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Aim
• To give an introduction to the rich field of 

program optimization

• To show how the principles of formal type 
systems and type inference algorithms can 
provide structure to program transformations in 
general

• To explain some simple but effective type-based 
optimizations, together with a not so simple (and 
not so type-based!) one



Remark

• Optimization = "make optimal", taken literally

• Optimality of efficiency is a far-reaching goal...

• Common use: optimization = "improving efficiency"

• ... with an added "for most programs"

• That is: no optimality or improvement guarantees

• But correctness (preservation of meaning) is 
commonly assumed (and often formally proved)



Checking arities

• Recall the closure conversion algorithm:

- Calling a known function = good code, arity-
matching at compile-time

- Calling a function variable = costly arity-
inspecting loop at run-time

• Difference is that a variable reveals nothing 
about the arity of the hidden function

• But what if arities were part of types?



Function types
• The standard abstract type grammar:

    t ::=  a  |  T  |  t t  |  t -> t   data Type = FunTy Type Type

• A non-standard type grammar:
    t ::=  a  |  T  |  t t  |  ts -> t   data Type = FunTy [Type] Type

    parse t1 -> t2 -> t3  as t1,t2 -> t3

    parse t1 -> (t2 -> t3)  as t1 -> (t2 -> t3)

• Captures arities in function types

• Inflexibility may be compensated for by 
automatic insertion of coercions

not equal



An arity-sensitive type 
system

A ⊦ e e1 ... en : t
A ⊦ e : t1 ... tn -> t A ⊦ ei : ti

App
A ⊦ \xs -> e : ts -> t

A,xs:ts ⊦ e : t
Abs

A ⊦ x : [ts/as]t
x:∀as.t ∈ A

Var
A ⊦ let x = e in e' : t'

A ⊦ e : t A,x:σ ⊦ e' : t'
Let

where σ = gen(t,A)



An arity-matching type 
inference algorithm

(θ2θ1)A ⊦w let x = e1 in e2 : t'↝ let x=e1' in e2'
θ1A ⊦w e1 : t ↝ e1' θ2(θ1A,x:σ) ⊦w e2 : t'↝ e2'

Let

where  σ = gen(t,θ1A)

θA ⊦w \xs->e : θas->t ↝ \xs->e'
θ(A,xs:as) ⊦w e : t ↝ e'

Abs

where as are new

(θ3θ2θ1)A ⊦w e es : θ3 a ↝ (e" e') es'
θ1A ⊦w e : t ↝ e' θ2(θ1A) ⊦w es : ts ↝ es'

App
θ3 ⊩ e" : θ2t < ts->a

where a is new

[]A ⊦w x : θt ↝ x
Var

where θ=[bs/as] and bs are new

x:∀as.qs=>t ∈ A



θ ⊩ e : t < t'

Arity-matching unification

General form:
Inputs (two types)

Output (a substitution and a coercion)

Main idea:

All function types can be coerced
into each other by currying/uncurrying

All other types must be unifiable
(including function types nested inside datatype constructors)



θ1 ⊩ e : t < ss'->s

θ ⊩ \x->x : t < s

Arity-matching unification

t  ~  sθ

θ2θ1 ⊩ \v->\(ys,ys')-> e (v es@ys) ys' : ts->t < (ss,ss')->s

θ1 ⊩ e : ts'->t < s
θ2θ1 ⊩ \v->\ys-> e (\xs'-> v (es@ys,xs')) : (ts,ts')->t < ss->s

θ1 ⊩ e : t < s
θ2θ1 ⊩ \v->\ys-> e (v es@ys) : ts->t < ss->s

θ2 ⊩ es : ss < ts

θ2 ⊩ es : ss < ts

θ2 ⊩ es : ss < ts

( es@ys = zipWith Apply1 es ys )



Example
• Assume

   map : (a -> b) -> [a] -> [b]
   plus : Int,Int -> Int  =  \m n -> ...

• Then
   map plus xs  ↝  (e map) plus xs   =  map (\y->\x->plus y x) xs
where 
    e  =  \v -> \y1 y2 -> (\x->x) (v (e1 y1) ((\x->x) y2))  =  \v ->\y1 y2-> v (e1 y1) y2

    e1  =  \v -> \y -> (\x->x) (\x -> v ((\x->x) y) x)  =  \v -> \y -> \x -> v y x

• Because (ignoring the substitutions)
                               ⊩ e2 : I->I < b2       ⊩ \x->x : b1 < I
 ⊩ \x->x : [b2] < a1             ⊩ e1 : I,I->I < b1->b2              ⊩ \x->x : [I] < [b1]
                        ⊩ e : (b1->b2)->[b1]->[b2] < (I,I->I)->[I]->a1 

A function of arity 1



On arity-matching
• Generates seemingly complicated terms, but simple 

static evaluation is extremely beneficial

• Main benefit: completely removes the need for run-
time arity tests and iterative loops at call sites

• Can be sligthly non-deterministic:
\f x y -> (f x y, f x)  :  (a->b->c)->a->b->c  or  (a->(b->c))->a->b->c
However, alternatives are mutually coercible

• Datatype constructor rigidity, [ a->b->c ]  ≮  [ a->(b->c) ], 
can be loosened by generating fmap-like coercions

• Unavoidable rigidity: m (a->b->c)  ≮  m (a->(b->c))



Region inference
• Advanced method replacing garbage collection by stack-

like popping of memory regions (Talpin & Tofte, 1993)

• A type-based translation based on an effect type 
system (Lucassen & Gifford, 1988)

- Basically HM; effects ≈ our contexts; but effects 
also annotate function types (subject to unification)

- Can distinguish between the effect (memory read or 
write) of creating a function and calling it

• Unfortunately a rather complex technique...



Poor man's region 
inference

• Apply qualified types in non-standard fashion!
• Source language

 e  ::= x  |  e es  |  \xs -> e  |  let x = e in e  |
     fst e  |  snd e  |  (e,e)

• Target language
 e  ::= ...  |  letregion ys in e  |  ey

• Type language
 t  ::= a  |  ts ->t t  |  (t,t)t

 σ  ::= ∀as . qs =>t t
 q  ::= Put t

Run e with some temporary regions

Store e in region y

Use type (variables) to track region demandsWrite
effect



Poor man's region 
inference

P|A ⊦ e es : t ↝ e' es'
P|A ⊦ e : ts ->r t ↝ e' P|A ⊦ es : ts ↝ es'

App

P ⊩ ys : [ts/as]qs, y : Put r
P|A ⊦ x : [ts/as]t ↝ (x ys)y

x:∀as. qs =>r t ∈ A
Var

P|A ⊦ \xs->e : ts ->r t ↝ (\xs->e')y

P|A,xs:ts ⊦ e : t ↝ e'
Abs

P ⊩ y : Put r

P|A ⊦ let x = e1 in e2 : t'↝ let x = (\ys->e1')y in e2'
P,ys:qs|A,x:σ ⊦ e1 : t ↝ e1' P|A,x:σ ⊦ e2 : t' ↝ e2'

Let

where σ = ∀ fv(qs,t)\fv(A,r) =>r t

P ⊩ y : Put r



Poor man's region 
inference

P|A ⊦ fst e : t ↝ fst e'
P|A ⊦ e : (t,t')r ↝ e'

Fst
P|A ⊦ snd e : t' ↝ snd e'

P|A ⊦ e : (t,t')r ↝ e'
Snd

P|A ⊦ (e1,e2) : (t1,t2)r ↝ (e1',e2')y

P|A ⊦ e1 : t1 ↝ e1'
Pair

P|A ⊦ e2 : t2 ↝ e2' P ⊩ y : Put r

P|A ⊦ e : t ↝ letregion ys in e'
P,ys:qs|A ⊦ e : t ↝ e'

Region
fv(qs) ∩ fv(t,A,P) = ∅ t is first-order



A poor man's region 
inference algorithm

• Straightforward from inference system and 
algorithm W for qualified types

• Substantially simpler than T&T (no effect variables 
or unification of effect sets)

• Depends on inference of limited polymorphic 
recursion (just like T&T). Can probably reuse their 
iterative approach too

• Separate problem: finding out maximum size of 
regions (shared with T&T)



Example

let fib = \x -> if x <= 1 then 1 else fib (x-2) + fib (x-1) 
in fib 15

(using type scheme fib : ∀a,b . Put b => Inta -> Intb)

let fib = (\y4 -> (\x -> if x <= 1 then 1y4 else 
          ((fib y5)y7 (x-2y9)y8 + (fib y6)y10 (x-1y12)y11)y4)y3)y2

in (fib y1)y14 15y13

↝

y13,y14

y9 y12

y10,y11y7,y8

y5,y6y2,y3

(region scopes only indicated graphically)

(from Talpin & Tofte 1993)



Limitation

P|A ⊦ (T,F)y1 : (B,B)a1 

P|A ⊦ T : B P|A ⊦ F : B P ⊩ y1:Put a1

P|  ⊦ let x = (T,F)y1 in (\y->fst x)y2 : B ->a2 B

P|A ⊦ \y->fst x)y2 : B ->a2 B

P|A,y:B ⊦ fst x : B P ⊩ y2:Put a2

P|A,y:B ⊦ x : (B,B)a1

y2:Put a2 |  ⊦ letregion y1 in let x = (T,F)y1 in (\y->fst x)y2 : B ->a2 B

P = y1:Put a1, y2:Put a2

A = x:(B,B)a1 

{a1} ∩ {a2} = ∅

Not first-order!

Consequence: Regions only used while creating a function 
must still be kept until function can no longer be called

Memory reads not tracked by types, correctness relies on read 
demands coinciding with evaluation. Only true for first-order data...



Static evaluation

• Foolish not to transform away at compile-time:
   ⟦ 1 + 2 ⟧  =  3

   ⟦ (\x->x+2) y ⟧  =  y+2

   ⟦ case K1 y of K1 x -> e1; K2 -> e2 ⟧  =  [y/x]e1

• Less clear-cut, but potentially beneficial:
   ⟦ let x = K y z in e ⟧  =  [K y z/x] e

   ⟦ let x = K y z in ... case x of ... ⟧  =  ...
   ⟦ let x = K y z in ... case x of ... (x,x,x,x,x,x) ⟧  =  ...



Static evaluation
• Function inlining: saves overhead; size increase?

   ⟦ abs x ⟧  =  if x < 0 then negate x else x

   ⟦ f . g ⟧  =  \x -> f (g x)

• Recursive function specialization: termination?
   ⟦ map (\x->x+1) xs ⟧  =  

 case xs of [] -> []; y:ys -> y+1 : ⟦ map (\x->x+1) ys ⟧

• Might be desirable:
   ⟦ map (\x->x+1) xs ⟧  =  
 let f = \xs -> case xs of []->[]; y:ys -> y+1 : f ys in f xs



Supercompilation
• A generic technique for evaluation at compile-time
- application of a lambda-abstraction
- case of a constructor expression
- lookup of a known variable
- primitive applied to literals

• Key features:
- systematic application to nested sub-expressions
- recursive function specialization with termination
- generation of equivalences from branching conditions

• Recent: controlled speed/size trade-off



Supercompilation
⟦ R⟨case Kj es of Ki xsi -> ei⟩ ⟧A  =  ⟦ R⟨let xsj = es in ej⟩ ⟧A

⟦ R⟨case x of Ki xsi -> ei⟩ ⟧A  =  case x of Ki xsi -> ⟦ [Ki xsi/x]R⟨ei⟩ ⟧A

⟦ R⟨(\xs->e) es⟩ ⟧A  =  ⟦ R⟨let xs = es in e⟩ ⟧A

⟦ R⟨\xs->e⟩ ⟧A  =  R⟨ \xs -> ⟦ e ⟧A ⟩
⟦ R⟨let x = e in e'⟩ ⟧A =  ⟦ R⟨[e/x] e'⟩ ⟧A    if e' linear (& strict) in x

          =  let x=⟦e⟧A in ⟦R⟨e'⟩⟧A  otherwise

⟦ R⟨f es⟩ ⟧A  =  g xs           if ∃g. A(g) ≈ \xs->R⟨f es⟩

    =  R⟨f ⟦ es ⟧A⟩        if ∃g. A(g) ⊴ \xs->R⟨f es⟩

    =  let g = \xs->⟦R⟨ef⟩⟧A' in g xs   otherwise

  where xs = fv(R,es),  f = ef in top-decl, g new, A' = A,g=\xs->R⟨f es⟩

Selected rulesapplication or case context

alpha-equivalence

homeomorphic embedding



System F
• Our core language

   e ::=  x  |  e e  |  \x -> e  |  let x = e in e
   t ::=  a  |  T  |  t t  |  t -> t
   σ ::=  ∀a . σ  |  t

• System F
   e ::=  x  |  e e  |  \x:t -> e  |  let x:t = e in e  |  
   e {t}  |  /\a -> e
   t ::=  a  |  T  |  t t  |  t -> t  |  ∀a . t

• Expressive, but type-reconstruction is undecidable

Type application
and abstraction

Explicit
signatures

No type/scheme 
distinction



System F

A ⊦ e e' : t
A ⊦ e : t' -> t A ⊦ e' : t'

App
A ⊦ \x:t' -> e : t' -> t

A,x:t' ⊦ e : t
Abs

A ⊦ x : t
x:t ∈ A

Var
A ⊦ let x:t = e in e' : t'

A ⊦ e : t A,x:t ⊦ e' : t'
Let

A ⊦ e {t'} : [t'/a]t
Inst

A ⊦ e : ∀a.t
A ⊦ /\a.e : ∀a.t

Gen
A ⊦ e : t a ∉ fv(A)

Encodeable as (\x:t -> e') e



System F as a core

• Allows easy computation of types for all 
subexpressions (no unification/substitution threading)

• Needed if 

- target language is typed (no casts)

- info on ptr/non-ptr distionction required by GC

- polymorphic code must be duplicated for (some)
non-ptr instances

• Good for trapping bugs in transformation passes!



A ⊦ e1 e2 : t ↝ e1' e2'
A ⊦ e1 : t'->t ↝ e1' A ⊦ e2 : t'↝ e2'

App

A ⊦ \x->e : t'->t ↝ \x:t'->e'
A,x:t' ⊦ e : t ↝ e'

Abs

A ⊦ let x=e1 in e2 : t'↝ let x:σ = /\as -> e1' in e2'
A ⊦ e1 : t ↝ e1' A,x:σ ⊦ e2 : t' ↝ e2'

Let

where σ  =  gen(t,A) = ∀as . t

A ⊦ x : [ts/as]t ↝ x {ts}
x:∀as.t ∈ A

Var

Relation to System F



Translation into System F

(θ2θ1)A ⊦w let x = e1 in e2 : t'↝ let x:θ2σ  = /\as -> θ2e1' in e2'
θ1A ⊦w e1 : t ↝ e1' θ2(θ1A,x:σ) ⊦w e2 : t'↝ e2'

Let

where  σ = gen(t,θ1A) = ∀as . t

θA ⊦w \x->e : θa->t ↝ \x:θa->e'

θ(A,x:a) ⊦w e : t ↝ e'
Abs

where a is new

(θ3θ2θ1)A ⊦w e1 e2 : θ3 a ↝ θ3(θ2e1' e2')
θ1A ⊦w e1 : t ↝ e1' θ2(θ1A) ⊦w e2 : t'↝ e2'

App

where a is new

θ2t ~ t'->aθ3

[]A ⊦w x : [bs/as]t ↝ x {bs}
Var

where bs are new

x:∀as.t ∈ A



Summary
• Many optimizing transformations rely on non-local 

information about identifiers, and abstraction over the 
transformation state from which functions are invoked

• Non-standard types and/or predicate contexts can help 
structuring such problems as term-transforming type-
inference algorithms

• Compile-time reductions (incl. function inlining) can be 
systematically formulated in terms of supercompilation

• Type-preservation of such transformations can easily 
be checked by using System F as the core language


