
Compiling functional
languages

Lecture 3
Memory management

Johan Nordlander

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Anonymous functions
revisited

• Our latest expression grammar:

e ::= x | x es | f | f es | lit | K

• Must be supported – not a functional language
otherwise!

• Requires the concept of closures!

Creating oneCalling one

Creating one if arguments are too few

Closures
• The generic representation of functions: a

function pointer with a list of free variables

• The limits of lambda-lifting:
 g = \a -> let f = \b -> a + b f = \a b -> a + b
 in h f g = \a -> h (f a)
 h = \x -> x 7 h = \x -> x 7

• Closures can represent partial applications, even
in the presence of free variables

• Nevertheless, lambda-lifting before closure-
conversion simplifies the presentation somewhat

Too few arguments regardless!

Closure-conversion
• Assume a lambda-lifted f = \x1 ... xn -> e

closureConvert f = CL f0 n
closureConvert (f e1 ... em) =
 | m < n = CL fm (n-m) e1 ... em
 ...
 where fm is a new top-level function
 fm = \xthis xm+1 ... xn -> case xthis of
 CL _ _ y1 ... ym -> f y1 ... ym xm+1 ... xn

closureConvert (x e1 ... em) = case x of CL funknown n
 | m == n -> funknown x e1 ... em

 ...

Closure-conversion
• Example before and after lambda-lifting:

g = \a -> let f = \b -> a + b f = \a b -> a + b
 in f g g = \a -> h (f a)
h = \x -> x 7 h = \x -> x 7

• And after closure-conversion:
 f = \a b -> a + b
 g = \a -> CL f1 1 a
 h = \x -> case x of CL funknown 1 -> funknown x 7

 f1 = \xthis x2 -> case xthis of CL _ _ y1 -> f y1 x2

• But we're still ignoring arity mismtaches...

Checking arities

• Assuming f = \x1 ... xn -> e

closureConvert f = CL f0 n

closureConvert (f e1 ... em) =
 | m == n = f e1 ... em

 | m < n = CL fm (n-m) e1 ... em

 | m > n = applym-n (f e1 ... en) en+1 ... em

where each applyk is a run-time system function TBD

• Note: checks are done at compile-time

(eval/apply)

Checking arities

• The full dynamic case (checks at run-time!):

closureConvert (x e1 ... em) = applym x e1 ... em

applym = \xthis x1 ... xm -> case xthis of CL funknown n
 | m == n -> funknown xthis x1 ... xm

 | m < n -> CL papn-m,m (n-m) xthis x1 ... xm

 | m > n -> applym-n (funknown xthis x1 ... xn) xn+1 ... xm

papk,m = \xthis x1 ... xk -> case xthis of CL _ _ ythat y1 ... ym ->
 applym+k ythat y1 ... ym x1 ... xk

(eval/apply)

Recall: data layout
 typedef int *Ptr;

Basic assumptions:
 (Ptr)(int)x = x (int)(Ptr)y = y

Construction:
 x = Ki e1 ... en Ptr x = malloc((n+1)*sizeof(int));
 x[0] = i;
 x[1] = (int)e1; ...; x[n] = (int)en;

Deconstruction:
 case x of switch (x[0]) {

 Ki x1 ... xn -> bodyi case i: { Ptr x1 = (Ptr)x[1]; ...
 Ptr xn = (Ptr)x[n];
 bodyi }

Nullary constructors
Could just use the generic form:
 x = Ki Ptr x = malloc(sizeof(int));
 x[0] = i;

 case x of switch (x[0]) {

 Ki -> body case i: { body }

For better memory efficiency, encode as small pointer:
 Ki (Ptr) i
 case x of switch ((int)x) {
 Ki -> bodyi case i: { bodyi }

 Kj x1 ... xn -> bodyj default: switch (x[0]) {
 case j: { Ptr x1 = (Ptr)x[1]; ...
 Ptr xn = (Ptr)x[n];
 bodyj }

Single constructors
Could just use the generic form:
 x = K0 e1 ... en Ptr x = malloc((n+1)*sizeof(int));
 x[0] = 0;
 x[1] = (int)e1; ... x->arg[n] = (int)en;

 case x of switch (x[0]) {
 K0 x1 ... xn -> bodyi case 0: { Ptr x1 = (Ptr)x[1]; ...
 Ptr xn = (Ptr)x[n];
 body0 }

For better efficiency, encode without a tag:
 x = K0 e1 ... en Ptr x = malloc(n*sizeof(int));
 x[0] = (int)e1; ...
 x[n-1] = (int)en;

 case x of Ptr x1 = (Ptr)x[0]; ...
 K0 x1 ... xn -> body0 Ptr xn = (Ptr)x[n-1];
 body0

Global data
• Declarations on the top level:

a) f = \x1 ... xn -> b Ptr f (Ptr x1, ..., Ptr xn) { ... }
b) x = K es Ptr x = malloc(...); x[i] = ei; ...
c) y = e Ptr y = e

• Case a) is straightforward, but b) and c) might
require general function calls not supported
by C's static initializers

• Solution:
 x = K es Ptr x; Ptr y;
 y = e main() { x = malloc(...); x[i] = ei; ...
 y = e; }

malloc

• Used as a generic name for heap allocation in C
— no particular implementation implied

• Our demands:

- Allocations are frequent, need to be fast

- Active deallocations do not fit our model of
execution (where would one put them?),
automatic garbage collection is needed

- Block sizes vary, compaction might be needed

Garbage collection

• At any particular time during code execution:

- Garbage: allocated heap blocks that are no
longer live

- Live memory: heap blocks that will be used
by some subsequent machine instruction

- Decidable approximation: blocks that are
reachable from the current machine state

- Machine state: globals, registers & stack

Memory layout

Heap Code

Globals Registers

Stack

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset

Mark-sweep collection
Rootset+ low memory overhead

+ easily incremental
- no compaction

time proportional to number of allocated nodes

depth-first GC!

Copying collection

Rootset

tospace fromspace

Copying collection

Rootset

tospace fromspace

Copying collection

Rootset

tospacefromspace

Copying collection

Rootset

tospacefromspace

Copying collection

Rootset

tospacefromspace

Copying collection

Rootset

tospacefromspace

Copying collection

Rootset

tospacefromspace

Copying collection

Rootset

tospacefromspace

Copying collection

Rootset

tospacefromspace

Copying collection

Rootset

fromspace tospace

+ cheap allocation
+ compaction
- 100% memory overhead

time proportional to size of live nodes

breadth-first GC!

Finding roots

• A GC observes machine state on assembly level

• Two problems:

- Finding actual variables among all stored bits
(instructions, return addresses, cpu admin, ...)

- Finding heap pointers among the variables
(integers, floats, "small pointers", ...)

Finding heap pointers
• "Small" pointer: value way below start-of-heap
- no real risk for confusion

• Type information can be used to distinguish
integers and floats from pointer variables, but
polymorphic code complicates the picture

• Polymorphism implementation strategies:
- uniform representation (always use pointers)
- uniform size only (all data fit a machine word)
- code specialization for non-pointer instances

Uniform representation
• Use heap allocation for all ordinary types

• Integer n represented as heap node Int n

• Integer arithmetic must (1) extract values
from their boxes, (2) perform operation,
and (3) store result in a newly allocated Int

• Example: op x (op y z)
case x of Int x' -> case (case y of Int y' -> case z of
Int z' -> Int (op' y' z')) of Int v' -> Int (op' x' v')
where op' is the real operation corresponding to op

• Optimizations clearly desirable!

Uniform representation
• GHC uses such a boxed representation for

types Int, Float, etc

• In addition, GHC makes unboxed types Int#,
Float#, etc, available, which cannot be used to
instantiate type variables
 data Int = Int Int#

• Literal n# really means integer n, while n = Int n#

• To improve performance, GHC goes to great
length to remove repeated boxing and unboxing,
even across function calls (with help of types!)

Uniform size

• Our approach so far: just cast literals to Ptr

• Literals must fit the size of pointers, true for
Int and Float but not Double on 32-bit machines

• Distinguish dynamically based on

(A) One bit stolen from every 32-bit value

(B) Separate bitvectors that describe
groupsof polymorphic variables

Uniform size (A)

• Stealing the least significant bit from

- a pointer: ok if pointers are word-aligned
(lowest bits are always 0) and 0 means "ptr"

- an integer: represent n as R(n) = 2n+1 (halves
the expressible range), and adjust primitives
accordingly (R(x+y) = 2x+2y+1 = R(x)+R(y)-1)

- a float: halves the precision (mask before use)

• Used by O'Caml to good effect

Uniform size (B)
• Adding bit-vector parameters to all polymorphic

functions and constructors, which tell how they
are instantiated at run-time (ptr/non-ptr flags)

- Propagates the necessary GC information to
non-local scopes

- Note: only values of variable type need
dynamic ptr/non-ptr inspection

- Avoids the need to tag each value, but adds
small overhead to function calls

Code specialization
• Create a specialized copy whenever a

polymorphic function is instantiated with a
non-pointer type

• Example:
rep 0 x = [] repF 0 x = []
rep n x = x : rep (n-1) x repF n x = x : repF (n-1) x
y = (rep 7 (1,1), rep 7 1.1) y = (rep 7 (1,1), repF 7 1.1)

• Ensures that polymorphic values are pointers,
but at the price of code size increase

• Also works for types that don't fit word size

Finding all variables
• Globals are of course trivial...

• ... but layout of variables in registers and the
stack is not accessible if we compile to C!

• The traditional conclusion: must generate
assembly code in order to give GC full control

• But this also implies the register allocations
and instruction scheduling decisions that are
performance keys on modern architectures...

• A rather hefty price for the ability to just
spot the data layout!

When to run the GC

• When free space drops below some treshold —
a natural criterion, detected during allocations

• Memory state must thus be understandable for
the GC at least at every malloc call

• Machine state at a malloc call also involves all
suspended calls indirectly leading to the malloc
— thus all function calls count as potential GC
interruption points

Example: GHC

layout info

jsr

.

.

.

.

.

return addr

return addr

variable x

variable z

variable y

stack
registers

code

next instradjust

.

.

.

.

.

.

.

.

Example: GHC
• No cost at function call, minor cost at return

• One layout-table per function call can mean a
significant size burden

• Important that static layout table is accurate
no matter what path has lead to the call point

• Idea not extensible to concurrent GC (would
require a layout table after every instruction!)

• (Demands of GC major motivation behind
earlier work on C-- compiler target language)

Conservative GC
• Attractive alternative to writing a complete

assembly-level back-end: use C with a
conservative garbage collector

• Principal idea: every stack and register word is
scanned, and everything that looks like a pointer
is treated like one

• "Look like" = word-aligned & within heap & point
at beginning of allocated block

• Precludes copying GC (can't mutate guessed root)

Conservative GC
• Leads to memory leaks if many integers, floats,

etc, use bit-patterns that are also happen to be
valid heap block addresses

• Has nevertheless found good use in practice

• Even eliminates the need to know the pointer-
typed variables (but type info might reduce the
risk for accidental misinterpretation if present)

• Ready to use in the form of a tried-and-tested
implementation: the Boehm-Demers-Weiser GC
library <http://www.hpl.hp.com/personal/Hans_Boehm/gc/>

Recommendation

For the lab project:

Use the Boehm-Demers-Wiser collector!

Stack management
• A comparably simple issue!

• Sole concern: detect stack overflow and quit
instead of continuing with corrupted data

• Handled automatically by memory-management
hardware on most platforms, under most
operating systems

• Should such service not exist, a simple check
at the beginning of each generated C function
will do the job

Optimizing tail recursion

• Main reason for excessive stack usage: deeply
recursive algorithms

• Unnecessarily stack-hungry code: a tail-
recursive function (ends with recursive call)

• Can easily be translated into imperative loops
sum a [] = a sum (a, x) {
sum a (x:xs) = sum (a+x) xs while (1)
 if (x==0) return a;
 else {a += x; x = x[1];}
 }

Summary
• Garbage collection a necessity for FP

• Collection techniques: copying vs. mark-sweep

• Relies on ability to find all program variables,
and to distinguish pointers from other values

• Challenge: devise a means to locate variables
without having to build a full low-level back-end

• Conservative collectors can work without
knowing where the variables are, at some
higher risks for space leaks

