Compiling functional
languages

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Lecture 7
Lazy evaluation

Johan Nordlander

Laziness

e Main principle: names stand for arbitrary
expressions, not just their final values

e Consequence: an expression bound to a name must not
be evaluated until the name is first referenced

e Optimization: an expression bound to a name must not
be re-evaluated after the name is first referenced

Laziness

* Note: a lazy language

- is fundamentally distinct from our strict
core, with a different semantics

- may however be implemented by translation
iInto our strict core

- may also reuse the syntax, type system, etc,
of our strict core

 To emphasize distinction, we write a lazy e as e

Translating laziness

e Delaying evaluation can be implemented by
creating O-arity closures (a.k.a. thunks)

e Must be done for
- function arguments (bound to parameters)
- constructor arguments (bound to var-patterns)
- RHS of let-bindings

e Avoiding re-evaluation will require some form of
memoization/mutation

Building/entering thunks

e Building a thunk:
translate (eo e1) = (translate eo) (CL f ys)
where
ys = fvs(e1)
and f is a fresh top-level name defined as
f = \Xthis -> case Xthis of CL _ ys -> translate e:

e Similarly for RHS of top- and let-bindings
e Entering a thunk:

translate x = case xof CLf ->f x

Avoiding re-evaluation

e After translation, a variable will denote a thunk
(a closure expecting ho arguments) on the heap

e Referencing a variable means entering its closure,
which triggers the delayed evaluation

e After evaluation, the thunk should mutate:

(a) either into a thunk that just returns the value

(b) or into the value itself!

Thunk mutation (a)

e Concretely, a thunk cL f ys, with
f = \Xthis -> case Xhis of CL _ys ->e
should mutate into CL fuwne v When e has evaluated
to v, and where
fdone = \Xthis -> case Xihis of CL _ v -> v
is a a common run-time system function

e Advantage: uniform code for referencing a
variable before/after mutation

e Disadvantage: persistent overhead of a fun-call

Thunk mutation (b)

e Here, a thunk CL f ys, with
f = \X1his -> case Xihis of CL __ys -> e,
may mutate into K vs when e evaluates into vand v
IS a pointer to (a sufficiently small) K vs on the heap

e Advantage: no overhead of indirect jumps after
evaluation

e Disadvantage: slightly more complicated variable

referencing code:
translate x = case xof CLf ->f x; _->x

Thunk mutation

Scheme (a) # push/enter (with no pushl)
Scheme (b) % eval/apply (with no apply!)

Both schemes can however coexist with an
overall eval/apply arity-matching strategy

Scheme (a) might also be necessary as a last
resort, unless all thunks are made big enough
to hold the largest possible heap value

Moreover, scheme (a) allows update with
unboxed non-pointer values

Thunk mutation

e Scheme (a) in concrete C code:

WORD f (WORD Xihis) {
WORD y1 = Xthis[1]; WORD ym = Xthis[m];
WORD v = <code for evaluating e>;
X’rhis[o] = fdone,
Xthis[1] = v;
refurnv;

}

e Scheme (b) is similar, but must resort to (a) if v
points to a node bigger than m+1 words

Function thunks

What if a thunk evaluates to a closure?
closureConvert (translate (x e; ... en)) =

case (case x of CL f ->f x)of CL f n
m==n ->fXxer1..en
m<n ->CL papn-mm (N-m) X e1 ... en
m>n ->applymn (f X e1... en) €ns1 ... €m

Observation: the ordinary closure-entry code

works just as well for thunks (n = 0)! Equivalent:
case x of CL f n

m==n ->f xei..en

m<n ->CL papn-mm (n-m) x ey ... en

m>n ->applymn (f X €1 ... 1) €ns1 ... em

Requires that thunks store a zero arity as param 2

Constructor thunks

A common case with scheme (b):
translate (h = \x -> case x of Ki xsi -> e;) =
h=\x ->case (case x of CL f -> f x; _ -> x) of
Ki xsi -> translate e

Might be optimized into

h =\x ->case x of CL f -> h (f x). Ki xsi -> translate e;

That is, the cost of checking evaluatedness can
be hidden in the ordinary code for branching

Requires that closures are also given a tagged
representation, with a globally unique tag

Simple optimizations

* A very common pattern:
translate (eo x) = (translate eo) (CL f x)

where
f = \Xthis -> case Xihis of CL __ x ->
case x of CL f -> f x

e But a closure that just enters x is equal to x|
e Thus:

translate (eo x) = (franslate eo) x

Simple optimizations

e Literals are already evaluated:
translate (eo n) = (franslate eo) (CL fdone N)

* Variables known to be evaluated may be

treated the same way (scheme (a)):

let x =Kesin ..
translate (eo x) = (translate eo) (CL fdone X)

e Or using scheme (b):
let x = Kesin ...
translate (eo x) = (translate eo) x

Exploiting strictness

Consider a function h = \x -> case x of K; xs; -> e; and
acall h(y7)

After translation we would have
h=\x->case x of CL f -> h (f x); Ki xsi -> e;

and the call would have become h (CL fy)

where f = \xnis -> case xmis of CL _y >y 7

Clearly the thunk given to h will be entered
right away, so an equivalent call is simply h (y 7)

A function like h, which can be called "by value"
just as well as lazily, is characterized as strict

Strictness

 Formally, a function h is strict if he diverges
for all non-terminating e

* In other words, h either always diverges, or it
needs to inspect the value of its argument:
- branch according to its constructor tag, or
- feed it to a primitive operator, or
- apply it to other arguments

e (For higher arities, we say a function is
strict/non-strict in argument 1, 2, ...)

Strictness analysis

Despite many examples of obviously strict
functions, the strictness property of functions in
general is undecidable

Still, even a coarse approximation to strictness is
beneficial to the efficiency of lazy languages

Many safe strictness analysis techniques exist
(and every lazy language compiler implements one)

The classic approach is based on gbstract
interpretation (example follows Wadler, 1987)

Abstract interpretation

e Reduce computations over big or infinite value
domains to abstract computations over small and
finite abstract domains

e Tterate abstract function behavior until fixpoint

* Choose the abstract domains so that they reveal
intersting program properties

e For strictness analysis, let the abstract domains
capture varying degrees of definedness

Strictness analysis
abstract interpretation

e Let the abstract domain of integers be
T - any concrete integer value

1L - the undefined (non-terminating) integer

e Let the abstract domain of integer lists be
Te - a finite list with no undefined elements

le - a finite list with some undefined elements

~ - an infinite list (with an undefined tail)
1L - the fully undefined list

e Order elements as depicted!

Strictness analysis
abstract interpretation

Let x# be the abstraction of value x

Some abstract values:
0"=T 1¥=T 99999%=T 1¥=1

[F=Tc (@2:[DF=Tc @QL[]DF=Lle (L= o
Let f# be the abstraction of function f

Calculate abstract function tables using finite
value enumeration, monotonicity, least upper /
greatest lower bounds, fixpoint iteration, ...

Example

x# [xs™ [(x:xs)¥#

1T+ 1 . len = \us -> case us of [] -> O; x:xs ->0 + len xs
T Le e

T| = len® len len®; len3

T L oo us? [(case us ..)*| | in |out| | in [out| | in |out| | in |out
1| Te e Te T Tel| L Tel T Te|l T Tel T

L] Le | Le le | len™ T. le| L le| L Le| T Le| T

L] e | oo oo len” e o | 1L o | L o | 1L o | L

1| L oo 1 1 1| L 1|1 1| L 1| L

fixpoint

Example

e Conclusions from the abstract interpretation:

- lenmaps L to L, so it's safe to evaluate its
argument before the call

- len maps « to 1, so it's also safe to evaluate
all tails of the argument before the cal

- lenmaps Lc to T, so it's not safe to evaluate
any elements of the argument before the call

Summary

Laziness is straightforward to implement, but
efficiency relies heavily on optimizations

Strictness analysis is particularly useful, classic
technique is based on abstract interpretation

Course summary:
- Mapping a FL to C quite simple (modulo GC issues)

- Challenge lies in exploiting source-to-source
transformations (including type-based ones)

- Hands-on experience is the only lasting value,
complete your compiler projects!

