Compiling functional
languages

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Lecture 6
Type-based optimizations

Johan Nordlander

Aim

* To give an introduction to the rich field of
program optimization

e To show how the principles of formal type
systems and type inference algorithms can
provide structure to program transformations in
general

e To explain some simple but effective type-based
optimizations, together with a not so simple (and
not so type-based!) one

Remark

Optimization = "make optimal", taken literally
Optimality of efficiency is a far-reaching goal...
Common use: optimization = "improving efficiency"
... with an added "for most programs"

That is: no optimality or improvement guarantees

But correctness (preservation of meaning) is
commonly assumed (and often formally proved)

Checking arities

e Recall the closure conversion algorithm:

- Calling a known function = good code, arity-
matching at compile-time

- Cadlling a function variable = costly arity-
inspecting loop at run-time

e Difference is that a variable reveals nothing
about the arity of the hidden function

e But what if arities were part of types?

Function types

 The standard abstract type grammar:
tuza | Tttt | t->14 data Type = FunTy Type Type

* A non-standard type grammar:
tuza | T+t | ts->+ data Type = FunTy [Type] Type
parse ti1->t2 ->t3 as t1,f2 -> 13—
parse t1-> (f2 -> t3) as t1-> (t2 -> t3)

—not equal

e

o Captures arities in function types

e Inflexibility may be compensated for by
automatic insertion of coercions

An arity-sensitive type

system
Abe:ti. . th->t Ale 't AXxsitske:t
App Abs
AlFeer...en: t AF\xs->e:ts->t
x:Vas.t € A Abe:t Axole' : 1
Var Let
Al x:[ts/as]t AlFletx=eine' : t'

where o = gen(t,A)

An arity-matching type
inference algorithm

BiIAFe:t ~ e 02(0:1A)FVes:ts ~ es’ @e" . 0,1 < ts->a
(636261)AFW ees:B3a ~ (e"e')es’

PP

where a is new

X:Vas.qs=>t € A (A xs:as)FWe:t ~ e
Var Abs

[JAFY x : 8t ~ X BA FV \xs->e : Bas->t ~ \xs->e’

where 0=[bs/as] and bs are new where as are new

B1IAFW e it ~er B2(B1AX0)FWer:it ~ en
(0201))A MV let x=ejinez: t'~ let x=e1" inez’

Let

where o = gen(t,0:1A)

Arity-matching unification

Output (a substitution and a coercion)

/

\
General form: e I- e ’r\< ’/r

Inputs (two types)

Main idea:

All function types can be coerced
into each other by currying/uncurrying

All other types must be unifiable

(including function types nested inside datatype constructors)

Arity-matching unification

01 IFe:t<ss'->s 02 IFes:ss<ts
0201 I \v->\(ys,ys')-> e (v es@ys) ys' : ts->t < (ss,s5')->s

B IFe:ts'->t<s B, Fes:ss<ts
0201 IF \v->\ys-> e (\xs'-> v (es@ys,xs")) : (s,ts')->t < ss->5

)
B1IFe:t<s O, IFes:ss<ts T ~ s

0201 I \v->\ys-> e (v es@ys) : ts->t <ss->s 0 IF \x->x:t<s

(eseys = zipWith Applyl es ys)

Example

* Assume ; A function of arity 1
map : (a -> b) -> [a] -> [b]
plus : Int,Int ->Int = \mn-> .

e Then
map plus xs ~ (e map) plus xs = map (\y->\x->plus y x) xs

where
e = \v->\yr1yz -> (\x->x) (v (e1 y1) (\x->X) y2)) = \v ->\y1yz2->v (e1y1) y
er= \v->\y->(\x->x) (\x ->v (\x->x) y) x) = \v->\y ->\x->vyXx

e Because (ignoring the substitutions)

I-ex:I->I<by - \x->x :b1<1I
I \x->x : [b2] < a1 I-e1: II->I < bi->bo I- \x->x : [I]< [b1]
I- e : (bi->b2)->[b1]->[b2] < (I, I->I)->[I]->a;

On arity-matching

Generates seemingly complicated terms, but simple
static evaluation is extremely beneficial

Main benefit: completely removes the need for run-
time arity tests and iterative loops at call sites

Can be sligthly non-deterministic:

\f xy > (f xy, f x) : (a->b->c)->a->b->c or (a->(b->c))->a->b->c
However, alternatives are mutually coercible
Datatype constructor rigidity, [a->b->c] « [a->(b->c)],
can be loosened by generating fmap-like coercions

Unavoidable rigidity: m (a->b->c) « m (a->(b->c))

Region inference

e Advanced method replacing garbage collection by stack-
like popping of memory regions (Talpin & Tofte, 1993)

e A type-based translation based on an effect type
system (Lucassen & Gifford, 1988)

- Basically HM; effects & our contexts; but effects
also annotate function types (subject to unification)

- Can distinguish between the effect (memory read or
write) of creating a function and calling it

e Unfortunately a rather complex technique...

Poor man's region
inference

e Apply qualified types in non-standard fashionl
e Source language

e = x| ees | \xs->e | letx=zeine |
fste | snde | (ee)
o TC(I"Q@T Ianguage ; Run e with some temporary regions
e ::= ... | letregionysine | e’

?

Store e in regiony

e Type language
t uza | ts->'t | (1)

Write| O #= Vas.gs ="t

Use type (variables) to track region demands

effec‘r\q = Putt

Poor man's region
inference

PIAFe:ts >t ~e' P|AFes:ts ~es’
PIAFees:t ~¢e' es'

App

PlIAxsitske:t ~e' PlI-y:Putr
PIAF \xs->e: ts ->"t ~ (\xs-se')

Abs

x:vas.qgs=>"te A Pl-ys:[ts/as]gs,y: Putr
PIAF x: [ts/as]t ~ (x ys)

Var

Pysigs|Axicker:t ~ei' P|lAxiolez:t ~e2’ PlI-y:Put "ot
PIAFlet x=ejinez: t'~ let x = (\ys->e;') in e>'
where o = V fv(gs,t)\fv(Ar) =>"t

Poor man's region
inference

PlIAFe:(t,t') ~¢e' - PlIAFe: (11t) ~¢e'
PIAF fste:t ~ fste' PIAFsnde:t'" ~snde'

Snd

PIAFer:t1 ~ei' P|Abez:its ~e2’ PIFy:Putr
PIAF (e1,e2): (t1,12)" ~ (e1',e2')

Pair

Pysigs|Ake:t ~e' fv(gs)n fv(t,AP)=o tis first-order

Region
PIAFe:t ~ letregionysine’

A poor man's region
inference algorithm

Straightforward from inference system and
algorithm W for qualified types

Substantially simpler than T&T (no effect variables
or unification of effect sets)

Depends on inference of limited polymorphic
recursion (just like T&T). Can probably reuse their
iterative approach too

Separate problem: finding out maximum size of
regions (shared with T&T)

Example

(from Talpin & Tofte 1993)

let fib = \x -> if x <= 1 then 1 else fib (x-2) + fib (x-1)
in fib 15

A~
(using type scheme fib : Va,b . Put b => Int® -> Int®)

let fib = (\Y* -> (\x -> if x <= 1 then 1"* else
((flb y5)y7 (x_2y9)y8 + (flb y6)y10 (x_1y12)y11)y4)y3)y2

in (flb y1)y14 15y13 y9 yl2
y13y14 y7.y8 y10,y11
y2y3 y5.y6

(region scopes only indicated graphically)

Limitation
Memory reads not tracked by types, correctness relies on read

demands coinciding with evaluation. Only true for first-order data...

Pl|A,y:BF x: (B,B)*
PIAFT:B P|AFF:B PIFyiPutar P|lAyBFfstx:B PIF yzPuta:

PIAF (T F)*: (B,B)" PIAF \y->fst x)*: B ->* B
P| Flet x = (T,F)in (\y->fst x)r?:

P = y1:Put a1, y2:Put az
A = x:(B,B)! Not first-order!

Consequence: Regions only used while creating a function
must still be kept until function can no longer be called

Static evaluation

e Foolish not to transform away at compile-time:
[1+2] = 3
[(\x->x+2)y] = y+2

[case K1y of Kix ->e1; Kz ->ez2] = [y/x]e:

e Less clear-cut, but potentially beneficial:
[letx=Kyzine] = [Kyz/x]e

[letx=Kyzin..casexof ..] = ..

[let x=Kyzin..case xof ... (xx,xxxx)] = ..

Static evaluation

e Function inlining: saves overhead; size increase?
[abs x] = if x < O then negate x else x

[f.gl = \x->f(gx)
e Recursive function specialization: termination?
[map (\x->x+1) xs] =
case xs of [1->[]; yiys -> y+1: [map (\x->x+1) ys]

e Might be desirable:
[map (\x->x+1) xs] =
let f = \xs -> case xs of []->[]; yiys ->y+1: fysin f xs

Supercompilation

* A generic technique for evaluation at compile-time
- application of a lambda-abstraction
- case of a constructor expression
— lookup of a known variable
- primitive applied to literals

e Key features:
- systematic application to nested sub-expressions
- recursive function specialization with termination
- generation of equivalences from branching conditions

e Recent: controlled speed/size trade-off

Supercompilation

application or case context Selected rules

{

[R{case K; es of Ki xsi -> e [|* = [R¢let xs;=esinep]*

[R{case x of K; xsi ->e;) |* = case x of Ki xsi -> [[Ki xsi/x]R<{e;)]|
[R{(\xs->e)es)]* = [R{let xs=esine)]

[R(\xs-se) JA = R(\xs > e]J*)

[Rdet x=eine') 4= [R{[e/x]e")]* if ¢' linear (& strict) in x
= let x=[[e]* in [R<e")]* otherwise . cquvarence
[R{fes)]* = gxs if 39. A(9) ;‘ \xs->R{f es)
= R(F[es 1% if 3g. A(g) = \xs->R(f es)

homeomorphic embedding

= let g = \xs->[R{ep)]* ing xs otherwise
where xs = fv(R,es), f = esin top-decl, g new, A" = A,g=\xs->R{f es)

System F

* Our core language

ez x | ee| \x>e | letx=eine
tuza | T+t | -1
o = Va.o | t
Explicit
e System F //signa’rures
e = x| ee| \xt->e | letxit=eine | .
) Type application
e{t} | /\a->e - and abstraction

t iz=a | Tttt | t->t] va.t
No type/scheme
distinction

e Expressive, but type-reconstruction is undecidable

System F

Ale:t -1 Akbe : t Axt Fe:t
App Abs
Abee' : 1 AF\xit >e:it’ >t
Xt e A AlFe:t Axthke it
Var Let
AFx:t Alblet xit=eine : 1

Encodeable as (\x:t ->e') e

Ake:vat Lnet Akbe:t aeéfv(A)Gen

AlFe{t'}:[t'/alt Al /\a.e: vat

System F as a core

o Allows easy computation of types for all
subexpressions (no unification/substitution threading)

e Needed if
- target language is typed (nho casts)

- info on ptr/non-ptr distionction required by GC

- polymorphic code must be duplicated for (some)
hon-ptr instances

* Good for trapping bugs in transformation passes!

Relation to System F

AlFei it >t ~ef Aler it ~es

)) App
Aleier:t ~eq e

Axt Fe:t ~ e
AF\x->e: 1>t ~ \xit'->e’

Abs

X:Vas.t € A
Al x:[ts/as]t ~ x {ts}

Var

AlFei:t ~ef Axoler: it ~ e
AFlet x=ejine>:t'~ let x:o=/\as ->e; iney’

Let

where o = gen(t,A) = vas . t

Translation intfo System F

B1AFY e it ~er’ 02(00A) ezt~ e 0ot 9"3'|"->Cl

App
(636201)A W ejer:B3a ~ 03(02e1 e2')
where a is new
x:vas.t € A B(Ax:a)FWe:t ~ e
Var Abs

[JA FY x : [bs/as]t ~ x {bs} BA IV \x->e : Ba->t ~ \x:Ba->e’
where bs are new where a is hew

B1AFY e it ~er 02(81A,x:0)FWez it '~ en’ Lot

e

(6261)A W let x=ejinez: t'~ let x:620 = /\as -> 62¢e1" inez’

where o =gen(t,6:1A) = vas . t

Summary

Many optimizing transformations rely on non-local
information about identifiers, and abstraction over the
transformation state from which functions are invoked

Non-standard types and/or predicate contexts can help
structuring such problems as term-transforming type-
inference algorithms

Compile-time reductions (incl. function inlining) can be
systematically formulated in terms of supercompilation

Type-preservation of such transformations can easily
be checked by using System F as the core language

