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Recall our core language

prog  ::=   module K where ds
d  ::=   x = e
e  ::=   x  |  K  es  |  lit  |  e e  |  \x -> e  |  let ds in e  |  case e of alts
alt  ::=   lit -> e  |  K xs -> e

Good for analysis and optimization, 
but still not directly mappable to C



Restrict form even further
prog  ::=   module K where ds
d  ::=   f = \xs -> b  |  x = K es  |  x = e
b  ::=   let ds in b  |  case x of alts  |  b ║ b  |  fail  |  e
e  ::=   x  |  f  |  x es  |  f es  |  lit  |  K
alt  ::=   K -> b  |  K xs -> b  |  lit -> b

Main difference: 
expression syntax now depends on position

• The right-hand side of a declaration (d)
• The body of a function (b)
• Arguments to functions and constructors (e)

Minor differences: marking known functions (f)
+ multi-argument abstraction & application



C correspondence
Declarations:
 f = \xs -> b    A C function declaration (if on the top level)
 x = K es    A malloc() call followed by assignments
 x = e     A single assignment

Function bodies:
 let ds in b    A sequence of assignments (if ds not recursive)
 case x of alts   A switch statement
 e      A return statement
 fail and e║e   break and sequential composition

Expressions:
 x      Variable x
 f es     A function call to f (if arity matches)
 lit      Literal lit (if not a string literal)
 Ki      Integer literal i
 x es and f    Deferred...



Data layout
       typedef int *Ptr;

Basic assumptions:
     (Ptr)(int)x = x   (int)(Ptr)y = y

Construction:
 x = Ki e1 ... en    Ptr x = malloc((n+1)*sizeof(int)); 
        x[0] = i;
        x[1] = (int)e1; ... x[n] = (int)en;

Deconstruction:
 case x of     switch (x[0]) {
     ....          ...
     Ki x1 ... xn -> bodyi       case i: { Ptr x1 = (Ptr)x[1]; ...
               Ptr xn = (Ptr)x[n]; 
               bodyi }



Nullary constructors
Could just use the generic form:
 x = Ki      Ptr x = malloc(sizeof(int)); 
        x[0] = i;

 case x of     switch (x[0]) {
     ...          ...
     Ki -> body           case i: { body }

For better memory efficiency, encode as small pointer:
 Ki       (Ptr) i
 case x of     switch ((int)x) {
     Ki -> bodyi          case i: { bodyi }
     ...          ...
     Kj x1 ... xn -> bodyj       default: switch (x[0]) {
           case j: { Ptr x1 = (Ptr)x[1]; ...
                 Ptr xn = (Ptr)x[n]; 
                   bodyj }



Single constructors
Could just use the generic form:
 x = K0 e1 ... en    Ptr x = malloc((n+1)*sizeof(int)); 
        x[0] = 0;
        x[1] = (int)e1; ... x->arg[n] = (int)en;

 case x of     switch (x[0]) {
     K0 x1 ... xn -> bodyi       case 0: { Ptr x1 = (Ptr)x[1]; ...
                Ptr xn = (Ptr)x[n]; 
                body0 }

For better efficiency, encode without a tag:
 x = K0 e1 ... en    Ptr x = malloc(n*sizeof(int)); 
        x[0] = (int)e1; ...
        x[n-1] = (int)en;

 case x of     Ptr x1 = (Ptr)x[0]; ...
     K0 x1 ... xn -> body0  Ptr xn = (Ptr)x[n-1];
        body0



On primitives

• Syntactically, a primitive operation is just a 
named function f the compiler already knows 
about (implicitly declared)

• However, there are two sets of such names:

- Primitives of the source language (up to you)

- Primitives of the target (defined by C)

• Requires a conscious mapping (again up to you!)



Obtaining restricted form

• Collecting multiple arguments:
translate (...((x e1) e2) ... en)     =   x e1 e2 ... en

translate (\x1 -> ... -> \xn -> e)    =   \x1 ... xn -> e

• Normalizing an e depending on position:
normD (f = \xs -> e) =   f = \xs -> normB e
normD (x = K es)  = ...
normD (x = e)   = ds ++ x = e'  where (ds,e') = normE e

normB (\xs -> e)   =   let normD (x = \xs -> e) in x
normB (case/let)  = ...
normB e     = let ds in e'   where (ds,e') = normE e



Obtaining restricted form
• Normalizing an e depending on position:

normE x     =   ([], x)
normE lit     = ([], lit)
normE K     = ([], K)
normE (f e1 ... en)  = (ds1 ++ ... ++ dsn, f e1' ... en')
 where (dsi, ei')  = normE ei

normE (x e1 ... en)  = ...
normE (e e1 ... en)  = (normD (x = e) ++ ds, e')
 where (ds, e')  = normE (x e1 ... en)
normE (let ds in e)  = (normD ds ++ ds', e')
 where (ds', e')  = normE e
normE (case ...)   = (normD (x = \_ -> case ...), x ())
normE e     = (normD (x = e), x)



Manipulating scopes

• The hazards of moving and merging decls:
normE (let x = 3 in let x = 4 in x) = ([x = 3, x = 4], x) ???
normE (f (let x = 3 in x) x)     = ([x = 3], f x x) ???

• Solution: alpha-convert local scope
normE (let x = 3 in let x = 4 in x) = ([x = 3, y = 4], y) y new
normE (f (let x = 3 in x) x)     = ([y = 3], f y x)  y new

• Detecting name capture:
- check against all vars in scope (keep an environment)
- or check the vars actually free in shadowed exprs



Free variables
• A standard notion in lambda calculus:

fv x        = {x}
fv (K e1 ... en)     = fv e1 U ... U fv en

fv lit       = { }
fv (e e')      = fv e U fv e'
fv (\x -> e)      = fv e \ {x}
fv (let ds in e)     = (fv ds U fv e) \ dom ds
fv (case e of alt1 ;...; altn) = fv e U fv alt1 U ... U fv altn

fv (x1 = e1 ;...; xn = en)   = fv e1 U ... U fv en

fv (K xs -> e)     = fv e \ {xs}
fv (lit -> e)      = fv e
dom (x1 = e1 ;...; xn = en)  = {x1,...,xn}



After normalization
• A program form corresponding to C syntax, but 

with some serious caveats:

- Function declarations must be on top level only

- Only function declarations may be recursive

- Function calls must match arity of callee

- Function names must not be used as values

- Unknown functions cannot be called

• (Assuming string literals already desugared away...)



Recursive declarations

• The simple case: recursive functions
(corresponds to cross-referencing code-blocks 
on the assembly level)

• Also a non-issue in lazy languages (where every 
name denotes a code-block in general)

• Normally forbidden in strict languages:
- Recursive non-functions:  x = K y; y = L x
- Recursive non-values:   x = f y; y = g x



Recursive declarations

• Natural approach: forbid recursive non-
functions and non-values in our language as well
(can be checked initially and easily preserved)

• However, checking after sorting according to 
dependency order adds valuable expressiveness:
let f = \xs -> ... x ... g ...    let x = 2+3
 x = 2+3       in let f = \xs -> ... x ... g ...
 g = \ys -> ... f ...       g = \ys -> ... f ...
 y = f []            in let y = f []
in e             in e



Only top-level functions

• Naive idea: just move the declarations!

• Problem: loss of local scope
f = \a  -> let g = \b -> a + b    g = \b -> a + b
        in g 7       f = \a -> g 7

• A way forward: first turn free variables into 
parameters!
f = \a  -> let g = \a b -> a + b   g = \a b -> a + b
        in g a 7       f = \a -> g a 7



Lambda-lifting

• An algorithm for lifting functions (lambda-
abstractions) out of their scope 
[Johnsson (1985), variant in SPJ's book]

• Fact: lifting itself is trivial (just avoid name-
clashes) — adding the necessary parameters 
to functions is the intersting part

• We'll study a formulation that only performs 
the interesting part!



A lambda-lifter
• Assume fv splits its output as (fs,xs)

• Assume ext maps each f in scope to its extra args

• The interesting cases:
lift ext (f es)   = f (ext f ++ lift ext es)
lift ext (let ds in b)  = let (lift ext' ds) in (lift ext' b)
 where (f1...fn, xs) = fv ds \ dom ds
   xs'    = xs U ext f1 U ... U ext fn

   ext' f   = if (f `elem` dom ds) then xs' else ext f
...
lift ext (f = \xs -> e) = f = \(ext f ++ xs) -> lift ext e



A lambda-lifter

• On the top-level:
module K where ds   module K where lift ext0 ds
         where ext0 f = []

• Result: a program where each declaration 
f = \xs -> e has zero free variables

• Such decls can easily be moved to the top

• Variant: exclude the global non-functions 
when listing free variables in lift



Anonymous functions
• Our latest expression grammar:

e ::=   x  |  x es  |  f  |  f es  |  lit  |  K

• Must be supported – not a functional language 
otherwise!

• Requires the concept of closures!

Creating oneCalling one

Creating one if arguments are too few



Closures
• The generic representation of functions: a 

function pointer with a list of free variables

• The limits of lambda-lifting:
 g = \a  -> let f = \b -> a + b   f = \a b -> a + b
           in h f       g = \a -> h (f a)
 h = \x -> x 7        h = \x -> x 7

• Closures can represent partial applications, even 
in the presence of free variables

• Nevertheless, lambda-lifting before closure-
conversion simplifies the presentation somewhat

Too few arguments regardless!



Closure-conversion
• Assume a lambda-lifted f = \x1 ... xn -> e

closureConvert f  =  CL f0 n
closureConvert (f e1 ... em)   = 
    | m < n  = CL fm (n-m) e1 ... em
    ...
    where fm is a new top-level function
 fm = \xthis xm+1 ... xn -> case xthis of 
        CL _ _ y1 ... ym -> f y1 ... ym xm+1 ... xn

closureConvert (x e1 ... em)   =   case x of CL funknown n 
             | m == n  ->  funknown x e1 ... em

          ...



Closures
• CL is an ordinary constructor name (a K) and a 

closure term is just a constructor application 
that references an f

• After closure conversion, these applications 
will be our only references to function names 
outside function calls

• Note: static typing will actually require a CLk for 
each closure arity k (a well as existentials and 
subtyping!), but we're past type-checking here!



Closure-conversion
• Example before and after lambda-lifting:

g = \a  -> let f = \b -> a + b   f = \a b -> a + b
          in f g       g = \a -> h f
h = \x -> x 7        h = \x -> x 7

• And after closure-conversion:
  f = \a b -> a + b
  g = \a -> CL f1 1 a
  h = \x -> case x of CL funknown 1 -> funknown x 7 

  f1 = \xthis x2 -> case xthis of CL _ _ y1 -> f y1 x2

• But we're still ignoring arity mismtaches...



Matching arities

• Strategies for matching function arity with 
the number of arguments:

- "Push/enter": arguments pushed and code 
entered unconditionally, matching done by 
called function

- "Eval/apply": function evaluated and asked 
for arity by caller, then only applied if 
enough arguments are present



Push/enter

• Assume arguments e1 ... em are on the stack

• In prologue to each function f = \x1 ... xn -> e:
- If m = n, return result of call (popping e1 ... en)
- If m < n, pop e1 ... em and return closure 

corresponding to \xm+1 ... xn -> f e1 ... em xm+1 ... xm

- If m > n, enter result of current call after 
popping e1 ... en



Push/enter

• Simple model inspired by OO virtual methods

• Involves rather heavy use of indirect jumps

• Finding & counting all arguments on the stack 
is hard using C calling conventions

• In use: core characteristic of the original 
STG-machine (Peyton Jones, 1992), which is 
the back-end format used by GHC 



Eval/apply
• Assume f has arity n

• For each call f e1 ... em:
- If m = n, just return the result of the call
- If m < n, return closure corresponding to \xm

+1 ... xn -> f e1 ... em xm+1 ... xm

- If m > n, let x be the result of f e1 ... en and 
continue applying call x en+1 ... em

• Technique used by common ML implementations 
(SML-NJ, O'Caml), but nowadays also GHC



Checking arities

• Assuming f = \x1 ... xn -> e

closureConvert f  =  CL f0 n

closureConvert (f e1 ... em)  = 
    | m == n  = f e1 ... em

    | m < n  = CL fm (n-m) e1 ... em

    | m > n  = applym-n (f e1 ... en) en+1 ... em  

where each applyk is a run-time system function TBD

• Note: checks are done at compile-time

(eval/apply)



Checking arities

• The full dynamic case (checks at run-time!):

closureConvert (x e1 ... em)  = applym x e1 ... em

applym  = \xthis x1 ... xm -> case xthis of CL funknown n
    | m == n  -> funknown xthis x1 ... xm

    | m < n  -> CL papn-m,m (n-m) xthis x1 ... xm

    | m > n  -> applym-n (funknown xthis x1 ... xn) xn+1 ... xm

papk,m = \xthis x1 ... xk -> case xthis of CL _ _ ythat y1 ... ym ->
    applym+k ythat y1 ... ym x1 ... xk

(eval/apply)



Summary
• C code generation involves

1)  Normalization (pretty straightforward)
2)  Lamda-lifting (known functions)
3)  Closure conversion (anonymous/partial apps)

• 3) supersedes 2) but is generally less efficient

• Challenge: avoid the need for special papk,m 
functions for every combination of k and m 

• Idea: make m a closure parameter as well, and 
write a generic papk,m directly in assembly code


