently small) K vs on the heap

• Advantage: no overhead of indirect jumps after
evaluation

• Disadvantage: slightly more complicated variable
referencing code:
 translate x = case x of CL f -> f x; _ -> x

Thunk mutation
• Scheme (a) ≈ push/enter (with no push!)

• Scheme (b) ≈ eval/apply (with no apply!)

• Both schemes can however coexist with an
overall eval/apply arity-matching strategy

• Scheme (a) might also be necessary as a last
resort, unless all thunks are made big enough
to hold the largest possible heap value

• Moreover, scheme (a) allows update with
unboxed non-pointer values

Thunk mutation

• Scheme (a) in concrete C code:
 WORD f (WORD xthis) {
 WORD y1 = xthis[1]; ...; WORD ym = xthis[m];
 WORD v = <code for evaluating e>;
 xthis[0] = fdone;
 xthis[1] = v;
 return v;
 }

• Scheme (b) is similar, but must resort to (a) if v
points to a node bigger than m+1 words

Function thunks
• What if a thunk evaluates to a closure?

closureConvert (translate (x e1 ... em)) =
 case (case x of CL f -> f x) of CL f n
 | m == n -> f x e1 ... em
 | m < n -> CL papn-m,m (n-m) x e1 ... em
 | m > n -> applym-n (f x e1 ... en) en+1 ... em

• Observation: the ordinary closure-entry code
works just as well for thunks (n = 0)! Equivalent:
 case x of CL f n
 | m == n -> f x e1 ... em
 | m < n -> CL papn-m,m (n-m) x e1 ... em
 | m > n -> applym-n (f x e1 ... en) en+1 ... em

• Requires that thunks store a zero arity as param 2

Constructor thunks
• A common case with scheme (b):

 translate (h = \x -> case x of Ki xsi -> ei) =
 h = \x -> case (case x of CL f -> f x; _ -> x) of
 Ki xsi -> translate ei

• Might be optimized into
 h = \x -> case x of CL f -> h (f x); Ki xsi -> translate ei

• That is, the cost of checking evaluatedness can
be hidden in the ordinary code for branching

• Requires that closures are also given a tagged
representation, with a globally unique tag

Simple optimizations

• A very common pattern:
 translate (e0 x) = (translate e0) (CL f x)
where
 f = \xthis -> case xthis of CL _ x ->
 case x of CL f -> f x

• But a closure that just enters x is equal to x!

• Thus:
 translate (e0 x) = (translate e0) x

Simple optimizations

• Literals are already evaluated:
 translate (e0 n) = (translate e0) (CL fdone n)

• Variables known to be evaluated may be
treated the same way (scheme (a)):
 let x = K es in ...
 translate (e0 x) = (translate e0) (CL fdone x)

• Or using scheme (b):
 let x = K es in ...
 translate (e0 x) = (translate e0) x

Exploiting strictness
• Consider a function h = \x -> case x of Ki xsi -> ei and

a call h (y 7)

• After translation we would have
 h = \x -> case x of CL f -> h (f x); Ki xsi -> ei
and the call would have become h (CL f y)
where f = \xthis -> case xthis of CL _ y -> y 7

• Clearly the thunk given to h will be entered
right away, so an equivalent call is simply h (y 7)

• A function like h, which can be called "by value"
just as well as lazily, is characterized as strict

Strictness
• Formally, a function h is strict if h e diverges

for all non-terminating e

• In other words, h either always diverges, or it
needs to inspect the value of its argument:
- branch according to its constructor tag, or
- feed it to a primitive operator, or
- apply it to other arguments

• (For higher arities, we say a function is
strict/non-strict in argument 1, 2, ...)

Strictness analysis
• Despite many examples of obviously strict

functions, the strictness property of functions in
general is undecidable

• Still, even a coarse approximation to strictness is
beneficial to the efficiency of lazy languages

• Many safe strictness analysis techniques exist
(and every lazy language compiler implements one)

• The classic approach is based on abstract
interpretation (example follows Wadler, 1987)

Abstract interpretation

• Reduce computations over big or infinite value
domains to abstract computations over small and
finite abstract domains

• Iterate abstract function behavior until fixpoint

• Choose the abstract domains so that they reveal
intersting program properties

• For strictness analysis, let the abstract domains
capture varying degrees of definedness

• Let the abstract domain of integers be
⟙ – any concrete integer value
⟘ - the undefined (non-terminating) integer

• Let the abstract domain of integer lists be
⟙∈ - a finite list with no undefined elements
⟘∈ - a finite list with some undefined elements
∞ - an infinite list (with an undefined tail)
⟘ - the fully undefined list

• Order elements as depicted!

Strictness analysis
abstract interpretation

Strictness analysis
abstract interpretation

• Let x# be the abstraction of value x

• Some abstract values:
0# = ⟙ 1# = ⟙ 99999# = ⟙ ⟘# = ⟘

[]# = ⟙∈ (1:2:[])# = ⟙∈ (1:⟘:[])# = ⟘∈ (1:⟘)# = ∞

• Let f# be the abstraction of function f

• Calculate abstract function tables using finite
value enumeration, monotonicity, least upper /
greatest lower bounds, fixpoint iteration, ...

Example

len = \us -> case us of [] -> 0; x:xs -> 0 + len xs
x# xs# (x:xs)#

⟙ ⟙∈ ⟙∈

⟙ ⟘∈ ⟘∈

⟙ ∞ ∞
⟙ ⟘ ∞
⟘ ⟙∈ ⟘∈

⟘ ⟘∈ ⟘∈

⟘ ∞ ∞
⟘ ⟘ ∞

us# (case us ...)#

⟙∈ ⟙

⟘∈ len# ⟙∈

∞ len# ∞
⟘ ⟘

len#0len#0

in out

⟙∈ ⟘

⟘∈ ⟘

∞ ⟘

⟘ ⟘

fixpoint

len#1len#1

in out

⟙∈ ⟙

⟘∈ ⟘

∞ ⟘

⟘ ⟘

len#2len#2

in out

⟙∈ ⟙

⟘∈ ⟙

∞ ⟘

⟘ ⟘

len#3len#3

in out

⟙∈ ⟙

⟘∈ ⟙

∞ ⟘

⟘ ⟘

Example

• Conclusions from the abstract interpretation:

- len maps ⟘ to ⟘, so it's safe to evaluate its
argument before the call

- len maps ∞ to ⟘, so it's also safe to evaluate
all tails of the argument before the call

- len maps ⟘∈ to ⟙, so it's not safe to evaluate
any elements of the argument before the call

Summary
• Laziness is straightforward to implement, but

efficiency relies heavily on optimizations

• Strictness analysis is particularly useful, classic
technique is based on abstract interpretation

• Course summary:

- Mapping a FL to C quite simple (modulo GC issues)

- Challenge lies in exploiting source-to-source
transformations (including type-based ones)

- Hands-on experience is the only lasting value,
complete your compiler projects!

