Compiling functional languages

Lecture 2
 C representation

Johan Nordlander

Recall our core language

```
prog ::= module K where ds
d ::= x=e
e ::= x | K es | lit | ee | \x >> | let ds in e | case e of alts
alt ::= lit -> e | Kxs -> e
```

Good for analysis and optimization, but still not directly mappable to C

Restrict form even further

```
prog ::= module K where ds
d ::= f=\xs >> b | x=K es | x=e
b ::= let ds in b | case x of alts | b || b | fail | e
e ::= x|f|xes| fes | lit | K
alt ::= K ->b | Kxs -> b | lit >> b
```

Main difference:
expression syntax now depends on position

- The right-hand side of a declaration (d)
- The body of a function (b)
- Arguments to functions and constructors (e)

Minor differences: marking known functions (f)

+ multi-argument abstraction \& application

C correspondence

Declarations:

$$
\begin{aligned}
& f=\langle x s->b \\
& x=K e s \\
& x=e
\end{aligned}
$$

A C function declaration (if on the top level)
A malloc() call followed by assignments
A single assignment
Function bodies:
let $d s$ in b
case x of alts
e
fail and e\|e
A sequence of assignments (if ds not recursive)
A switch statement
A return statement
break and sequential composition
Expressions:
x
fes
lit
K_{i}
x es and f

Variable \times
A function call to f (if arity matches)
Literal lit (if not a string literal)
Integer literal i
Deferred...

Data layout

> typedef int *Ptr;

Basic assumptions:

$$
(P+r)(i n t) x=x \quad(\text { int })(P+r) y=y
$$

Construction:

$$
\begin{array}{ll}
x=K_{i} e_{1} \ldots e_{n} & \text { Ptr } \left.x=\operatorname{malloc}\left((n+1)^{\star} \text { sizeof(int }\right)\right) ; \\
& x[0]=i ; \\
& x[1]=(\text { int }) e_{1} ; \ldots x[n]=(\text { int }) e_{n} ;
\end{array}
$$

Deconstruction:

$$
\begin{aligned}
& \text { case } \times \text { of } \\
& \ldots \ldots . \\
& K_{i} x_{1} \ldots x_{n}->\text { bod }_{i}
\end{aligned}
$$

```
    case i: { Ptr x }\mp@subsup{x}{1}{\prime}=(P+r)x[1]; ..
        Ptr x = (Ptr)x[n];
    bodyi}
```


Nullary constructors

Could just use the generic form:

```
x = Ki
Ptr x = malloc(sizeof(int));
x[0] = i;
case }\times\mathrm{ of
Ki -> body
switch (x[0]) {
    case i: { body }
```

For better memory efficiency, encode as small pointer:

```
Ki
case x of
    Ki \> bodyi
    Kj x1 ... x w -> body j
```

(Ptr) i
switch ((int)x) \{ case i: $\left\{\right.$ body $\left._{i}\right\}$
default: switch (x[0]) \{

$$
\text { case } \begin{aligned}
j:\{ & P+r x_{1}=(P+r) x[1] ; \ldots \\
& P+r x_{n}=(P \operatorname{tr}) x[n] ; \\
& \left.\operatorname{bod}_{j}\right\}
\end{aligned}
$$

Single constructors

Could just use the generic form:

$$
\begin{aligned}
& x=K_{0} e_{1} \ldots e_{n} \\
& \operatorname{Ptr} x=\operatorname{malloc}\left((n+1)^{\star}\right. \text { sizeof(int)); } \\
& x[0]=0 \text {; } \\
& x[1]=(i n t) e_{1} ; \ldots x->a r g[n]=(i n t) e_{n} ;
\end{aligned}
$$

For better efficiency, encode without a tag:

$$
\begin{array}{cl}
x=K_{0} e_{1} \ldots e_{n} & \text { Ptr } x=\operatorname{malloc}\left(n^{\star} \text { sizeof(int) }\right) ; \\
& x[0]=(\text { int }) e_{1} ; \ldots \\
& x[n-1]=(\text { int }) e_{n} ; \\
\text { case } x \text { of } & \text { Ptr } x_{1}=(\operatorname{Ptr}) x[0] ; \ldots \\
K_{0} x_{1} \ldots x_{n} \rightarrow \text { bodyo } & \text { Ptr } x_{n}=(\operatorname{Ptr}) x[n-1] ; \\
& \text { bodyo }
\end{array}
$$

On primitives

- Syntactically, a primitive operation is just a named function f the compiler already knows about (implicitly declared)
- However, there are two sets of such names:
- Primitives of the source language (up to you)
- Primitives of the target (defined by C)
- Requires a conscious mapping (again up to you!)

Obtaining restricted form

- Collecting multiple arguments: $\begin{array}{ll}\text { translate }\left(\ldots\left(\left(x e_{1}\right) e_{2}\right) \ldots e_{n}\right) & =x e_{1} e_{2} \ldots e_{n} \\ \left.\text { translate }\left(\backslash x_{1} \rightarrow\right\rangle \ldots \backslash \backslash x_{n} \rightarrow e\right) & =\left\langle x_{1} \ldots x_{n} \rightarrow\right\rangle e\end{array}$
- Normalizing an e depending on position:
normD ($f=\backslash x s->e)=f=\backslash x s->n o r m B e$
normD ($x=$ K es) $\quad=\ldots$
normD $(x=e) \quad=d s++x=e^{\prime}$ where $\left(d s, e^{\prime}\right)=$ normE e
normB ($\backslash x s \rightarrow e)=$ let normD $(x=\backslash x s \rightarrow e)$ in x
normB (case/let) $=$...
normBe
$=$ let $d s$ in e^{\prime} where $\left(d s, e^{\prime}\right)=$ normE e

Obtaining restricted form

- Normalizing an e depending on position:

normE \times	$=([], x)$
normE lit	$=$ ([], lit)
normE K	$=([], K)$
$\begin{aligned} & \text { normE }\left(f e_{1} \ldots e_{n}\right) \\ & \text { where }\left(d s_{i}, e_{i}^{\prime}\right) \end{aligned}$	$\begin{aligned} & =\left(d s_{1}++\ldots+d s_{n}, f e_{1}^{\prime} \ldots e_{n}^{\prime}\right) \\ & =\text { normE } e_{i} \end{aligned}$
normE ($\left.x e_{1} \ldots . . e_{n}\right)$	
normE (e e $\left.e_{1} \ldots e_{n}\right)$	$=\left(\right.$ normD $\left.(x=e)++d s, e^{\prime}\right)$
where ($d s, e^{\prime}$)	$=\operatorname{normE}\left(x e_{1} \ldots e_{n}\right)$
normE (let ds in e)	$=$ (normD ds ++ ds', e')
where (ds', e')	$=$ normE e
normE (case ...)	$=$ (normD ($x=\$ _ -> case ...) \hline normE & $=(\operatorname{normD}(x=e), x)$

Manipulating scopes

- The hazards of moving and merging decls: norme (let $x=3$ in let $x=4$ in $x)=([x=3, x=4], x)$??? norme $(f(\operatorname{let} x=3$ in $x) x)=([x=3], f x x)$???
- Solution: alpha-convert local scope norme $($ let $x=3$ in let $x=4$ in $x)=([x=3, y=4], y) y$ new normE $(f($ let $x=3$ in $x) x)=([y=3], f y x)$ y new
- Detecting name capture:
- check against all vars in scope (keep an environment)
- or check the vars actually free in shadowed exprs

Free variables

- A standard notion in lambda calculus:

$$
\begin{aligned}
& \text { fix } \\
& \text { av (} K_{e_{1}} \ldots e_{n} \text {) } \\
& \text { ff lit } \\
& \text { av (e e') } \\
& f v(\mid x \rightarrow e) \\
& \mathrm{fv} \text { (let db in e) } \\
& =\{x\} \\
& =f v e_{1} U \ldots \cup f v e_{n} \\
& \text { = \{\} } \\
& =\text { fveUfve' } \\
& =f v e \backslash\{x\} \\
& f v\left(\text { case e of alt } t_{1} ; \ldots ; \text { alt }_{n}\right)=f v e \cup f v a l t_{1} \cup \ldots \cup f v a l t_{n} \\
& f v\left(x_{1}=e_{1} ; \ldots ; x_{n}=e_{n}\right) \quad=f v e_{1} \cup \ldots \cup f v e_{n} \\
& f v(K \times s->e) \\
& =f v e \backslash\{x s\} \\
& \text { ff (lit -> e) } \\
& =f v e \\
& \operatorname{dom}\left(x_{1}=e_{1} ; \ldots ; x_{n}=e_{n}\right)=\left\{x_{1}, \ldots, x_{n}\right\}
\end{aligned}
$$

After normalization

- A program form corresponding to C syntax, but with some serious caveats:
- Function declarations must be on top level only
- Only function declarations may be recursive
- Function calls must match arity of callee
- Function names must not be used as values
- Unknown functions cannot be called
- (Assuming string literals already desugared away...)

Recursive declarations

- The simple case: recursive functions (corresponds to cross-referencing code-blocks on the assembly level)
- Also a non-issue in lazy languages (where every name denotes a code-block in general)
- Normally forbidden in strict languages:
- Recursive non-functions: $\quad x=K y ; y=L x$
- Recursive non-values: $\quad x=f y ; y=g x$

Recursive declarations

- Natural approach: forbid recursive nonfunctions and non-values in our language as well (can be checked initially and easily preserved)
- However, checking after sorting according to dependency order adds valuable expressiveness:

```
let f = \xs -> ... x ... g ...
    x=2+3
    g=\ys -> ...f ...
    y=f[]
in \(e\)
```


Only top-level functions

- Naive idea: just move the declarations!
- Problem: loss of local scope

$$
\begin{aligned}
& f=\backslash a \rightarrow \operatorname{let} g=\backslash b \rightarrow a+b \\
& \text { in } 97 \\
& \begin{array}{l}
g=\backslash b \rightarrow \underline{a}+b \\
f=\backslash a \rightarrow 97
\end{array}
\end{aligned}
$$

- A way forward: first turn free variables into parameters!

$$
\begin{aligned}
& f=\backslash a \rightarrow l_{\text {let } g=\backslash a b \rightarrow a+b} \\
& \text { in } g a 7
\end{aligned} \leadsto \begin{aligned}
& g=\backslash a b \rightarrow a+b \\
& f=\backslash a \rightarrow g a 7
\end{aligned}
$$

Lambda-lifting

- An algorithm for lifting functions (lambdaabstractions) out of their scope [Johnsson (1985), variant in SPJ's book]
- Fact: lifting itself is trivial (just avoid nameclashes) - adding the necessary parameters to functions is the intersting part
- We'll study a formulation that only performs the interesting part!

A lambda-lifter

- Assume fv splits its output as ($f s, x s$)
- Assume ext maps each fin scope to its extra args
- The interesting cases:

```
lift ext (f es) = f(ext f ++ lift ext es)
lift ext (let ds in b) = let (lift ext' ds) in (lift ext' b)
    where ( }\mp@subsup{f}{1}{}...\mp@subsup{f}{n}{},xs)=fvds\domd
    xs' = xs U ext f
    ext'f = if (f`elem' dom ds) then xs' else ext f
```

lift ext $(f=\backslash x s \rightarrow e)=f=\backslash($ ext $f++x s)$-> lift ext e

A lambda-lifter

- On the top-level: module K where $\mathrm{ds} \Rightarrow$ module K where lift exto ds where exto $f=[]$
- Result: a program where each declaration $f=\backslash x s$-> e has zero free variables
- Such decls can easily be moved to the top
- Variant: exclude the global non-functions when listing free variables in lift

Anonymous functions

- Our latest expression grammar:

- Must be supported - not a functional language otherwise!
- Requires the concept of closures!

Closures

- The generic representation of functions: a function pointer with a list of free variables
- The limits of lambda-lifting:
- Closures can represent partial applications, even in the presence of free variables
- Nevertheless, lambda-lifting before closureconversion simplifies the presentation somewhat

Closure-conversion

- Assume a lambda-lifted $f=\left\langle x_{1} . . . x_{n} \rightarrow e\right.$
closureConvert $f=C L f o n$
closureConvert ($f e_{1} \ldots e_{m}$) $=$

$$
\mid m<n=C L f_{m}(n-m) e_{1} \ldots e_{m}
$$

where f_{m} is a new top-level function

$$
f_{m}=\backslash x_{\text {this }} x_{m+1} \ldots x_{n} \rightarrow \text { case } x_{\text {this }} \text { of }
$$

$$
C L_{-} y_{1} \ldots y_{m} \rightarrow f y_{1} \ldots y_{m} x_{m+1} \ldots x_{n}
$$

closureConvert $\left(x e_{1} \ldots e_{m}\right)=$ case \times of $C L f_{\text {unknown }} n$

$$
\mid m==n \rightarrow f_{\text {unknown }} \times e_{1} \ldots e_{m}
$$

Closures

- CL is an ordinary constructor name (a K) and a closure term is just a constructor application that references an f
- After closure conversion, these applications will be our only references to function names outside function calls
- Note: static typing will actually require a $C L_{k}$ for each closure arity k (a well as existentials and subtyping!), but we're past type-checking here!

Closure-conversion

- Example before and after lambda-lifting:

$$
\begin{aligned}
& g=\backslash a \rightarrow \text { let } f=\backslash b->a+b \\
& \text { inf } g \\
& h=\backslash x->x 7 \\
& f=\backslash a b->a+b \\
& g=\backslash a \rightarrow h f \\
& h=\backslash x \rightarrow x 7
\end{aligned}
$$

- And after closure-conversion:

$$
\begin{aligned}
& f=\backslash a b \rightarrow a+b \\
& g=\backslash a \rightarrow C L f_{1} 1 a \\
& h=\backslash x \rightarrow \text { case } \times \text { of } C L f_{\text {unknown }} 1 \rightarrow f_{\text {unknown }} \times 7 \\
& f_{1}=\backslash x_{\text {this }} x_{2} \rightarrow \text { case } x_{\text {this }} \text { of } C L _-y_{1} \rightarrow f_{1} x_{2}
\end{aligned}
$$

- But we're still ignoring arity mismtaches...

Matching arities

- Strategies for matching function arity with the number of arguments:
- "Push/enter": arguments pushed and code entered unconditionally, matching done by called function
- "Eval/apply": function evaluated and asked for arity by caller, then only applied if enough arguments are present

Push/enter

- Assume arguments $e_{1} \ldots e_{m}$ are on the stack
- In prologue to each function $f=\left\langle x_{1} \ldots x_{n} \rightarrow e\right.$:
- If $m=n$, return result of call (popping $e_{1} . . . e_{n}$)
- If $m<n$, pop $e_{1} \ldots e_{m}$ and return closure corresponding to $\backslash x_{m+1} \ldots x_{n} \rightarrow f e_{1} \ldots e_{m} x_{m+1} \ldots x_{m}$
- If $m>n$, enter result of current call after popping $e_{1} \ldots e_{n}$

Push/enter

- Simple model inspired by OO virtual methods
- Involves rather heavy use of indirect jumps
- Finding \& counting all arguments on the stack is hard using C calling conventions
- In use: core characteristic of the original STG-machine (Peyton Jones, 1992), which is the back-end format used by GHC

Eval/apply

- Assume f has arity n
- For each call $f e_{1} \ldots e_{m}$:
- If $m=n$, just return the result of the call
- If $m<n$, return closure corresponding to $\backslash x_{m}$ $+1 \ldots x_{n}>f e_{1} \ldots e_{m} x_{m+1} \ldots x_{m}$
- If $m>n$, let x be the result of $f e_{1} \ldots e_{n}$ and continue applying call $\times e_{n+1} \ldots e_{m}$
- Technique used by common ML implementations (SML-NJ, O' Caml), but nowadays also GHC

Checking arities (eval/apply)

- Assuming $f=\backslash x_{1} . . . x_{n} \rightarrow e$ closureConvert $f=C L$ fon closureConvert ($f e_{1} \ldots e_{m}$) $=$

$$
\begin{aligned}
\mid m==n & =f e_{1} \ldots e_{m} \\
\mid m<n & =C L f_{m}(n-m) e_{1} \ldots e_{m} \\
\mid m>n & =\operatorname{apply} y_{m-n}\left(f e_{1} \ldots e_{n}\right) e_{n+1} \ldots e_{m}
\end{aligned}
$$

where each applyk is a run-time system function TBD

- Note: checks are done at compile-time

Checking arities (eval/apply)

- The full dynamic case (checks at run-time!):
closureConvert $\left(\times e_{1} \ldots e_{m}\right)=$ applym $\times e_{1} \ldots e_{m}$

$$
\begin{aligned}
& \text { apply } y_{m}=\backslash x_{\text {this }} x_{1} \ldots x_{m} \rightarrow \text { case } x_{\text {this }} \text { of } C L f_{\text {unknown }} n \\
& \\
& \qquad \begin{array}{ll}
m==n \rightarrow f_{\text {unknown }} x_{\text {this }} x_{1} \ldots x_{m} \\
& \mid m<n \rightarrow C L \text { pap }_{n-m, m}(n-m) x_{\text {this }} x_{1} \ldots x_{m} \\
& \mid m>n \rightarrow \text { applym-n }\left(f_{\text {unknown }} x_{\text {this }} x_{1} \ldots x_{n}\right) x_{n+1} \ldots x_{m}
\end{array}
\end{aligned}
$$

$$
\text { papk,m }=\backslash x_{\text {this }} x_{1} \ldots x_{k} \rightarrow \text { case } x_{\text {this }} \text { of } C L _y_{\text {that }} y_{1} \ldots y_{m} \rightarrow
$$

$$
\text { apply } y_{m+k} y_{\text {that }} y_{1} \ldots y_{m} x_{1} \ldots x_{k}
$$

Summary

- Code generation involves

1) Normalization (pretty straightforward)
2) Lamda-lifting (known functions)
3) Closure conversion (anonymous/partial apps)

- 3) supersedes 2) but is generally less efficient
- Challenge: avoid the need for special papk,m functions for every combination of k and m
- Idea: make m a closure parameter as well, and write a generic papk,m directly in assembly code

