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Anonymous functions 
revisited

• Our latest expression grammar:

e ::=   x  |  x es  |  f  |  f es  |  lit  |  K

• Must be supported – not a functional language 
otherwise!

• Requires the concept of closures!

Creating oneCalling one

Creating one if arguments are too few



Closures
• The generic representation of functions: a 

function pointer with a list of free variables

• The limits of lambda-lifting:
 g = \a  -> let f = \b -> a + b   f = \a b -> a + b
           in h f       g = \a -> h (f a)
 h = \x -> x 7        h = \x -> x 7

• Closures can represent partial applications, even 
in the presence of free variables

• Nevertheless, lambda-lifting before closure-
conversion simplifies the presentation somewhat

Too few arguments regardless!



Closure-conversion
• Assume a lambda-lifted f = \x1 ... xn -> e

closureConvert f  =  CL f0 n
closureConvert (f e1 ... em)   = 
    | m < n  = CL fm (n-m) e1 ... em
    ...
    where fm is a new top-level function
 fm = \xthis xm+1 ... xn -> case xthis of 
        CL _ _ y1 ... ym -> f y1 ... ym xm+1 ... xn

closureConvert (x e1 ... em)   =   case x of CL funknown n 
             | m == n  ->  funknown x e1 ... em

          ...



Closure-conversion
• Example before and after lambda-lifting:

g = \a  -> let f = \b -> a + b   f = \a b -> a + b
          in f g       g = \a -> h (f a)
h = \x -> x 7        h = \x -> x 7

• And after closure-conversion:
  f = \a b -> a + b
  g = \a -> CL f1 1 a
  h = \x -> case x of CL funknown 1 -> funknown x 7 

  f1 = \xthis x2 -> case xthis of CL _ _ y1 -> f y1 x2

• But we're still ignoring arity mismtaches...



Checking arities

• Assuming f = \x1 ... xn -> e

closureConvert f  =  CL f0 n

closureConvert (f e1 ... em)  = 
    | m == n  = f e1 ... em

    | m < n  = CL fm (n-m) e1 ... em

    | m > n  = applym-n (f e1 ... en) en+1 ... em  

where each applyk is a run-time system function TBD

• Note: checks are done at compile-time

(eval/apply)



Checking arities

• The full dynamic case (checks at run-time!):

closureConvert (x e1 ... em)  = applym x e1 ... em

applym  = \xthis x1 ... xm -> case xthis of CL funknown n
    | m == n  -> funknown xthis x1 ... xm

    | m < n  -> CL papn-m,m (n-m) xthis x1 ... xm

    | m > n  -> applym-n (funknown xthis x1 ... xn) xn+1 ... xm

papk,m = \xthis x1 ... xk -> case xthis of CL _ _ ythat y1 ... ym ->
    applym+k ythat y1 ... ym x1 ... xk

(eval/apply)



Recall: data layout
       typedef int *Ptr;

Basic assumptions:
     (Ptr)(int)x = x   (int)(Ptr)y = y

Construction:
 x = Ki e1 ... en     Ptr x = malloc((n+1)*sizeof(int)); 
         x[0] = i;
         x[1] = (int)e1; ...; x[n] = (int)en;

Deconstruction:
 case x of      switch (x[0]) {
     ....           ...
     Ki x1 ... xn -> bodyi       case i: { Ptr x1 = (Ptr)x[1]; ...
                Ptr xn = (Ptr)x[n]; 
                bodyi }



Nullary constructors
Could just use the generic form:
 x = Ki      Ptr x = malloc(sizeof(int)); 
        x[0] = i;

 case x of     switch (x[0]) {
     ...          ...
     Ki -> body           case i: { body }

For better memory efficiency, encode as small pointer:
 Ki       (Ptr) i
 case x of     switch ((int)x) {
     Ki -> bodyi          case i: { bodyi }
     ...          ...
     Kj x1 ... xn -> bodyj       default: switch (x[0]) {
           case j: { Ptr x1 = (Ptr)x[1]; ...
                 Ptr xn = (Ptr)x[n]; 
                   bodyj }



Single constructors
Could just use the generic form:
 x = K0 e1 ... en    Ptr x = malloc((n+1)*sizeof(int)); 
        x[0] = 0;
        x[1] = (int)e1; ... x->arg[n] = (int)en;

 case x of     switch (x[0]) {
     K0 x1 ... xn -> bodyi       case 0: { Ptr x1 = (Ptr)x[1]; ...
                Ptr xn = (Ptr)x[n]; 
                body0 }

For better efficiency, encode without a tag:
 x = K0 e1 ... en    Ptr x = malloc(n*sizeof(int)); 
        x[0] = (int)e1; ...
        x[n-1] = (int)en;

 case x of     Ptr x1 = (Ptr)x[0]; ...
     K0 x1 ... xn -> body0  Ptr xn = (Ptr)x[n-1];
        body0



Global data
• Declarations on the top level:

a)  f = \x1 ... xn -> b   Ptr f (Ptr x1, ..., Ptr xn) { ... }
b)  x = K es     Ptr x = malloc(...); x[i] = ei; ...
c)  y = e      Ptr y = e

• Case a) is straightforward, but b) and c) might 
require general function calls not supported 
by C's static initializers

• Solution:
     x = K es    Ptr x; Ptr y;
     y = e     main() { x = malloc(...); x[i] = ei; ...
            y = e; }



malloc

• Used as a generic name for heap allocation in C 
— no particular implementation implied

• Our demands:

- Allocations are frequent, need to be fast

- Active deallocations do not fit our model of 
execution (where would one put them?), 
automatic garbage collection is needed

- Block sizes vary, compaction might be needed



Garbage collection

• At any particular time during code execution:

- Garbage: allocated heap blocks that are no 
longer live

- Live memory: heap blocks that will be used 
by some subsequent machine instruction

- Decidable approximation: blocks that are 
reachable from the current machine state

- Machine state: globals, registers & stack



Memory layout

Heap Code

Globals Registers

Stack
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Mark-sweep collection
Rootset+ low memory overhead

+ easily incremental
- no compaction

time proportional to number of allocated nodes

depth-first GC!
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Copying collection

Rootset

fromspace tospace

+ cheap allocation
+ compaction
- 100% memory overhead

time proportional to size of live nodes

breadth-first GC!



Finding roots

• A GC observes machine state on assembly level

• Two problems:

- Finding actual variables among all stored bits 
(instructions, return addresses, cpu admin, ...)

- Finding heap pointers among the variables 
(integers, floats, "small pointers", ...)



Finding heap pointers
• "Small" pointer: value way below start-of-heap
- no real risk for confusion

• Type information can be used to distinguish 
integers and floats from pointer variables, but 
polymorphic code complicates the picture

• Polymorphism implementation strategies:
- uniform representation (always use pointers)
- uniform size only (all data fit a machine word)
- code specialization for non-pointer instances



Uniform representation
• Use heap allocation for all ordinary types

• Integer n represented as heap node Int n

• Integer arithmetic must (1) extract values 
from their boxes, (2) perform operation, 
and (3) store result in a newly allocated Int

• Example: op x (op y z)
case x of Int x' -> case (case y of Int y' -> case z of 
Int z' -> Int (op' y' z')) of Int v' -> Int (op' x' v')
where op' is the real operation corresponding to op

• Optimizations clearly desirable!



Uniform representation
• GHC uses such a boxed representation for 

types Int, Float, etc

• In addition, GHC makes unboxed types Int#, 
Float#, etc, available, which cannot be used to 
instantiate type variables
 data Int = Int Int#

• Literal n# really means integer n, while n = Int n#

• To improve performance, GHC goes to great 
length to remove repeated boxing and unboxing, 
even across function calls (with help of types!)



Uniform size

• Our approach so far: just cast literals to Ptr

• Literals must fit the size of pointers, true for 
Int and Float but not Double on 32-bit machines

• Distinguish dynamically based on

(A) One bit stolen from every 32-bit value

(B) Separate bitvectors that describe 
groupsof polymorphic variables



Uniform size (A)

• Stealing the least significant bit from

- a pointer: ok if pointers are word-aligned 
(lowest bits are always 0) and 0 means "ptr"

- an integer: represent n as R(n) = 2n+1 (halves 
the expressible range), and adjust primitives 
accordingly (R(x+y) = 2x+2y+1 = R(x)+R(y)-1)

- a float: halves the precision (mask before use)

• Used by O'Caml to good effect



Uniform size (B)
• Adding bit-vector parameters to all polymorphic 

functions and constructors, which tell how they 
are instantiated at run-time (ptr/non-ptr flags)

- Propagates the necessary GC information to 
non-local scopes

- Note: only values of variable type need 
dynamic ptr/non-ptr inspection

- Avoids the need to tag each value, but adds 
small overhead to function calls



Code specialization
• Create a specialized copy whenever a  

polymorphic function is instantiated with a 
non-pointer type

• Example:
rep 0 x = []       repF 0 x = []
rep n x = x : rep (n-1) x    repF n x = x : repF (n-1) x
y = (rep 7 (1,1), rep 7 1.1)   y = (rep 7 (1,1), repF 7 1.1)

• Ensures that polymorphic values are pointers, 
but at the price of code size increase

• Also works for types that don't fit word size



Finding all variables
• Globals are of course trivial...

• ... but layout of variables in registers and the 
stack is not accessible if we compile to C!

• The traditional conclusion: must generate 
assembly code in order to give GC full control

• But this also implies the register allocations 
and instruction scheduling decisions that are 
performance keys on modern architectures...

• A rather hefty price for the ability to just 
spot the data layout!



When to run the GC

• When free space drops below some treshold — 
a natural criterion, detected during allocations

• Memory state must thus be understandable for 
the GC at least at every malloc call

• Machine state at a malloc call also involves all 
suspended calls indirectly leading to the malloc 
— thus all function calls count as potential GC 
interruption points



Example: GHC

layout info
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.



Example: GHC
• No cost at function call, minor cost at return

• One layout-table per function call can mean a 
significant size burden

• Important that static layout table is accurate 
no matter what path has lead to the call point

• Idea not extensible to concurrent GC (would 
require a layout table after every instruction!)

• (Demands of GC major motivation behind 
earlier work on C-- compiler target language)



Conservative GC
• Attractive alternative to writing a complete 

assembly-level back-end: use C with a 
conservative garbage collector

• Principal idea: every stack and register word is 
scanned, and everything that looks like a pointer 
is treated like one

• "Look like" = word-aligned & within heap & point 
at beginning of allocated block

• Precludes copying GC (can't mutate guessed root)



Conservative GC
• Leads to memory leaks if many integers, floats, 

etc, use bit-patterns that are also happen to be 
valid heap block addresses

• Has nevertheless found good use in practice

• Even eliminates the need to know the pointer- 
typed variables (but type info might reduce the 
risk for accidental misinterpretation if present)

• Ready to use in the form of a tried-and-tested 
implementation: the Boehm-Demers-Weiser GC 
library <http://www.hpl.hp.com/personal/Hans_Boehm/gc/>



Recommendation

For the lab project:

Use the Boehm-Demers-Wiser collector!



Stack management
• A comparably simple issue!

• Sole concern: detect stack overflow and quit 
instead of continuing with corrupted data

• Handled automatically by memory-management 
hardware on most platforms, under most 
operating systems

• Should such service not exist, a simple check 
at the beginning of each generated C function 
will do the job



Optimizing tail recursion

• Main reason for excessive stack usage: deeply 
recursive algorithms

• Unnecessarily stack-hungry code: a tail-
recursive function (ends with recursive call)

• Can easily be translated into imperative loops
sum a [] = a        sum (a, x) {
sum a (x:xs) = sum (a+x) xs     while (1)
            if (x==0) return a;
            else {a += x; x = x[1];}
           }



Summary
• Garbage collection a necessity for FP

• Collection techniques: copying vs. mark-sweep

• Relies on ability to find all program variables, 
and to distinguish pointers from other values

• Challenge: devise a means to locate variables 
without having to build a full low-level back-end

• Conservative collectors can work without 
knowing where the variables are, at some 
higher risks for space leaks


