Compiling functional
languages

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Lecture 1
Source-to-source transformations

Johan Nordlander

Yntax
ree

S
.’.

The compiler pipeline

%)
+~ 4 o
X X X
Q Q O
+— pre- +— : +— :
— . [—» lexing »| parsing
processing
Q
" g
.S
o
V)
3
WY
St tbe- cource infermediate *5}?
: —> yp. —»| desugaring Y g code "
checking checking optimization .
generation
intermediate register instruction eephole assembling
code | MESTEN L _ p| Peepmole L1 g —
o allocation selection >. | optimization . v
optimization 35 linking v
IS C
33 £
g8 =

This course

infermediate

source
5 code

Ynhtax
ree

ype _> des ! imi .
ar rlg op imizarvi i

static — ;
checking

checking

S
.’.

This course

e Techniques for analyzing & transforming a
functional language, where

- input is a correctly parsed syntax tree
- output is intermediate code in C syntax

e Rationale: front-end (lexing, parsing) and
back-end (register allocation, etc) issues
not so specific to functional languages

Our functional language

e Fictional

e Pure

e Strongly typed
e Haskell-like

e Strict!

e Open to both restriction & extension

Why strict?

e To focus on other issues besides laziness

e To demonstrate similarities between
functional & traditional program execution

e To enable use of plain C as a back-end

e Still: laziness will be covered, but towards
the end of the course

Course overview

e Seven lectures
e Two paper presentations per student
e An individual lab project

e Examination (7.5 hp):

- Satisfactory presentation of own papers
— Participation in all paper presentations

- Oral lab project demo

- Written lab project report

Lecture plan

- Source-to-source transformations

- C representation week 12
- Memory management

- Type inference

- Haskell-style overloading week 15
- Type-based optimization

- Lazy evaluation] week 19

Paper topics

- Alternative data representations
- Advanced memory management

- Additional transformations

- Type system variations

- Efficient state and IO monads

- Parallel execution

- .. Presentations
- Your choicel during week 19

Lab project

e Implement a compiler for your functional
language (= a flavor of "our" language)

 Implementation language: your choice
(but Haskell is recommended)

e Back-end: your favorite C compiler

e Front-end recommendation: the haskell-
src or haskell-src-exts packages

A common theme

e Manipulation of syntax trees — schematically:

Input:

Verification / addition of missing information:

Misc. transformations, possibly changing representation:

Output:

Source-to-source
transformations

e Rewriting syntax trees with the purpose of
- Removing redundant constructs xo0dcY
- Making implicit information explicit
- Choosing more efficient representations
- Normalizing form before code generation

e Can be distributed over different passes,
run in many different orders

In haskell-src

data HsModule
data HsDecl

data HsMatch
data HsExp

data HsQOp
data HsQName

HsModule SrcLoc Module ... [HsDecl]
HsTypeDecl SrcLoc HsName [HsName] HsType
HsFunBind [HsMatch]

HsMatch SrclLoc HsName [HsPat] HsRhs [HsDecl]
HsVar HsQName

HsCon HsLiteral

HsApp HsExp HsExp

HsLambda SrclLoc [HsPat] HsExp

HsListComp HsExp [HsStmt]

HsRightSection HsSQOp HsExp

HsQVarOp HsQName | HsQConOp HsQName
Qual Module HsName | UnQual HsName | ...

A transformation

* Removing operator sections:

translate nameSupply (HsRightSection op e) =
HsLambda nullSrcLoc [HsPVar x]
HsApp (HsApp (opToExp op) (HsVar (UnQual x)))
(translate nameSupply’ e)
where (nameSupply’, x) = newName nameSupply

opToExp (HsQVarOp gname) = HsVar gname
opToExp (HsQConOp gname) = HsCon gname

A transformation

* Removing operator sections using
"concrete" abstract syntax:

translate (op e) = \Xx->Xxope
where x is a hew variable

Concrete abstract syntax

e Written in blue, meta-syntax in black
e Represents trees - no ambiguity worries!

e Certain variables denote arbitrary subtrees
(e for expressions; x,y,z for names; etfc)

e Plural suffix s denotes lists (as in es)
e Mix with list meta-syntax ([], e:es, e es, es++es’)
e Tndexing and ellipsis: [ey, ..., en]

e Relaxed patterns (e.g. hon-linear, or esi++...++esy)

Our input language

prog ::= module K where ds

d u= prhs | ms | ..

m = xpsrhs | xpsrhs whereds

rhs 1= =-e | gr‘hSS

grhs = |e=e

e = x| K| lit]| eope | ee| -e| \ps->e | letdsine |

ifethenecelsee | caseecofalts | (es) | [es] | [e.e] |
[ee.e]l | [e|lstmts] | (eop) | (ope) | K{fs} | e{fs}

p 5= x| Kps|lit|-p]|popp | (ps)| [ps] | K{fps} | _ | x@p
alt = prhs | prhswhereds

stmt ii= p<«e | e | letds

f = x=e

fp u= x=p

op u= x| K

Our core language

prog = module K where ds

d = X=e

e = x| Kes | lit| ee| \x->e | letdsine | case e of alts
alt = p->e

p = it | Kxs

Simple transformations

Translating lists:

translate [e, ...,en] = e1:..:en

Translating enumerations:
translate [e1..e2] = enumFromTo e; e,

Translating infix applications:

translate (eiopen) = operen

Translating if-expressions:

translate (if et thenezelsees) =
case e; of True -> e>; False -> e3

List comprehensions

translate [e |] = e

translate [e | e', stmts] =
if e' then translate [e | stmts] else []

translate [e | let ds, stmts] =
let ds in translate [e | stmts]

translate [e | p<-e’, stmts] =
let x p = translate [e | stmts]
X_=1]

in concat (map x e') where x is a hew variable

Pattern-matching

translate (case e of p1->ei, .., pn->en) =

let x = e in match [x][\p1->e1, ..., \pn->en] (error "pmc")

where x is a hew variable

translateDecl (f psi=ei,..,fpsn=en) =

f = \xs -> match xs [\ps1 ->e1, ..., \psn -> en] (error "pmc")

where xs are new variables (of same length as each ps;)

Function "match"

match xs (funsi ++ ... ++ funsy) eo the mix rule

= match xs funs: (... (match xs funs, eo) ...)

match (x:xs) [\yi1ps1->e1, ..., \YnpPSn->en] €0 | thevar rule

= match xs [\ps: -> [x/yile1, ..., \psn -> [X/ynlen] €0

match [J[\ >e:1,...,\ ->en]eo the null rule

= e |l ..l enll eo

Function "match"

match (x:xs) (funsy ++ ... ++ funsy) eo

= (case x of

the con rule

K1 ys1 -> match (ys1++ xs) (decon Ki funsi) fail

Kn ysn -> match (ysn ++ xs) (decon Kn funsy) fail) || eo

where ys: ... ysn are new variable lists of correct length

decon K[\(K gs1) : psi ->e1, .., \(Kgsm): pSm -> em]

= [\q51++p51 ->e1, ..., \q5m++PSm -> en]

fail and fatbar (||)

New abstract syntax forms introduced during
translation of of pattern-matching.

Semantics:
fail | e = e
e || fail = e
er || e2 = e if e1 cannot evaluate to fail
e1 || e2 = [e2/failler (if functions can't return fail)

Pattern-match example

zip [] bs =[]
zip (a:as) [] =[]
zip (a:as) (b:bs) = (a,b): zip as bs

Pattern-match example

zip = \x1 X2 -> match [x1,x2]
[\[]1bs ->[].,
\(a:as) [1->[],

\(a:as) (b:bs) -> (a,b) : zip as bs]

(error "pmc")

con rule applies

Pattern-match example

zip = \x1 X2 -> (case x1 of
[1->match [x2][\bs -> []] fail
X3:X4 -> match [x3,x4,x2]
[\aas[]->]]

\a as (b:bs) -> (a,b) : zip as bs]

fail
) || (error "pmc")

var rule applies

Pattern-match example

zip = \x1 X2 -> (case x1 of
[1->match [J[\ ->[]] fail
X3:X4 -> match [x2]

[N> 1],

\(b:bs) -> (x3,b) : zip x4 bs]

fail
) I (error "pmc")

null rule applies

Pattern-match example

zip = \x1 X2 -> (case x1 of

\(b:bs) -> (x3,b) : zip x4 bs]

[1->01 || fail

X3:X4 -> match [x2]
[\[]->[],
fail

) || (error "pmc")

con rule applies

Pattern-match example

zip = \x1 X2 -> (case x1 of
[1->[1 || fail
X3:X4 -> (case x2 of
[1->match [][\ ->[]] fail
X5:X6 -> match [x5,%¢]
[\b bs -> (x3,b) : zip x4 bs]
fail
) I fail
) || (error "pmc")

null rule applies

Pattern-match example

zip = \x1 X2 -> (case x1 of

[1->01 | fail
X3:X4 -> (case x2 of
[1->01 I fail

X5:X6 -> match [x5,%¢]
[\b bs -> (x3,b) : zip x4 bs]
fail

) I fail

) || (error "pmc")

var rule applies

Pattern-match example

zip = \x1 X2 -> (case x1 of

[1->01 | fail
X3:X4 -> (case x2 of
[1->01 I fail

X5:Xe -> match []

[\ ->(x3,X5) : zip X4 X¢]

fail
) I fail
) || (error "pmc")

null rule applies

Pattern-match example

zip = \x1 X2 -> (case x1 of

[1->01 | fail

X3:X4 -> (case x2 of
[1->01 | fail
X5:X6 -> (X3,X5) : zip X4 X6 || fail
) I fail

) || (error "pmc")

semantics of |

Pattern-match example

zip = \x1 X2 -> (case x1 of

[1->1]

X3:X4 -> (case x2 of
[1->[]
X5:X6 -> (X3,X5) : Zip X4 Xe
) I fail

) || (error "pmc")

semantics of |

Pattern-match example

zip = \x1 X2 -> (case x1 of

[1->1]

X3:X4 -> case X2 of

[]->1]

X5:X6 -> (X3,X5) : Zip X4 Xe
) || (error "pmc")

semantics of |

Pattern-match example

zip = \x1 X2 -> case xi of

[1->1]

X3:X4 -> case X2 of

[]->1]

X5:X6 -> (X3,X5) : Zip X4 Xe

Pattern-match example

zip [] bs =[]
zip as [] =[]
zip (a:as) (b:bs) = (a,b): zip as bs

Pattern-match example

zip = \x1 X2 -> match [x1,x2]

[\[1bs ->],

\as []->[],

\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc")

First patterns are neither all var
nor all con — use the mix rulel

Pattern-match example

Zip = \X1 X2 ->
match [x1,x2]

[\]bs->[]]

(match [x1,x2]

[\as []->[]]

(match [x1,x2]
[\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc")))

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[]->match [x2] [\bs ->[]] fail
x3:X4 -> match [x2] [] fail
) | match [x1,x2]
[\as []->[]]
(match [x1,x2]
[\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc"))

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[]->match [J[\ ->[]] fail
x3:x4 -> match [][] fail
) || match [x1,x2]
[\as []->[]]
(match [x1,x2]
[\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc"))

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[1->[1 || fail
X3:X4 -> fail
) I match [x1,x2]
[\as []->[]]
(match [x1,x2]
[\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc"))

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[1->[1 1 fail
x3:X4 -> fail
) I match [x2]
[\NI->[]]
(match [x1,x2]
[\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc"))

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[1->[1 1 fail
x3:X4 -> fail
) || (case x2 of
[]->match []1[\ ->[]] fail
x5:X¢ -> match [][] fail
) || match [x1,x2]
[\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc")

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[1->[1 1 fail
x3:X4 -> fail
) || (case x2 of
[1->[1 Il fail
x5:X6 -> fail
) || match [x1,x2]
[\(a:as) (b:bs) -> (a,b) : zip as bs]
(error "pmc")

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[1->[11 fail
x3:X4 -> fail
) || (case x2 of
[1->011 fail
x5:X6 -> fail
) || (case x1 of
[1-> match [x2] [] fail
x7:Xg -> match [x7,xs,x2]
[\a as (b:bs) -> (a,b) : zip as bs]
fail
) | (error "pmc")

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[1->[1 1 fail
x3:X4 -> fail
) || (case x2 of
[1-> 011 fail
x5:X6 -> fail
) || (case x1 of
[]-> fail
x7:xg -> match [x2]
[\(b:bs) -> (x7,b) : zip xs bs]
fail
) | (error "pmc")

Pattern-match example

Zip = \X1 X2 ->
(case x; of
[1->[1 1 fail
x3:X4 -> fail
) || (case x2 of
[1->[1 1 fail
x5:X6 -> fail
) || (case x1 of
[]-> fail
X7:Xg -> case X2 of
[]-> fail
X9:X10 -> (X7,X9) : Zip Xg x10 || fail
) | (error "pmc")

Pattern-match example

Zip = \X1 X2 ->
(case x1 of
[]1->1[]
x3:X4 -> fail
) || (case x2 of
[]1->1[]
x5:X6 -> fail
) || (case x1 of
[]-> fail
X7:Xg -> case X2 of
[]-> fail
X9:X10 -> (X7,X9) : Zip X8 X10
) | (error "pmc")

Pattern-match example

Zip = \X1 X2 ->
case xi of

[1->1]
X3:X4 -> case X2 of
[1->1]
X5:Xe -> (case x1 of
[]-> fail
X7:Xg -> case Xz of
[]-> fail
X9:X10 -> (X7,X9) : Zip X8 X10
) I (error "pmc")

Pattern-match example

Zip = \X1 X2 ->
case xi of

[1->1]
X3:X4 -> case X2 of
[1->1]
X5:Xe -> (case X2 of
[]-> fail
X9:X10 -> (X3,X9) ! Zip X4 X10
) | (error "pmc")

Pattern-match example

Zip = \X1 X2 ->
case xi of

[1->1]

X3:X4 -> case Xz of

[1->1]

xs5:X6 -> ((X3,X5) : zip X4 X¢) | (error "pmc")

Pattern-match example

Zip = \X1 X2 ->
case xi of

[1->1]

X3:X4 -> case Xz of

[1->1]

X5:X6 -> (X3,X5) : Zip X4 Xe

Summary

e Goal: transform rich abstract syntax trees
intfo a simpler but equivalent syntactic subset

e Means: local rewrite rules of varying difficulty

e Challenge 1: define rules for full input syntax
(see the Haskell Report ch. 3 for inspiration!)

e Challenge 2: apply rules to every subtree

e Challenge 3: organize into one or more passes

