
Compiling functional
languages

Lecture 2
C representation

Johan Nordlander

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Recall our core language

prog ::= module K where ds
d ::= x = e
e ::= x | K es | lit | e e | \x -> e | let ds in e | case e of alts
alt ::= lit -> e | K xs -> e

Good for analysis and optimization,
but still not directly mappable to C

Restrict form even further
prog ::= module K where ds
d ::= f = \xs -> b | x = K es | x = e
b ::= let ds in b | case x of alts | b ║ b | fail | e
e ::= x | f | x es | f es | lit | K
alt ::= K -> b | K xs -> b | lit -> b

Main difference:
expression syntax now depends on position

• The right-hand side of a declaration (d)
• The body of a function (b)
• Arguments to functions and constructors (e)

Minor differences: marking known functions (f)
+ multi-argument abstraction & application

C correspondence
Declarations:
 f = \xs -> b A C function declaration (if on the top level)
 x = K es A malloc() call followed by assignments
 x = e A single assignment

Function bodies:
 let ds in b A sequence of assignments (if ds not recursive)
 case x of alts A switch statement
 e A return statement
 fail and e║e break and sequential composition

Expressions:
 x Variable x
 f es A function call to f (if arity matches)
 lit Literal lit (if not a string literal)
 Ki Integer literal i
 x es and f Deferred...

Data layout
 typedef int *Ptr;

Basic assumptions:
 (Ptr)(int)x = x (int)(Ptr)y = y

Construction:
 x = Ki e1 ... en Ptr x = malloc((n+1)*sizeof(int));
 x[0] = i;
 x[1] = (int)e1; ... x[n] = (int)en;

Deconstruction:
 case x of switch (x[0]) {

 Ki x1 ... xn -> bodyi case i: { Ptr x1 = (Ptr)x[1]; ...
 Ptr xn = (Ptr)x[n];
 bodyi }

Nullary constructors
Could just use the generic form:
 x = Ki Ptr x = malloc(sizeof(int));
 x[0] = i;

 case x of switch (x[0]) {

 Ki -> body case i: { body }

For better memory efficiency, encode as small pointer:
 Ki (Ptr) i
 case x of switch ((int)x) {
 Ki -> bodyi case i: { bodyi }

 Kj x1 ... xn -> bodyj default: switch (x[0]) {
 case j: { Ptr x1 = (Ptr)x[1]; ...
 Ptr xn = (Ptr)x[n];
 bodyj }

Single constructors
Could just use the generic form:
 x = K0 e1 ... en Ptr x = malloc((n+1)*sizeof(int));
 x[0] = 0;
 x[1] = (int)e1; ... x->arg[n] = (int)en;

 case x of switch (x[0]) {
 K0 x1 ... xn -> bodyi case 0: { Ptr x1 = (Ptr)x[1]; ...
 Ptr xn = (Ptr)x[n];
 body0 }

For better efficiency, encode without a tag:
 x = K0 e1 ... en Ptr x = malloc(n*sizeof(int));
 x[0] = (int)e1; ...
 x[n-1] = (int)en;

 case x of Ptr x1 = (Ptr)x[0]; ...
 K0 x1 ... xn -> body0 Ptr xn = (Ptr)x[n-1];
 body0

On primitives

• Syntactically, a primitive operation is just a
named function f the compiler already knows
about (implicitly declared)

• However, there are two sets of such names:

- Primitives of the source language (up to you)

- Primitives of the target (defined by C)

• Requires a conscious mapping (again up to you!)

Obtaining restricted form

• Collecting multiple arguments:
translate (...((x e1) e2) ... en) = x e1 e2 ... en

translate (\x1 -> ... -> \xn -> e) = \x1 ... xn -> e

• Normalizing an e depending on position:
normD (f = \xs -> e) = f = \xs -> normB e
normD (x = K es) = ...
normD (x = e) = ds ++ x = e' where (ds,e') = normE e

normB (\xs -> e) = let normD (x = \xs -> e) in x
normB (case/let) = ...
normB e = let ds in e' where (ds,e') = normE e

Obtaining restricted form
• Normalizing an e depending on position:

normE x = ([], x)
normE lit = ([], lit)
normE K = ([], K)
normE (f e1 ... en) = (ds1 ++ ... ++ dsn, f e1' ... en')
 where (dsi, ei') = normE ei

normE (x e1 ... en) = ...
normE (e e1 ... en) = (normD (x = e) ++ ds, e')
 where (ds, e') = normE (x e1 ... en)
normE (let ds in e) = (normD ds ++ ds', e')
 where (ds', e') = normE e
normE (case ...) = (normD (x = _ -> case ...), x ())
normE e = (normD (x = e), x)

Manipulating scopes

• The hazards of moving and merging decls:
normE (let x = 3 in let x = 4 in x) = ([x = 3, x = 4], x) ???
normE (f (let x = 3 in x) x) = ([x = 3], f x x) ???

• Solution: alpha-convert local scope
normE (let x = 3 in let x = 4 in x) = ([x = 3, y = 4], y) y new
normE (f (let x = 3 in x) x) = ([y = 3], f y x) y new

• Detecting name capture:
- check against all vars in scope (keep an environment)
- or check the vars actually free in shadowed exprs

Free variables
• A standard notion in lambda calculus:

fv x = {x}
fv (K e1 ... en) = fv e1 U ... U fv en

fv lit = { }
fv (e e') = fv e U fv e'
fv (\x -> e) = fv e \ {x}
fv (let ds in e) = (fv ds U fv e) \ dom ds
fv (case e of alt1 ;...; altn) = fv e U fv alt1 U ... U fv altn

fv (x1 = e1 ;...; xn = en) = fv e1 U ... U fv en

fv (K xs -> e) = fv e \ {xs}
fv (lit -> e) = fv e
dom (x1 = e1 ;...; xn = en) = {x1,...,xn}

After normalization
• A program form corresponding to C syntax, but

with some serious caveats:

- Function declarations must be on top level only

- Only function declarations may be recursive

- Function calls must match arity of callee

- Function names must not be used as values

- Unknown functions cannot be called

• (Assuming string literals already desugared away...)

Recursive declarations

• The simple case: recursive functions
(corresponds to cross-referencing code-blocks
on the assembly level)

• Also a non-issue in lazy languages (where every
name denotes a code-block in general)

• Normally forbidden in strict languages:
- Recursive non-functions: x = K y; y = L x
- Recursive non-values: x = f y; y = g x

Recursive declarations

• Natural approach: forbid recursive non-
functions and non-values in our language as well
(can be checked initially and easily preserved)

• However, checking after sorting according to
dependency order adds valuable expressiveness:
let f = \xs -> ... x ... g ... let x = 2+3
 x = 2+3 in let f = \xs -> ... x ... g ...
 g = \ys -> ... f ... g = \ys -> ... f ...
 y = f [] in let y = f []
in e in e

Only top-level functions

• Naive idea: just move the declarations!

• Problem: loss of local scope
f = \a -> let g = \b -> a + b g = \b -> a + b
 in g 7 f = \a -> g 7

• A way forward: first turn free variables into
parameters!
f = \a -> let g = \a b -> a + b g = \a b -> a + b
 in g a 7 f = \a -> g a 7

Lambda-lifting

• An algorithm for lifting functions (lambda-
abstractions) out of their scope
[Johnsson (1985), variant in SPJ's book]

• Fact: lifting itself is trivial (just avoid name-
clashes) — adding the necessary parameters
to functions is the intersting part

• We'll study a formulation that only performs
the interesting part!

A lambda-lifter
• Assume fv splits its output as (fs,xs)

• Assume ext maps each f in scope to its extra args

• The interesting cases:
lift ext (f es) = f (ext f ++ lift ext es)
lift ext (let ds in b) = let (lift ext' ds) in (lift ext' b)
 where (f1...fn, xs) = fv ds \ dom ds
 xs' = xs U ext f1 U ... U ext fn

 ext' f = if (f `elem` dom ds) then xs' else ext f
...
lift ext (f = \xs -> e) = f = \(ext f ++ xs) -> lift ext e

A lambda-lifter

• On the top-level:
module K where ds module K where lift ext0 ds
 where ext0 f = []

• Result: a program where each declaration
f = \xs -> e has zero free variables

• Such decls can easily be moved to the top

• Variant: exclude the global non-functions
when listing free variables in lift

Anonymous functions
• Our latest expression grammar:

e ::= x | x es | f | f es | lit | K

• Must be supported – not a functional language
otherwise!

• Requires the concept of closures!

Creating oneCalling one

Creating one if arguments are too few

Closures
• The generic representation of functions: a

function pointer with a list of free variables

• The limits of lambda-lifting:
 g = \a -> let f = \b -> a + b f = \a b -> a + b
 in h f g = \a -> h (f a)
 h = \x -> x 7 h = \x -> x 7

• Closures can represent partial applications, even
in the presence of free variables

• Nevertheless, lambda-lifting before closure-
conversion simplifies the presentation somewhat

Too few arguments regardless!

Closure-conversion
• Assume a lambda-lifted f = \x1 ... xn -> e

closureConvert f = CL f0 n
closureConvert (f e1 ... em) =
 | m < n = CL fm (n-m) e1 ... em
 ...
 where fm is a new top-level function
 fm = \xthis xm+1 ... xn -> case xthis of
 CL _ _ y1 ... ym -> f y1 ... ym xm+1 ... xn

closureConvert (x e1 ... em) = case x of CL funknown n
 | m == n -> funknown x e1 ... em

 ...

Closures
• CL is an ordinary constructor name (a K) and a

closure term is just a constructor application
that references an f

• After closure conversion, these applications
will be our only references to function names
outside function calls

• Note: static typing will actually require a CLk for
each closure arity k (a well as existentials and
subtyping!), but we're past type-checking here!

Closure-conversion
• Example before and after lambda-lifting:

g = \a -> let f = \b -> a + b f = \a b -> a + b
 in f g g = \a -> h f
h = \x -> x 7 h = \x -> x 7

• And after closure-conversion:
 f = \a b -> a + b
 g = \a -> CL f1 1 a
 h = \x -> case x of CL funknown 1 -> funknown x 7

 f1 = \xthis x2 -> case xthis of CL _ _ y1 -> f y1 x2

• But we're still ignoring arity mismtaches...

Matching arities

• Strategies for matching function arity with
the number of arguments:

- "Push/enter": arguments pushed and code
entered unconditionally, matching done by
called function

- "Eval/apply": function evaluated and asked
for arity by caller, then only applied if
enough arguments are present

Push/enter

• Assume arguments e1 ... em are on the stack

• In prologue to each function f = \x1 ... xn -> e:
- If m = n, return result of call (popping e1 ... en)
- If m < n, pop e1 ... em and return closure

corresponding to \xm+1 ... xn -> f e1 ... em xm+1 ... xm

- If m > n, enter result of current call after
popping e1 ... en

Push/enter

• Simple model inspired by OO virtual methods

• Involves rather heavy use of indirect jumps

• Finding & counting all arguments on the stack
is hard using C calling conventions

• In use: core characteristic of the original
STG-machine (Peyton Jones, 1992), which is
the back-end format used by GHC

Eval/apply
• Assume f has arity n

• For each call f e1 ... em:
- If m = n, just return the result of the call
- If m < n, return closure corresponding to \xm

+1 ... xn -> f e1 ... em xm+1 ... xm

- If m > n, let x be the result of f e1 ... en and
continue applying call x en+1 ... em

• Technique used by common ML implementations
(SML-NJ, O'Caml), but nowadays also GHC

Checking arities

• Assuming f = \x1 ... xn -> e

closureConvert f = CL f0 n

closureConvert (f e1 ... em) =
 | m == n = f e1 ... em

 | m < n = CL fm (n-m) e1 ... em

 | m > n = applym-n (f e1 ... en) en+1 ... em

where each applyk is a run-time system function TBD

• Note: checks are done at compile-time

(eval/apply)

Checking arities

• The full dynamic case (checks at run-time!):

closureConvert (x e1 ... em) = applym x e1 ... em

applym = \xthis x1 ... xm -> case xthis of CL funknown n
 | m == n -> funknown xthis x1 ... xm

 | m < n -> CL papn-m,m (n-m) xthis x1 ... xm

 | m > n -> applym-n (funknown xthis x1 ... xn) xn+1 ... xm

papk,m = \xthis x1 ... xk -> case xthis of CL _ _ ythat y1 ... ym ->
 applym+k ythat y1 ... ym x1 ... xk

(eval/apply)

Summary
• C code generation involves

1) Normalization (pretty straightforward)
2) Lamda-lifting (known functions)
3) Closure conversion (anonymous/partial apps)

• 3) supersedes 2) but is generally less efficient

• Challenge: avoid the need for special papk,m
functions for every combination of k and m

• Idea: make m a closure parameter as well, and
write a generic papk,m directly in assembly code

