Compiling functional languages

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Lecture 7 Lazy evaluation

Johan Nordlander

Laziness

- Main principle: names stand for arbitrary <u>expressions</u>, not just their final <u>values</u>
- Consequence: an expression bound to a name must <u>not</u> <u>be evaluated until</u> the name is first referenced
- Optimization: an expression bound to a name must <u>not</u> <u>be re-evaluated after</u> the name is first referenced

Laziness

- Note: a lazy language
 - is fundamentally distinct from our strict core, with a different semantics
 - may however be implemented <u>by translation</u> into our strict core
 - may also reuse the syntax, type system, etc, of our strict core
- To emphasize distinction, we write a lazy e as e

Translating laziness

- Delaying evaluation can be implemented by creating O-arity closures (a.k.a. thunks)
- Must be done for
 - function arguments (bound to parameters)
 - constructor arguments (bound to var-patterns)
 - RHS of let-bindings
- Avoiding re-evaluation will require some form of memoization/mutation

Building/entering thunks

• Building a thunk:

translate ($\underline{e_0 e_1}$) = (translate $\underline{e_0}$) (CL f ys) where

 $ys = fvs(e_1)$

and f is a fresh top-level name defined as f = \x_{this} -> case ×_{this} of CL _ ys -> translate <u>e1</u>

- Similarly for RHS of top- and let-bindings
- Entering a thunk:

translate x = case x of CL f -> f x

Avoiding re-evaluation

- After translation, a variable will denote a <u>thunk</u> (a closure expecting no arguments) on the heap
- Referencing a variable means entering its closure, which triggers the delayed evaluation
- After evaluation, the thunk should <u>mutate</u>:
 (a) either into a thunk that just returns the value
 (b) or into the value itself!

Thunk mutation (a)

• Concretely, a thunk CL f ys, with

 $f = \langle x_{this} \rightarrow case x_{this} of CL _ ys \rightarrow e$ should mutate into CL $f_{done} v$ when e has evaluated to v, and where

fdone = \Xthis -> case Xthis of CL _ v -> v

is a a common run-time system function

- Advantage: uniform code for referencing a variable before/after mutation
- Disadvantage: persistent overhead of a fun-call

Thunk mutation (b)

• Here, a thunk CL f ys, with

f = \x_{this} -> case x_{this} of CL _ ys -> e,

may mutate into K vs when e evaluates into v and v is a pointer to (a sufficiently small) K vs on the heap

- Advantage: no overhead of indirect jumps after evaluation
- Disadvantage: slightly more complicated variable referencing code: translate x = case x of CL f -> f x; _ -> x

Thunk mutation

- Scheme (a) ≈ push/enter (with no push!)
- Scheme (b) ≈ eval/apply (with no apply!)
- Both schemes can however coexist with an overall eval/apply arity-matching strategy
- Scheme (a) might also be necessary as a last resort, unless all thunks are made big enough to hold the largest possible heap value
- Moreover, scheme (a) allows update with unboxed non-pointer values

Thunk mutation

```
Scheme (a) in concrete C code:
WORD f (WORD x<sub>this</sub>) {

WORD y1 = x<sub>this</sub>[1]; ...; WORD ym = x<sub>this</sub>[m];
WORD v = <code for evaluating e>;
x<sub>this</sub>[0] = f<sub>done</sub>;
x<sub>this</sub>[1] = v;
return v;
```

 Scheme (b) is similar, but must resort to (a) if v points to a node bigger than m+1 words

Function thunks

- What if a thunk evaluates to a closure? closureConvert (translate (x e1 ... em)) = case (case x of CL f -> f x) of CL f n | m == n -> f x e1 ... em | m < n -> CL papn-m,m (n-m) x e1 ... em | m > n -> applym-n (f x e1 ... en) en+1 ... em
- Observation: the ordinary closure-entry code works just as well for thunks (n = 0)! Equivalent: case × of CL f n
 [m == n -> f × e1 ... em[m < n -> CL papn-m,m (n-m) × e1 ... em[m > n -> applym-n (f × e1 ... en) en+1 ... em
- Requires that thunks store a zero arity as param 2

Constructor thunks

- A common case with scheme (b): translate (h = \x -> case x of K_i xs_i -> e_i) = h = \x -> case (case x of CL f -> f x; _ -> x) of K_i xs_i -> translate e_i
- Might be optimized into

 h = \x -> case × of CL f -> h (f x); K_i ×s_i -> translate <u>ei</u>
- That is, the cost of checking evaluatedness can be hidden in the ordinary code for branching
- Requires that closures are also given a tagged representation, with a globally unique tag

Simple optimizations

 A very common pattern: translate (<u>eo x</u>) = (translate <u>eo</u>) (CL f x) where f = \x_{this} -> case x_{this} of CL _ x ->

case x of CL f -> f x

- But a closure that just enters \times is equal to \times !
- Thus:

translate ($\underline{e_0} \times$) = (translate $\underline{e_0}$) ×

Simple optimizations

- Literals are already evaluated: translate (<u>eo n</u>) = (translate <u>eo</u>) (CL f_{done} n)
- Variables known to be evaluated may be treated the same way (scheme (a)):
 let x = K es in ...

translate $(\underline{e_0 \times}) = (\text{translate } \underline{e_0}) (CL f_{\text{done } \times})$

Or using scheme (b):
 let x = K es in ...
 translate (e₀ x) = (translate e₀) x

Exploiting strictness

- Consider a function $h = \langle x \rangle \operatorname{case} x \operatorname{of} K_i \times s_i \rangle e_i$ and a call h(y 7)
- After translation we would have

 h = \x -> case x of CL f -> h (f x); K_i xs_i -> e_i
 and the call would have become h (CL f y)
 where f = \x_{this} -> case x_{this} of CL _ y -> y 7
- Clearly the thunk given to h will be <u>entered</u> <u>right away</u>, so an equivalent call is simply h (y 7)
- A function like h, which can be called "by value" just as well as lazily, is characterized as <u>strict</u>

Strictness

- Formally, a function h is strict if h e diverges for all non-terminating e
- In other words, h either always diverges, or it needs to <u>inspect</u> the value of its argument:
 - branch according to its constructor tag, or
 - feed it to a primitive operator, or
 - apply it to other arguments
- (For higher arities, we say a function is strict/non-strict in argument 1, 2, ...)

Strictness analysis

- Despite many examples of obviously strict functions, the strictness property of functions in general is <u>undecidable</u>
- Still, even a coarse <u>approximation</u> to strictness is beneficial to the efficiency of lazy languages
- Many safe strictness analysis techniques exist (and every lazy language compiler implements one)
- The classic approach is based on <u>abstract</u> <u>interpretation</u> (example follows Wadler, 1987)

Abstract interpretation

- Reduce computations over big or infinite value domains to abstract computations over small and <u>finite abstract domains</u>
- Iterate abstract function behavior until <u>fixpoint</u>
- Choose the abstract domains so that they reveal intersting program properties
- For strictness analysis, let the abstract domains capture varying degrees of <u>definedness</u>

Strictness analysis abstract interpretation

- Let the abstract domain of integers be
 - \top any concrete integer value
 - \perp the undefined (non-terminating) integer
- Let the abstract domain of integer lists be
 - T_{ϵ} a finite list with no undefined elements
 - \perp_{ε} a finite list with some undefined elements
 - ∞ an infinite list (with an undefined tail)
 - the fully undefined list
- <u>Order</u> elements as depicted!

Strictness analysis abstract interpretation

- Let x[#] be the abstraction of value x
- Some abstract values: $0^{\#} = \top$ $1^{\#} = \top$ $99999^{\#} = \top$ $\perp^{\#} = \perp$ $[]^{\#} = \top_{\in}$ $(1:2:[])^{\#} = \top_{\in}$ $(1:\perp:[])^{\#} = \perp_{\in}$ $(1:\perp)^{\#} = \infty$
- Let f[#] be the abstraction of function f
- Calculate abstract function tables using finite value enumeration, monotonicity, least upper / greatest lower bounds, fixpoint iteration, ...

Example

x #	xs [#]	(x:xs)#								_							
Т	T∈	Τ _e		en	= \us -> co	as	se u	s of	Ĺ] ->	0; >	$\langle : \rangle$	KS -	> () -	+	en	XS
Т	\perp_{\in}	\perp_{\in}															
Т	8	8				len [#] 0			len [#] 1			len [#] 2			len [#] 3		
Т	\bot	8	u	S [#]	(case us)#		in	out		in	out		in	out		in	out
\bot	T∈	\perp_{ϵ}	T	Г _∈	Т		Τ _∈	\bot		T∈	Т		T∈	Т		T∈	Т
\bot	\bot_{\in}	\perp_{ϵ}		Le	len [#] T_{ϵ}		\perp_{\in}	\bot		\perp_{\in}	\bot		\perp_{\in}	Т		\perp_{\in}	Т
\bot	8	8	c	×	len [#] ∞		8	\bot		8	\bot		8	\bot		8	\bot
\bot		8		T	\bot		\bot	Τ		T	\bot		\bot	\bot		\bot	\bot
											-		$\overline{\mathbf{n}}$				

`fixpoint'

Example

- Conclusions from the abstract interpretation:
 - len maps \bot to \bot , so it's safe to evaluate its argument before the call
 - len maps ∞ to \bot , so it's also safe to evaluate <u>all tails</u> of the argument before the call
 - len maps \bot_{ϵ} to \top , so it's <u>not</u> safe to evaluate any <u>elements</u> of the argument before the call

Summary

- Laziness is straightforward to implement, but efficiency relies heavily on optimizations
- Strictness analysis is particularly useful, classic technique is based on abstract interpretation
- <u>Course summary</u>:
 - Mapping a FL to C quite simple (modulo GC issues)
 - Challenge lies in exploiting source-to-source transformations (including type-based ones)
 - Hands-on experience is the only lasting value, complete your compiler projects!