
Compiling functional
languages

Lecture 1
Source-to-source transformations

Johan Nordlander

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

The compiler pipeline

source
optimization

desugaring
type-

checking

intermediate
code

optimization

register
allocation

instruction
selection

peephole
optimization

assembling
&

linking

parsinglexing
pre-

processing

static
checking

intermediate
code

generation

te
xt

te
xt

to
ke

ns

sy
nt

ax
tr

ee

in
te

rm
ed

ia
te

co
de

bi
na

ri
es

as
se

m
bl

y
co

de

This course

source
optimization

desugaring
type-

checking

intermediate
code

optimization

register
allocation

instruction
selection

peephole
optimization

assembling
&

linking

parsinglexing
pre-

processing

static
checking

intermediate
code

generation

te
xt

te
xt

to
ke

ns

sy
nt

ax
tr

ee

in
te

rm
ed

ia
te

co
de

bi
na

ri
es

as
se

m
bl

y
co

de

This course

• Techniques for analyzing & transforming a
functional language, where

- input is a correctly parsed syntax tree

- output is intermediate code in C syntax

• Rationale: front-end (lexing, parsing) and
back-end (register allocation, etc) issues
not so specific to functional languages

Our functional language

• Fictional

• Pure

• Strongly typed

• Haskell-like

• Strict!

• Open to both restriction & extension

Why strict?

• To focus on other issues besides laziness

• To demonstrate similarities between
functional & traditional program execution

• To enable use of plain C as a back-end

• Still: laziness will be covered, but towards
the end of the course

Course overview
• Seven lectures

• Two paper presentations per student

• An individual lab project

• Examination (7.5 hp):

- Satisfactory presentation of own papers
- Participation in all paper presentations
- Oral lab project demo
- Written lab project report

Lecture plan

- Source-to-source transformations
- C representation
- Memory management
- Type inference
- Haskell-style overloading
- Type-based optimization
- Lazy evaluation

week 12

week 15

week 19

Paper topics
- Alternative data representations

- Advanced memory management

- Additional transformations

- Type system variations

- Efficient state and IO monads

- Parallel execution

- ...

- Your choice!
Presentations
during week 19

Lab project

• Implement a compiler for your functional
language (= a flavor of "our" language)

• Implementation language: your choice
(but Haskell is recommended)

• Back-end: your favorite C compiler

• Front-end recommendation: the haskell-
src or haskell-src-exts packages

A common theme
• Manipulation of syntax trees — schematically:

Input:
 parse :: String -> SyntaxTree
Verification / addition of missing information:
 staticCheck :: SyntaxTree -> Bool
 typeInference :: SyntaxTree -> SyntaxTree
Misc. transformations, possibly changing representation:
 desugar :: SyntaxTree -> SyntaxTree
 translate :: SyntaxTree -> CoreSyntaxTree
 optimize :: CoreSyntaxTree -> CoreSyntaxTree
Output:
 codegen :: CoreSyntaxTree -> String

Source-to-source
transformations

• Rewriting syntax trees with the purpose of

- Removing redundant constructs

- Making implicit information explicit

- Choosing more efficient representations

- Normalizing form before code generation

• Can be distributed over different passes,
run in many different orders

today

In haskell-src
data HsModule = HsModule SrcLoc Module ... [HsDecl]
data HsDecl = HsTypeDecl SrcLoc HsName [HsName] HsType
 | HsFunBind [HsMatch]
 | ...
data HsMatch = HsMatch SrcLoc HsName [HsPat] HsRhs [HsDecl]
data HsExp = HsVar HsQName
 | HsCon HsLiteral
 | HsApp HsExp HsExp
 | HsLambda SrcLoc [HsPat] HsExp
 | HsListComp HsExp [HsStmt]
 | HsRightSection HsQOp HsExp
 | ...
data HsQOp = HsQVarOp HsQName | HsQConOp HsQName
data HsQName = Qual Module HsName | UnQual HsName | ...
...

A transformation

• Removing operator sections:

...
translate nameSupply (HsRightSection op e) =
 HsLambda nullSrcLoc [HsPVar x]
 HsApp (HsApp (opToExp op) (HsVar (UnQual x)))
 (translate nameSupply' e)
 where (nameSupply', x) = newName nameSupply
...

opToExp (HsQVarOp qname) = HsVar qname
opToExp (HsQConOp qname) = HsCon qname

A transformation

• Removing operator sections using
"concrete" abstract syntax:

...
translate (op e) = \x -> x op e
 where x is a new variable
...

Concrete abstract syntax

• Written in blue, meta-syntax in black

• Represents trees – no ambiguity worries!

• Certain variables denote arbitrary subtrees
(e for expressions; x,y,z for names; etc)

• Plural suffix s denotes lists (as in es)

• Mix with list meta-syntax ([], e:es, e,es, es++es')

• Indexing and ellipsis: [e1, ..., en]

• Relaxed patterns (e.g. non-linear, or es1++...++esn)

Our input language
prog ::= module K where ds
d ::= p rhs | ms | ...
m ::= x ps rhs | x ps rhs where ds
rhs ::= = e | grhss
grhs ::= | e = e
e ::= x | K | lit | e op e | e e | - e | \ps -> e | let ds in e |
 if e then e else e | case e of alts | (es) | [es] | [e..e] |
 [e,e..e] | [e | stmts] | (e op) | (op e) | K { fs } | e { fs }
p ::= x | K ps | lit | - p | p op p | (ps) | [ps] | K { fps } | _ | x@p
alt ::= p rhs | p rhs where ds
stmt ::= p <- e | e | let ds
f ::= x = e
fp ::= x = p
op ::= x | K

Our core language

prog ::= module K where ds
d ::= x = e
e ::= x | K es | lit | e e | \x -> e | let ds in e | case e of alts
alt ::= p -> e
p ::= lit | K xs

Simple transformations
• Translating lists:

 translate [e1, ..., en] = e1 : ... : en

• Translating enumerations:
 translate [e1 .. e2] = enumFromTo e1 en

• Translating infix applications:
 translate (e1 op en) = op e1 en

• Translating if-expressions:
 translate (if e1 then e2 else e3) =
 case e1 of True -> e2; False -> e3

List comprehensions
translate [e |] = e

translate [e | e', stmts] =
 if e' then translate [e | stmts] else []

translate [e | let ds, stmts] =
 let ds in translate [e | stmts]

translate [e | p <- e', stmts] =
 let x p = translate [e | stmts]
 x _ = []
 in concat (map x e') where x is a new variable

Pattern-matching

translate (case e of p1 -> e1 , ... , pn -> en) =

 let x = e in match [x] [\p1 -> e1 , ... , \pn -> en] (error "pmc")

 where x is a new variable

translateDecl (f ps1 = e1 , ... , f psn = en) =

 f = \xs -> match xs [\ps1 -> e1 , ... , \psn -> en] (error "pmc")

 where xs are new variables (of same length as each psi)

Function "match"

match xs (funs1 ++ ... ++ funsn) e0

 = match xs funs1 (... (match xs funsn e0) ...)

match (x:xs) [\y1 ps1 -> e1 , ... , \yn psn -> en] e0

 = match xs [\ps1 -> [x/y1]e1 , ... , \psn -> [x/yn]en] e0

match [] [\ -> e1 , ... , \ -> en] e0

 = e1 ║ ... ║ en ║ e0

the mix rule

the var rule

the null rule

Function "match"
match (x:xs) (funs1 ++ ... ++ funsn) e0

 = (case x of
 K1 ys1 -> match (ys1 ++ xs) (decon K1 funs1) fail

 ...
 Kn ysn -> match (ysn ++ xs) (decon Kn funsn) fail) ║ e0

 where ys1 ... ysn are new variable lists of correct length

decon K [\(K qs1) : ps1 -> e1 , ... , \(K qsm) : psm -> em]

 = [\qs1++ps1 -> e1 , ... , \qsm++psm -> em]

the con rule

fail and fatbar (║)

New abstract syntax forms introduced during
translation of of pattern-matching.

Semantics:

 fail ║ e = e
 e ║ fail = e
 e1 ║ e2 = e1 if e1 cannot evaluate to fail
 e1 ║ e2 = [e2/fail]e1 (if functions can't return fail)

Pattern-match example

zip [] bs = []
zip (a:as) [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

Pattern-match example

zip = \x1 x2 -> match [x1,x2]
 [\[] bs -> [],
 \(a:as) [] -> [],
 \(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc")

con rule applies

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> match [x2] [\bs -> []] fail
 x3:x4 -> match [x3,x4,x2]
 [\a as [] -> [],
 \a as (b:bs) -> (a,b) : zip as bs]
 fail
) ║ (error "pmc")

var rule applies

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> match [] [\ -> []] fail
 x3:x4 -> match [x2]
 [\[] -> [],
 \(b:bs) -> (x3,b) : zip x4 bs]
 fail
) ║ (error "pmc")

null rule applies

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> [] ║ fail
 x3:x4 -> match [x2]
 [\[] -> [],
 \(b:bs) -> (x3,b) : zip x4 bs]
 fail
) ║ (error "pmc")

con rule applies

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> [] ║ fail
 x3:x4 -> (case x2 of
 [] -> match [] [\ -> []] fail
 x5:x6 -> match [x5,x6]
 [\b bs -> (x3,b) : zip x4 bs]
 fail
) ║ fail
) ║ (error "pmc")

null rule applies

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> [] ║ fail
 x3:x4 -> (case x2 of
 [] -> [] ║ fail
 x5:x6 -> match [x5,x6]
 [\b bs -> (x3,b) : zip x4 bs]
 fail
) ║ fail
) ║ (error "pmc")

var rule applies

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> [] ║ fail
 x3:x4 -> (case x2 of
 [] -> [] ║ fail
 x5:x6 -> match []
 [\ -> (x3,x5) : zip x4 x6]
 fail
) ║ fail
) ║ (error "pmc")

null rule applies

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> [] ║ fail
 x3:x4 -> (case x2 of
 [] -> [] ║ fail
 x5:x6 -> (x3,x5) : zip x4 x6 ║ fail
) ║ fail
) ║ (error "pmc")

semantics of ║

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []
 x3:x4 -> (case x2 of
 [] -> []
 x5:x6 -> (x3,x5) : zip x4 x6

) ║ fail
) ║ (error "pmc")

semantics of ║

Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []
 x3:x4 -> case x2 of
 [] -> []
 x5:x6 -> (x3,x5) : zip x4 x6

) ║ (error "pmc")

semantics of ║

Pattern-match example

zip = \x1 x2 -> case x1 of
 [] -> []
 x3:x4 -> case x2 of
 [] -> []
 x5:x6 -> (x3,x5) : zip x4 x6

Pattern-match example
zip [] bs = []
zip as [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

Pattern-match example
zip = \x1 x2 -> match [x1,x2]
 [\[] bs -> [],
 \as [] -> [],
 \(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc")

First patterns are neither all var
nor all con — use the mix rule!

Pattern-match example
zip = \x1 x2 ->
 match [x1,x2]
 [\[] bs -> []]
 (match [x1,x2]
 [\as [] -> []]
 (match [x1,x2]
 [\(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc")))

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> match [x2] [\bs -> []] fail
 x3:x4 -> match [x2] [] fail
) ║ match [x1,x2]
 [\as [] -> []]
 (match [x1,x2]
 [\(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc"))

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> match [] [\ -> []] fail
 x3:x4 -> match [] [] fail
) ║ match [x1,x2]
 [\as [] -> []]
 (match [x1,x2]
 [\(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc"))

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> [] ║ fail
 x3:x4 -> fail
) ║ match [x1,x2]
 [\as [] -> []]
 (match [x1,x2]
 [\(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc"))

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> [] ║ fail
 x3:x4 -> fail
) ║ match [x2]
 [\[] -> []]
 (match [x1,x2]
 [\(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc"))

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> [] ║ fail
 x3:x4 -> fail
) ║ (case x2 of
 [] -> match [] [\ -> []] fail
 x5:x6 -> match [] [] fail
) ║ match [x1,x2]
 [\(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> [] ║ fail
 x3:x4 -> fail
) ║ (case x2 of
 [] -> [] ║ fail
 x5:x6 -> fail
) ║ match [x1,x2]
 [\(a:as) (b:bs) -> (a,b) : zip as bs]
 (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> [] ║ fail
 x3:x4 -> fail
) ║ (case x2 of
 [] -> [] ║ fail
 x5:x6 -> fail
) ║ (case x1 of
 [] -> match [x2] [] fail
 x7:x8 -> match [x7,x8,x2]
 [\a as (b:bs) -> (a,b) : zip as bs]
 fail
) ║ (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> [] ║ fail
 x3:x4 -> fail
) ║ (case x2 of
 [] -> [] ║ fail
 x5:x6 -> fail
) ║ (case x1 of
 [] -> fail
 x7:x8 -> match [x2]
 [\(b:bs) -> (x7,b) : zip x8 bs]
 fail
) ║ (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> [] ║ fail
 x3:x4 -> fail
) ║ (case x2 of
 [] -> [] ║ fail
 x5:x6 -> fail
) ║ (case x1 of
 [] -> fail
 x7:x8 -> case x2 of
 [] -> fail
 x9:x10 -> (x7,x9) : zip x8 x10 ║ fail
) ║ (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 (case x1 of
 [] -> []
 x3:x4 -> fail
) ║ (case x2 of
 [] -> []
 x5:x6 -> fail
) ║ (case x1 of
 [] -> fail
 x7:x8 -> case x2 of
 [] -> fail
 x9:x10 -> (x7,x9) : zip x8 x10

) ║ (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 case x1 of
 [] -> []
 x3:x4 -> case x2 of
 [] -> []
 x5:x6 -> (case x1 of
 [] -> fail
 x7:x8 -> case x2 of
 [] -> fail
 x9:x10 -> (x7,x9) : zip x8 x10

) ║ (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 case x1 of
 [] -> []
 x3:x4 -> case x2 of
 [] -> []
 x5:x6 -> (case x2 of
 [] -> fail
 x9:x10 -> (x3,x9) : zip x4 x10

) ║ (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 case x1 of
 [] -> []
 x3:x4 -> case x2 of
 [] -> []
 x5:x6 -> ((x3,x5) : zip x4 x6) ║ (error "pmc")

Pattern-match example
zip = \x1 x2 ->
 case x1 of
 [] -> []
 x3:x4 -> case x2 of
 [] -> []
 x5:x6 -> (x3,x5) : zip x4 x6

Summary

• Goal: transform rich abstract syntax trees
into a simpler but equivalent syntactic subset

• Means: local rewrite rules of varying difficulty

• Challenge 1: define rules for full input syntax
(see the Haskell Report ch. 3 for inspiration!)

• Challenge 2: apply rules to every subtree

• Challenge 3: organize into one or more passes

