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This course

• Techniques for analyzing & transforming a 
functional language, where

- input is a correctly parsed syntax tree

- output is intermediate code in C syntax

• Rationale: front-end (lexing, parsing) and 
back-end (register allocation, etc) issues 
not so specific to functional languages



Our functional language

• Fictional

• Pure

• Strongly typed

• Haskell-like

• Strict!

• Open to both restriction & extension



Why strict?

• To focus on other issues besides laziness

• To demonstrate similarities between 
functional & traditional program execution

• To enable use of plain C as a back-end

• Still: laziness will be covered, but towards 
the end of the course



Course overview
• Seven lectures

• Two paper presentations per student

• An individual lab project

• Examination (7.5 hp):

- Satisfactory presentation of own papers
- Participation in all paper presentations
- Oral lab project demo
- Written lab project report



Lecture plan

- Source-to-source transformations
- C representation
- Memory management
- Type inference
- Haskell-style overloading
- Type-based optimization
- Lazy evaluation

week 12

week 15

week 19



Paper topics
- Alternative data representations

- Advanced memory management

- Additional transformations

- Type system variations

- Efficient state and IO monads

- Parallel execution

- ...

- Your choice!
Presentations
during week 19



Lab project

• Implement a compiler for your functional 
language (= a flavor of "our" language)

• Implementation language: your choice
(but Haskell is recommended)

• Back-end: your favorite C compiler

• Front-end recommendation: the haskell-
src or haskell-src-exts packages



A common theme
• Manipulation of syntax trees — schematically:

Input:
  parse :: String -> SyntaxTree
Verification / addition of missing information:
  staticCheck :: SyntaxTree -> Bool
  typeInference :: SyntaxTree -> SyntaxTree
Misc. transformations, possibly changing representation:
  desugar :: SyntaxTree -> SyntaxTree
  translate :: SyntaxTree -> CoreSyntaxTree
  optimize :: CoreSyntaxTree -> CoreSyntaxTree
Output:
  codegen :: CoreSyntaxTree -> String



Source-to-source 
transformations

• Rewriting syntax trees with the purpose of

- Removing redundant constructs

- Making implicit information explicit

- Choosing more efficient representations 

- Normalizing form before code generation

• Can be distributed over different passes, 
run in many different orders

today



In haskell-src
data HsModule  =  HsModule SrcLoc Module ... [HsDecl]
data HsDecl  =  HsTypeDecl SrcLoc HsName [HsName] HsType
     |  HsFunBind [HsMatch]
     |  ...
data HsMatch  =  HsMatch SrcLoc HsName [HsPat] HsRhs [HsDecl]
data HsExp   =  HsVar HsQName
     |  HsCon HsLiteral
     |  HsApp HsExp HsExp
     |  HsLambda SrcLoc [HsPat] HsExp
     |  HsListComp HsExp [HsStmt]
     |  HsRightSection HsQOp HsExp
     |  ...
data HsQOp  =  HsQVarOp HsQName | HsQConOp HsQName
data HsQName =  Qual Module HsName | UnQual HsName | ...
...



A transformation

• Removing operator sections:

...
translate nameSupply (HsRightSection op e)  = 
 HsLambda nullSrcLoc [HsPVar x]
  HsApp (HsApp (opToExp op) (HsVar (UnQual x))) 
         (translate nameSupply' e)
   where (nameSupply', x) = newName nameSupply
...

opToExp (HsQVarOp qname) = HsVar qname
opToExp (HsQConOp qname) = HsCon qname



A transformation

• Removing operator sections using 
"concrete" abstract syntax:

...
translate  (op e)   =     \x -> x op e
    where x is a new variable
...



Concrete abstract syntax

• Written in blue, meta-syntax in black

• Represents trees – no ambiguity worries!

• Certain variables denote arbitrary subtrees 
(e for expressions; x,y,z for names; etc)

• Plural suffix s denotes lists (as in es)

• Mix with list meta-syntax ([], e:es, e,es, es++es')

• Indexing and ellipsis: [ e1, ..., en ]

• Relaxed patterns (e.g. non-linear, or es1++...++esn)



Our input language
prog ::=   module K where ds
d ::=   p rhs  |  ms  |  ...
m ::=   x ps rhs  |  x ps rhs where ds
rhs ::=   = e  |  grhss
grhs ::=   | e = e
e ::=   x  |  K  |  lit  |  e op e  |  e e  |  - e  |  \ps -> e  |  let ds in e  |
     if e then e else e  |  case e of alts  |  (es)  |  [es]  |  [e..e]  |
    [e,e..e]  |  [ e | stmts ]  |  (e op)  |  (op e)  | K { fs }  |  e { fs }
p ::=   x  |  K ps  |  lit  |  - p  |  p op p  |  (ps)  |  [ps]  |  K { fps }  |  _  |  x@p
alt ::=   p rhs  |  p rhs where ds
stmt ::=   p <- e  |  e  |  let ds
f ::=   x = e        
fp ::=   x = p
op ::=   x  |  K



Our core language

prog  ::=   module K where ds
d  ::=   x = e
e  ::=   x  |  K  es  |  lit  |  e e  |  \x -> e  |  let ds in e  |  case e of alts
alt  ::=   p -> e 
p  ::=   lit  |  K xs



Simple transformations
• Translating lists:

 translate [ e1, ..., en ]   =   e1 : ... : en

• Translating enumerations:
 translate [ e1 .. e2 ]   =   enumFromTo e1 en

• Translating infix applications:
 translate ( e1 op en )   =   op e1 en

• Translating if-expressions:
 translate ( if e1 then e2 else e3 )   =
     case e1 of True -> e2; False -> e3 



List comprehensions
translate [ e | ]   =   e

translate [ e | e', stmts ]   =   
  if e' then translate [ e | stmts ] else []

translate [ e | let ds, stmts ]   =
  let ds in translate [ e | stmts ]

translate [ e | p <- e', stmts ]   =
  let x p = translate [ e | stmts ]
    x _ = []
  in concat (map x e')  where x is a new variable



Pattern-matching

translate ( case e of p1 -> e1 , ... , pn -> en )  =

 let x = e in match [x] [ \p1 -> e1 , ... , \pn -> en ] (error "pmc")

  where x is a new variable

translateDecl ( f ps1 = e1 , ... , f psn = en )    =

 f = \xs -> match xs [ \ps1 -> e1 , ... , \psn -> en ] (error "pmc")

 where xs are new variables (of same length as each psi)



Function "match"

match xs (funs1 ++ ... ++ funsn) e0

 = match xs funs1 ( ... (match xs funsn e0) ...)

match (x:xs) [ \y1 ps1 -> e1 , ... , \yn psn -> en ] e0

 = match xs [ \ps1 -> [x/y1]e1 , ... , \psn -> [x/yn]en ] e0 

match [] [ \ -> e1 , ... , \ -> en ] e0

 = e1 ║ ... ║ en ║ e0

the mix rule

the var rule

the null rule



Function "match"
match (x:xs) (funs1 ++ ... ++ funsn) e0

 = (case x of
     K1 ys1 -> match (ys1 ++ xs) (decon K1 funs1) fail

            ...
      Kn ysn -> match (ysn ++ xs) (decon Kn funsn) fail)  ║  e0

 where ys1 ... ysn are new variable lists of correct length

decon K [ \(K qs1) : ps1 -> e1 , ... , \(K qsm) : psm -> em ]

 =    [ \qs1++ps1 -> e1 , ... , \qsm++psm -> em ]

the con rule



fail and fatbar (║)

New abstract syntax forms introduced during 
translation of of pattern-matching.

Semantics:

 fail  ║  e   =   e
 e  ║  fail   =   e 
 e1  ║  e2   =   e1     if e1 cannot evaluate to fail
 e1  ║  e2   =   [e2/fail]e1   (if functions can't return fail)



Pattern-match example

zip [] bs    =  []
zip (a:as) []   =  []
zip (a:as) (b:bs) =  (a,b) : zip as bs



Pattern-match example

zip = \x1 x2 -> match [x1,x2] 
       [ \[] bs -> [], 
             \(a:as) [] -> [],
              \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc")

con rule applies



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> match [x2] [ \bs -> [] ] fail
 x3:x4 -> match [x3,x4,x2] 
         [ \a as [] -> [],
        \a as (b:bs) -> (a,b) : zip as bs ]
      fail 
     ) ║ (error "pmc")

var rule applies



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> match [] [ \ -> [] ] fail
 x3:x4 -> match [x2] 
         [ \[] -> [],
        \(b:bs) -> (x3,b) : zip x4 bs ]
      fail 
     ) ║ (error "pmc")

null rule applies



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []  ║  fail
 x3:x4 -> match [x2] 
         [ \[] -> [],
        \(b:bs) -> (x3,b) : zip x4 bs ]
      fail 
     ) ║ (error "pmc")

con rule applies



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []  ║  fail
 x3:x4 -> (case x2 of
    [] -> match [] [ \ -> [] ] fail
    x5:x6 -> match [x5,x6] 
            [ \b bs -> (x3,b) : zip x4 bs ]
            fail 
    )  ║  fail 
     ) ║ (error "pmc")

null rule applies



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []  ║  fail
 x3:x4 -> (case x2 of
    [] -> []  ║  fail
    x5:x6 -> match [x5,x6] 
            [ \b bs -> (x3,b) : zip x4 bs ]
            fail 
    )  ║  fail 
     ) ║ (error "pmc")

var rule applies



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []  ║  fail
 x3:x4 -> (case x2 of
    [] -> []  ║  fail
    x5:x6 -> match [] 
            [ \ -> (x3,x5) : zip x4 x6 ]
            fail 
    )  ║  fail 
     ) ║ (error "pmc")

null rule applies



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []  ║  fail
 x3:x4 -> (case x2 of
    [] -> []  ║  fail
    x5:x6 -> (x3,x5) : zip x4 x6  ║  fail
             )  ║  fail 
     ) ║ (error "pmc")

semantics of ║



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []
 x3:x4 -> (case x2 of
    [] -> []
    x5:x6 -> (x3,x5) : zip x4 x6

             )  ║  fail 
     ) ║ (error "pmc")

semantics of ║



Pattern-match example

zip = \x1 x2 -> (case x1 of
 [] -> []
 x3:x4 -> case x2 of
    [] -> []
    x5:x6 -> (x3,x5) : zip x4 x6

     ) ║ (error "pmc")

semantics of ║



Pattern-match example

zip = \x1 x2 -> case x1 of
 [] -> []
 x3:x4 -> case x2 of
    [] -> []
    x5:x6 -> (x3,x5) : zip x4 x6



Pattern-match example
zip [] bs    =  []
zip as []    =  []
zip (a:as) (b:bs) =  (a,b) : zip as bs



Pattern-match example
zip = \x1 x2 -> match [x1,x2] 
       [ \[] bs -> [], 
             \as [] -> [],
              \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc")

First patterns are neither all var 
nor all con — use the mix rule!



Pattern-match example
zip = \x1 x2 -> 
 match [x1,x2] 
       [ \[] bs -> [] ]
    (match [x1,x2]
         [ \as [] -> [] ]
        (match [x1,x2]
         [  \(a:as) (b:bs) -> (a,b) : zip as bs ]
         (error "pmc")))



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> match [x2] [ \bs -> [] ] fail
  x3:x4 -> match [x2] [] fail
 ) ║   match [x1,x2]
        [ \as [] -> [] ]
       (match [x1,x2]
        [  \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc"))



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> match [] [ \ -> [] ] fail
  x3:x4 -> match [] [] fail
 ) ║   match [x1,x2]
        [ \as [] -> [] ]
       (match [x1,x2]
        [  \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc"))



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> [] ║ fail
  x3:x4 -> fail
 ) ║   match [x1,x2]
        [ \as [] -> [] ]
       (match [x1,x2]
        [  \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc"))



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> [] ║ fail
  x3:x4 -> fail
 ) ║   match [x2]
        [ \[] -> [] ]
       (match [x1,x2]
        [  \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc"))



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> [] ║ fail
  x3:x4 -> fail
 ) ║  (case x2 of
   [] -> match [] [ \ -> [] ] fail
   x5:x6 -> match [] [] fail
   ) ║ match [x1,x2]
         [  \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> [] ║ fail
  x3:x4 -> fail
 ) ║  (case x2 of
   [] -> [] ║ fail
   x5:x6 -> fail
   ) ║ match [x1,x2]
         [  \(a:as) (b:bs) -> (a,b) : zip as bs ]
        (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> [] ║ fail
  x3:x4 -> fail
 ) ║  (case x2 of
   [] -> [] ║ fail
   x5:x6 -> fail
   ) ║ (case x1 of
    [] -> match [x2] [ ] fail
     x7:x8 -> match [x7,x8,x2]
            [  \a as (b:bs) -> (a,b) : zip as bs ]
            fail
      ) ║  (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> [] ║ fail
  x3:x4 -> fail
 ) ║  (case x2 of
   [] -> [] ║ fail
   x5:x6 -> fail
   ) ║ (case x1 of
    [] -> fail
     x7:x8 -> match [x2]
            [  \(b:bs) -> (x7,b) : zip x8 bs ]
            fail
      ) ║  (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> [] ║ fail
  x3:x4 -> fail
 ) ║  (case x2 of
   [] -> [] ║ fail
   x5:x6 -> fail
   ) ║ (case x1 of
    [] -> fail
     x7:x8 -> case x2 of
       [] -> fail
       x9:x10 -> (x7,x9) : zip x8 x10 ║  fail
      ) ║  (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 (case x1 of
  [] -> []
  x3:x4 -> fail
 ) ║  (case x2 of
   [] -> []
   x5:x6 -> fail
   ) ║ (case x1 of
    [] -> fail
     x7:x8 -> case x2 of
       [] -> fail
       x9:x10 -> (x7,x9) : zip x8 x10

      ) ║  (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 case x1 of
  [] -> []
  x3:x4 -> case x2 of
   [] -> []
   x5:x6 -> (case x1 of
    [] -> fail
     x7:x8 -> case x2 of
       [] -> fail
       x9:x10 -> (x7,x9) : zip x8 x10

           ) ║  (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 case x1 of
  [] -> []
  x3:x4 -> case x2 of
   [] -> []
   x5:x6 -> (case x2 of
       [] -> fail
       x9:x10 -> (x3,x9) : zip x4 x10

           ) ║  (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 case x1 of
  [] -> []
  x3:x4 -> case x2 of
   [] -> []
   x5:x6 -> ((x3,x5) : zip x4 x6) ║  (error "pmc")



Pattern-match example
zip = \x1 x2 -> 
 case x1 of
  [] -> []
  x3:x4 -> case x2 of
   [] -> []
   x5:x6 -> (x3,x5) : zip x4 x6



Summary

• Goal: transform rich abstract syntax trees 
into a simpler but equivalent syntactic subset

• Means: local rewrite rules of varying difficulty

• Challenge 1: define rules for full input syntax
(see the Haskell Report ch. 3 for inspiration!)

• Challenge 2: apply rules to every subtree

• Challenge 3: organize into one or more passes


