Compiling functional languages

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Lecture 2 C representation

Johan Nordlander

Recall our core language

prog	::=	module K where ds
d	::=	x = e
e	::=	x K es lit e e \x -> e let ds in e case e of alts
alt	::=	lit -> e K xs -> e

Good for analysis and optimization, but still not directly mappable to C

Restrict form even further

prog	::=	module K where ds
d	::=	f = x - b $x = K e s$ $x = e$
b	::=	let ds in b case x of alts b b fail e
e	::=	x f x es f es lit K
alt	::=	K -> b K xs -> b lit -> b

Main difference:

expression syntax now depends on position

- The right-hand side of a declaration (d)
- The body of a function (b)
- Arguments to functions and constructors (e)

Minor differences: marking known functions (f) + multi-argument abstraction & application

C correspondence

Declarations:

f = \xs -> b x = K esx = eFunction bodies: let ds in b case x of alts e fail and elle Expressions: X fes lit Ki

x es and f

A C function declaration (<u>if on the top level</u>) A malloc() call followed by assignments A single assignment

A sequence of assignments (<u>if ds not recursive</u>) A switch statement A return statement break and sequential composition

Variable x A function call to f (if arity matches) Literal lit (if not a string literal) Integer literal i Deferred...

Data layout

typedef int *Ptr;

Basic assumptions: (Ptr)(int)x = x

(int)(Ptr)y = y

Construction:

 $x = K_i e_1 ... e_n$

Ptr x = malloc((n+1)*sizeof(int)); x[0] = i; x[1] = (int)e₁; ... x[n] = (int)e_n;

Deconstruction:

 $case \times of$

....

switch (x[0]) {

•••

 $K_i \times_1 \dots \times_n \rightarrow body_i$

case i: { Ptr x₁ = (Ptr)x[1]; ...
 Ptr x_n = (Ptr)x[n];
 body_i }

Nullary constructors

Could just use the generic form:

 $\mathbf{x} = \mathbf{K}_{i}$ Ptr x = malloc(sizeof(int)); x[0] = i; **switch** (x[0]) { case x of $K_i \rightarrow body$

case i: { body }

For better memory efficiency, encode as <u>small pointer</u>:

```
(Ptr) i
Ki
case x of
                                          switch ((int)x) {
   K_i \rightarrow body_i
                                             case i: { body<sub>i</sub> }
    ...
                                              ...
   K_j x_1 \dots x_n \rightarrow body_j
                                             default: switch (×[0]) {
                                                            case j: { Ptr x<sub>1</sub> = (Ptr)x[1]; ...
                                                                        Ptr x_n = (Ptr)x[n];
                                                                        body; }
```

Single constructors

Could just use the generic form:

case x of

Ptr x = malloc((n+1)*sizeof(int)); $x = K_0 e_1 \dots e_n$ **x**[0] = 0; $x[1] = (int)e_1; ... x \rightarrow arg[n] = (int)e_n;$ **switch** (x[0]) { **case** 0: { Ptr x₁ = (Ptr)x[1]; ... $K_0 \times_1 \dots \times_n \rightarrow body_i$ Ptr $x_n = (Ptr)x[n];$ body₀ } For better efficiency, encode <u>without a tag</u>:

Ptr x = malloc(n*sizeof(int)); $x = K_0 e_1 \dots e_n$ x[0] = (int)e₁; ... $x[n-1] = (int)e_n;$ Ptr x₁ = (Ptr)x[0]; ... case x of Ptr $x_n = (Ptr)x[n-1];$ $K_0 \times_1 \dots \times_n \rightarrow body_0$ body₀

On primitives

- Syntactically, a primitive operation is just a named function f the compiler already knows about (implicitly declared)
- However, there are two sets of such names:
 - Primitives of the source language (up to you)
 - Primitives of the target (defined by C)
- Requires a <u>conscious mapping</u> (again up to you!)

Obtaining restricted form

- Collecting multiple arguments: translate $(...((x e_1) e_2) ... e_n) = x e_1 e_2 ... e_n$ translate $(X_1 \rightarrow ... \rightarrow X_n \rightarrow e) = X_1 ... X_n \rightarrow e$
- Normalizing an e depending on position: normD ($f = \langle xs \rangle e$) = $f = \langle xs \rangle$ normB e normD (x = K es) = ... normD (x = e) = ds + x = e' where (ds,e') = normE e
 - normB (case/let) = ... normB e
 - normB (x = e) = let normD (x = x = e) in x

 - = let ds in e' where (ds,e') = normE e

Obtaining restricted form

• Normalizing an e depending on position:

normE × normE lit normE K where $(ds_i, e_i') = norm E e_i$ norm $E(x e_1 \dots e_n) = \dots$ normE ($e e_1 \dots e_n$) where (ds', e') = norm E enormE (case ...) normE e

- $= ([], \times)$
- = ([], |it)
- = ([], K)
- normE ($f e_1 ... e_n$) = ($ds_1 + ... + ds_n, f e_1' ... e_n'$)

 - = (normD(x = e) ++ ds, e')
 - where $(ds, e') = normE(x e_1 ... e_n)$
- normE (let ds in e) = (normD ds ++ ds', e')

 - = (normD ($x = \backslash$ case ...), x ())
 - = (normD(x = e), x)

Manipulating scopes

- The hazards of moving and merging decls: normE (let x = 3 in let x = 4 in x) = ([x = 3, x = 4], x)??? normE (f (let x = 3 in x) x) = ([x = 3], f x x)???
- Solution: <u>alpha-convert</u> local scope normE (let x = 3 in let x = 4 in x) = ([x = 3, y = 4], y) y new normE (f (let x = 3 in x) x) = ([y = 3], f y x) y new
- Detecting name capture:
 - check against all vars in scope (keep an environment)
 - or check the vars actually free in shadowed exprs

Free variables

- A standard notion in lambda calculus:
 - fv x = {**x**} = $fv e_1 U \dots U fv e_n$ $fv(Ke_1 ... e_n)$ fv lit = { } = fveUfve' fv (e e') $fv(x \rightarrow e)$ = $fv e \setminus \{x\}$ fv (let ds in e) = $(fv ds U fv e) \setminus dom ds$ $fv(case e of alt_1;...; alt_n) = fv e U fv alt_1 U ... U fv alt_n$ $fv(x_1 = e_1 ; ...; x_n = e_n)$ = $fv e_1 U \dots U fv e_n$ $fv(K \times s \rightarrow e)$ = $fv e \setminus \{xs\}$ $fv(lit \rightarrow e)$ = fv <u>e</u> dom $(x_1 = e_1; ...; x_n = e_n) = \{x_1, ..., x_n\}$

After normalization

- A program form corresponding to C syntax, but with some serious caveats:
 - Function declarations must be on top level only
 - Only function declarations may be <u>recursive</u>
 - Function calls must match <u>arity</u> of callee
 - Function names must not be used as values
 - <u>Unknown functions</u> cannot be called
- (Assuming string literals already desugared away...)

Recursive declarations

- The simple case: recursive <u>functions</u> (corresponds to cross-referencing code-blocks on the assembly level)
- Also a non-issue in <u>lazy</u> languages (where every name denotes a code-block in general)
- Normally forbidden in strict languages:
 - Recursive non-functions: x = Ky; y = L x
 - Recursive non-values: x = f y; y = g x

Recursive declarations

- Natural approach: forbid recursive nonfunctions and non-values in our language as well (can be checked initially and easily preserved)
- However, checking <u>after sorting</u> according to dependency order adds valuable expressiveness:
 let f = \xs -> ... x ... g ...
 let x = 2+3
 g = \ys -> ... f ...
 g = \ys -> ... f ...
 y = f []
 in let y = f []
 in let y = f []

Only top-level functions

- Naive idea: just move the declarations!
- Problem: loss of local scope

 $f = \langle a \rangle = \langle b \rangle a + b$ in g 7 $g = \langle b \rangle a + b$ $f = \langle a \rangle g 7$

• A way forward: first turn free variables into parameters!

Lambda-lifting

- An algorithm for lifting functions (lambdaabstractions) out of their scope
 [Johnsson (1985), variant in SPJ's book]
- Fact: lifting itself is trivial (just avoid nameclashes) — adding the necessary parameters to functions is the intersting part
- We'll study a formulation that only performs the interesting part!

A lambda-lifter

- Assume fv splits its output as (fs,xs)
- Assume ext maps each f in scope to its extra args
- The interesting cases:

xs'

- lift ext (f es) = f (ext f ++ lift ext es)lift ext (let ds in b) = let (lift ext' ds) in (lift ext' b) where $(f_1...f_n, xs) = fv ds \setminus dom ds$ = $xs U ext f_1 U ... U ext f_n$
 - ext' f = if (f`elem` dom ds) then xs' else ext f

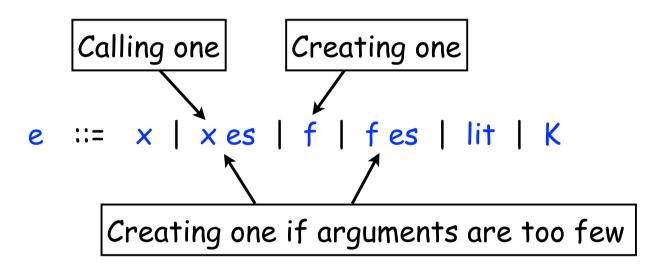
lift ext ($f = \langle xs \rangle e$) = $f = \langle ext f + xs \rangle \rightarrow lift ext e$

A lambda-lifter

- On the top-level:
 module K where ds module K where lift exto ds
 where exto f = []
- Result: a program where each declaration
 f = \xs -> e has zero free variables
- Such decls can easily be moved to the top
- Variant: exclude the global non-functions when listing free variables in lift

Anonymous functions

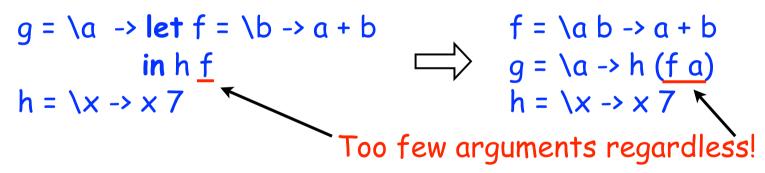
• Our latest expression grammar:



- Must be supported not a functional language otherwise!
- Requires the concept of <u>closures</u>!

Closures

- <u>The</u> generic representation of functions: a function pointer with a list of free variables
- The limits of lambda-lifting:



- Closures can represent partial applications, even in the presence of free variables
- Nevertheless, lambda-lifting before closureconversion simplifies the presentation somewhat

Closure-conversion

• Assume a lambda-lifted $f = \langle x_1 \dots x_n \rangle e$

```
closureConvert f = CL f_0 n
closureConvert (f e_1 ... e_m) =
   m < n = CL f_m (n-m) e_1 \dots e_m
   ...
   where f_m is a new top-level function
      f_m = \langle x_{\text{this}} x_{m+1} \dots x_n \rightarrow case x_{\text{this}} of
                                     CL \_ y_1 ... y_m \rightarrow f y_1 ... y_m x_{m+1} ... x_n
closureConvert(x e_1 ... e_m) = case x of CL f<sub>unknown</sub> n
                                              | m == n \rightarrow f_{unknown} \times e_1 \dots e_m
```

Closures

- CL is an ordinary constructor name (a K) and a closure term is just a constructor application that references an f
- After closure conversion, these applications will be our <u>only</u> references to function names outside function calls
- Note: static typing will actually require a CL_k for each closure arity k (a well as existentials and subtyping!), but we're past type-checking here!

Closure-conversion

- Example before and after lambda-lifting: $g = \langle a \rangle = f = \langle b \rangle a + b$ in fg $h = \langle x \rangle x 7$ $f = \langle a b \rangle a + b$ $g = \langle a \rangle h f$ $h = \langle x \rangle x 7$
- And after closure-conversion:

f = \a b -> a + b g = \a -> CL f₁ 1 a h = \x -> **case** × **of** CL f_{unknown} 1 -> f_{unknown} × 7

 $f_1 = \langle x_{\text{this}} x_2 \rightarrow case x_{\text{this}} of CL - y_1 \rightarrow f y_1 x_2$

• But we're still ignoring arity mismtaches...

Matching arities

- Strategies for matching function arity with the number of arguments:
 - "Push/enter": arguments pushed and code entered unconditionally, matching done by <u>called function</u>
 - "Eval/apply": function evaluated and asked for arity <u>by caller</u>, then only applied if enough arguments are present

Push/enter

- Assume arguments $e_1 \dots e_m$ are on the stack
- In prologue to each function $f = \langle x_1 \dots x_n \rangle e$:
 - If m = n, return result of call (popping $e_1 \dots e_n$)
 - If m < n, pop $e_1 \dots e_m$ and return closure corresponding to $x_{m+1} \dots x_n \rightarrow f e_1 \dots e_m x_{m+1} \dots x_m$
 - If m > n, enter result of current call after
 popping e1 ... en

Push/enter

- Simple model inspired by OO virtual methods
- Involves rather heavy use of indirect jumps
- Finding & counting all arguments on the stack is <u>hard using C calling conventions</u>
- In use: core characteristic of the original STG-machine (Peyton Jones, 1992), which is the back-end format used by GHC

Eval/apply

- Assume f has arity n
- For each call f e1 ... em:
 - If m = n, just return the result of the call
 - If m < n, return closure corresponding to x_m +1 ... $x_n \rightarrow f e_1 ... e_m x_{m+1} ... x_m$
 - If m > n, let x be the result of $f e_1 \dots e_n$ and continue applying call $x e_{n+1} \dots e_m$
- Technique used by common ML implementations (SML-NJ, O'Caml), but nowadays also GHC

Checking arities (eval/apply)

• Assuming $f = \langle x_1 \dots x_n \rangle e$

 $closureConvert f = CL f_0 n$

closureConvert (f $e_1 \dots e_m$) = $| m == n = f e_1 \dots e_m$ $| m < n = CL f_m (n-m) e_1 \dots e_m$ $| m > n = apply_{m-n} (f e_1 \dots e_n) e_{n+1} \dots e_m$ where each apply_k is a run-time system function TBD

• Note: checks are done at <u>compile-time</u>

Checking arities (eval/apply)

The full dynamic case (checks at <u>run-time</u>!):
 closureConvert (x e₁ ... e_m) = applym x e₁ ... e_m

$$\begin{array}{l} apply_{m} = \ x_{this} \ x_{1} \ \dots \ x_{m} \ -> \ case \ x_{this} \ of \ CL \ f_{unknown} \ n \\ & | \ m == n \ -> \ f_{unknown} \ x_{this} \ x_{1} \ \dots \ x_{m} \\ & | \ m < n \ -> \ CL \ pap_{n-m,m} \ (n-m) \ x_{this} \ x_{1} \ \dots \ x_{m} \\ & | \ m > n \ -> \ apply_{m-n} \ (f_{unknown} \ x_{this} \ x_{1} \ \dots \ x_{n}) \ x_{n+1} \ \dots \ x_{m} \end{array}$$

 $pap_{k,m} = \langle x_{this} x_1 \dots x_k \rangle case x_{this} of CL _ y_{that} y_1 \dots y_m \rangle apply_{m+k} y_{that} y_1 \dots y_m x_1 \dots x_k$

Summary

- C code generation involves
 - 1) Normalization (pretty straightforward)
 - 2) Lamda-lifting (known functions)
 - 3) Closure conversion (anonymous/partial apps)
- 3) supersedes 2) but is generally less efficient
- Challenge: avoid the need for special papk,m functions for every combination of k and m
- Idea: make m a closure parameter as well, and write a generic $\underset{\mbox{pap}_{k,m}}{\mbox{m}}$ directly in assembly code