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Types

• A means of classifying programs/functions/
terms/variables, in order to filter out nonsense

• Trivial example:

- 3.2/x is a Float if x is a Float

- 3.2/x is nonsense if x is a String

• Typical limitation:

- 3.2/x is still a Float, even if x might be 0.0



Types
• A means of abstractly describing programs/

functions/terms/variables

• Trivial example:

- sortBy :: (a -> a -> Bool) -> [a] -> [a]

- Provides some useful info about a term whose 
implementation is hidden

• Typical limitation:

- sortBy could still be defined as (\p xs -> []) ...



Compilation issues

• Type-checking:

- Find out if a program has a given type

• Type-inference:

- Find out if a program has any type at all

- Find some type for a program (if it has one)

- Find the "best" type for a program (if it 
might have more than one type)



Type syntax
• Concretely:

 t ::=  a  |  T  |  t t  |  t -> t  |  [t]  |  (t1,...,tn)

• C.f. haskell-src:
 data HsType  =  HsTyFun HsType HsType
     |  HsTyTuple [HsType]
     |  HsTyApp HsType HsType
     |  HsTyVar HsName
     |  HsTyCon HsQName 

• Type desugaring:
 [t]     [] t    (t1,...,tn)   (,...,) t1 ... tn

• I.e., a list or tuple constructor is just a T



Correct types

• Under what conditions does term e have type t?

• Usually described in informal language reports...

• Must be matched by type-checking/inference 
algorithms implemented in compilers

• Advantage of the functional language heritage:
 

A rich tradition of defining type correctness 
formally using logical inference systems!



Simple type correctness

A ⊦ e e' : t
A ⊦ e : t' -> t A ⊦ e' : t'

App

A ⊦ \x -> e : t' -> t
A,x:t' ⊦ e : t

Abs
A ⊦ x : t
x:t ∈ A

Var

Premises

Conclusion

\x->e has type t'->t in scope A...

... if e has type t in scope A extended with x of type t'

Scope = set of type assumptions on variables

Extension

Right-biased lookup



Example

odd:I->B, x:I ⊦ odd : I -> B odd:I->B, x:I ⊦ x : I
App

odd:I->B ⊦ \x -> odd x : I -> B
odd:I->B, x:I ⊦ odd x : B

Abs

x:I ∈ odd:I->B,x:Iodd:I->B ∈ odd:I->B,x:I
VarVar

odd:I->B ⊦ odd odd : BCannot be derived:



Datatypes and case

A ⊦ case e of { Ki xsi -> ei } : t
A ⊦ e : T ts

Case
A,xsi:[ts/as]tsi ⊦ ei : t

A ⊦ Kj es : T ts
Con

A ⊦ es : [ts/as]tsj

where  data T as = Ki tsi  ∈  top-decls

where  data T as = Ki tsi  ∈  top-decls



Polymorphism

Type variables have scope as well:

id :: a -> a
id = \x -> x

f :: a -> a -> (a, Char)
f = \x y -> let g :: a -> a
                      g = \x -> x
                 in (g x, g 'X')

Not the same a!

So where do type 
variables get bound?



The Hindley/Milner 
approximation

• Type variables are universally quantified at 
the outermost type expressions only

• Implicitly present in Haskell/ML/etc:
id :: ∀a . a -> a
id = \x -> x

f :: ∀a . a -> a -> (a, Char)
f = \x y -> let g :: ∀a . a -> a
                      g = \x -> x
                 in (g x, g 'A')

A phrase of the form
   ∀a1 ... ∀an . t

is called a type scheme,
which is not a type itself



Hindley/Milner 
polymorphism

• Types:
 t ::=   a  |  T  |  t t  |  t -> t

• Type schemes:     Free type variables:
 σ ::=   ∀a . σ  |  t     fv(∀a.σ) = fv(σ) \ {a}

• Assumptions:      Judgements:
 A ::=   x1 : σ1 , ... , xn : σn   A ⊦ e : σ

Note that all types count as schemes, but not vice versa
Also note that a variable stands for a type, not a scheme



Hindley/Milner 
polymorphism

A ⊦ e e' : t
A ⊦ e : t' -> t A ⊦ e' : t'

App
A ⊦ \x -> e : t' -> t

A,x:t' ⊦ e : t
Abs

A ⊦ x : σ
x:σ ∈ A

Var
A ⊦ let x = e in e' : t

A ⊦ e : σ A,x:σ ⊦ e' : t
Let

A ⊦ e : [t/a]σ
Inst

A ⊦ e : ∀a.σ
A ⊦ e : ∀a.σ

Gen
A ⊦ e : σ a ∉ fv(A)

merge merge



Hindley/Milner 
polymorphism

A ⊦ e e' : t
A ⊦ e : t' -> t A ⊦ e' : t'

App
A ⊦ \x -> e : t' -> t

A,x:t' ⊦ e : t
Abs

A ⊦ x : [ts/as]t
x:∀as.t ∈ A

Var
A ⊦ let x = e in e' : t'

A ⊦ e : t A,x:σ ⊦ e' : t'
Let

where σ = gen(t,A) = ∀ fv(t)\fv(A) . t

(Type schemes:    σ   ::=  ∀as . t)



Example

A ⊦ f : [B->B/a]a->a A ⊦ f : [B/a]a->a
App

   ⊦ let f = \x->x in f f : B->B

x:a ⊦ x : a
Abs

f:∀a.a->a ∈ A
Var

Let
⊦ \x->x : a->a f:∀a.a->a ⊦ f f : B->B

Var
f:∀a.a->a ∈ A

Var
x:a ∈ x:a

where A = f:∀a.a->a



Example

Cannot be derived:

... ⊦ f : [B->B/a]a ... ⊦ f : [B/a]a
App

x:a ⊦ let f = x in f f : B

x:a ⊦ x : a

f:∀a.a ∈ ...
Var

Let
f:∀a.a, x:a ⊦ f f : B

Var
f:∀a.a ∈ ...

Var
x:a ∈ x:a

∀a.a  ≠  gen(a, (x:a))  =  ∀ fv(a) \ fv(x:a) . a  =  ∀ [] . a  =  a

Incorrect generalization:

 ⊦ \x -> let f = x in f f : B
Abs



Example

... ⊦ f : [b->b/a]a->a ... ⊦ f : [b/a]a->a
App

 ⊦ \f -> f f : (∀a.a->a) -> b->b

f:∀a.a->a ∈ ...
Var

f:∀a.a->a ⊦ f f : b->b

Var
f:∀a.a->a ∈ ...

Abs

Must be a type!

Neither a type, nor a scheme!

Cannot be derived:



Why schemes ≠ types?
• Because of decidability of type inference!

• The type inference problem:
 Given an e and an A, find the most 
 general t such that A ⊦ e : t

• Amounts to traversing e, guessing yet unknown 
types, and adjusting the guesses when needed

• Guessing a type: invent a fresh type variable

• Adjusting a guess: unification
• (Guessing and adjusting type schemes: undecidable!)



Hindley/Milner
polymorphism

A ⊦ e e' : t
A ⊦ e : t' -> t A ⊦ e' : t'

App
A ⊦ \x -> e : t' -> t

A,x:t' ⊦ e : t
Abs

A ⊦ x : [ts/as]t
x:∀as.t ∈ A

Var
A ⊦ let x = e in e' : t'

A ⊦ e : t A,x:σ ⊦ e' : t'
Let

where σ = gen(t,A) = ∀ fv(t)\fv(A) . t
Guess

GuessAdjust guesses to make equal



Hindley/Milner
type inference sketch

A ⊦w e e' : a
A ⊦w e : t A ⊦w e' : t'

App
A ⊦w \x -> e : a -> t

A,x:a ⊦w e : t
Abs

A ⊦w x : [bs/as]t
x:∀as.t ∈ A

Var
A ⊦w let x = e in e' : t'

A ⊦w e : t A,x:σ ⊦w e' : t'
Let

where σ = gen(t,A) = ∀ fv(t)\fv(A) . t

t ~ t'->a

where a is new where a is new

where bs are new

Make equal... Guess

Guess



Unification

• Unification is the process of finding a 
substitution that solves an equation

• E.g. a -> Int = Bool -> b is solved by [Bool/a, Int/b]

• Robinson’s algorithm from 1965 finds a most 
general solution to an equation, if a solution 
exists at all



Robinson's unification
algorithm

θ
t1  ~  t2General form:

The algorithm fails if no rule is applicable

t  ~  a

θ1

[t/a]
if a ∉ fv(t) T  ~  T

[]

t1 t2  ~  t3 t4

t1  ~  t3 θ1t2  ~  θ1t4
θ2

θ2θ1

a  ~  t
[t/a]

if a ∉ fv(t)

θ1

t1 -> t2  ~  t3 -> t4

t1  ~  t3 θ1t2  ~  θ1t4
θ2

θ2θ1

Composition of substitutions: (θ2θ1)a = θ2(θ1a)

Inputs (two types)

Output (a substitution)



Full Hindley/Milner
type inference (algorithm W)

θA ⊦w e : t

General form:

Input (an environment and an expression)

Output (a type and a substitution on the environment)

The algorithm fails if any internal unification attempt fails

(W for "well-typed" (Milner))



Full Hindley/Milner
type inference (algorithm W)

(θ3θ2θ1)A ⊦w e e' : θ3 a
θ1A ⊦w e : t θ2(θ1A) ⊦w e' : t'

App
θA ⊦w \x -> e : θa -> t

θ(A,x:a) ⊦w e : t
Abs

[]A ⊦w x : [bs/as]t
x:∀as.t ∈ A

Var
(θ2θ1)A ⊦w let x = e in e' : t'

θ1A ⊦w e : t θ2(θ1A,x:σ) ⊦w e' : t'
Let

where σ = gen(t,θ1A) = ∀ fv(t)\fv(θ1A) . t

θ2t ~ t'->a

where a is new where a is new

where bs are new

θ3



Properties of algorithm W

• (Soundness)

- If  θA ⊦w e : t  succeeds then  θA ⊦ e : t

• (Completeness)

- If  θA ⊦ e : t  then  θ'A ⊦w e : t'  succeeds 
such that for some θ":

•  t = θ"t'

•  θ = θ"θ'

• Note: on the top-level, fv(A) = [], so θA = A for all θ



Datatypes and case

(θ3θ2θ1)A ⊦w case e of { Ki xsi -> ei } : θ3 a

θ1A ⊦w e:t
Case

θ2(θ1A,xsi:[bs/as]tsi) ⊦w ei:ti

(θ2θ1)A ⊦w Kj es : θ2(T bs)
Con

θ1A ⊦w es : ts [bs/as]tsj ~ ts
θ2

θ2(T bs)->ti ~ θ2t->aθ3

where data T as = Ki tsi  ∈  top-decls and a, bs are new

where data T as = Ki tsi  ∈  top-decls and bs are new

(Details of unification and substitution threading for all i left as an exercise!)



Recursion

A ⊦ let x = e in e' : t'
A,x:t ⊦ e : t A,x:σ ⊦ e' : t'

Let

where σ = gen(t,A)

(θ3θ2θ1)A ⊦w let x = e in e' : t'
θ1(A,x:a) ⊦w e : t θ3(θ2θ1A,x:σ) ⊦w e' : t'

Let

where a is new and σ = gen(θ2t, θ2θ1A)

θ1a ~ tθ2

Generalization to mutual recursion straightforward (but space-consuming)

Note different assumptions!



Explicit signatures

A ⊦ let x :: σ; x = e in e' : t'
A ⊦ e : t A,x:σ ⊦ e' : t'

Let

where ∀as.ta ≼ ∀bs.tb iff for all bs there exist as such that ta = tb

Generalization to (mutual) recursion straightforward, but notice opportunity 
to use x:σ as assumption when checking e — Haskell's polymorphic recursion!

gen(t,A) ≼ σ

(θ3θ2θ1)A ⊦w let x :: σ; x = e in e' : t'
θ1A ⊦w e : t θ3(θ2θ1A,x:σ) ⊦w e' : t'

Let
gen(t,θ1A) ≼ σ

θ2

Matching ≈ one-way unification...



Matching
• Def: ∀as.ta ≼ ∀bs.tb iff ∀bs . ∃as . ta = tb

• Matching algorithm ∀as.ta ≼ ∀bs.tb defined as:
find the smallest θ such that θ(∀as.ta) ≼ θ(∀bs.tb)

• Isn't ta ~ tb sufficient? No, in addition:

- θ must not touch bs (dom(θ) ∩ bs = ∅)

- θ must not let bs escape 
(fv(θ(∀as.ta)) ∩ bs = ∅ and fv(θ(∀bs.tb)) ∩ bs = ∅)

• Can be explicitly checked, of course. Alternatively...

θ

θ



Skolemization

• Method for solving equations under nested ∀ and ∃

• Note our general problem: ∃as' . ∀bs . ∃as . ta = tb 
where as' = fv(∀as.ta) ∪ fv(∀bs.tb)

• Skolemized equivalent: ∃as' . ∃as . ta = φtb where

φ is a substitution that maps each bi in bs to Ti as'

and each Ti is a newly invented type constructor

• This problem is efficiently solved by ta ~ φtb θ



Summary
• The Hindley/Milner stratification:

- Types (including variables)
- Type schemes = types with universal quantifiers

• Two similar formal systems
- Logical proof of type correctness:  A ⊦ e : t

- Algorithm for inferring m.g. types:  θA ⊦w e : t

• Algorithm W based on unification and fresh names

• Challenge: implement unification, substitution and 
matching without getting too clever!!!


