Model Checking and Security

Oleg Mürk and Mats Jansborg
Background

- Most nontrivial software contains bugs
- Bugs are potential security vulnerabilities
- Verify that the implementation follows its specification
Soundness and Completeness

- **Soundness**
 - All errors are reported
- **Completeness**
 - No false positives
- **Together undecidable for any non-trivial properties**
Model Checking

- Create a restricted model of the program which is amenable to verification
- Express the specification of the program in some temporal logic
- Algorithmically verify correctness
- Partial solution
Goals

- Survey the techniques used in model checking software
- Describe and compare a few of the most important tools
- Applications to security
- Analyze the capabilities and limitations
Specification

- Temporal logic
 - LTL
 - CTL
 - CTL*
- Büchi automata
- Properties
 - Safety
 - Liveness
Abstraction

- From program to finite model
- Slicing
- Predicate abstraction
- The objective: minimize the number of states
Model checking

- Construct the intersection of model and negated specification
- Search for acceptance cycles in the state space graph
- Combat state space explosion
 - Partial order reduction
 - State hashing
Tools: Spin

- Generic model checker
- Input language Promela
- Transition systems
- Bounded N of thread
- Bounded heap allocation
- Started in beginning 90's
- Received ACM award in 2001
Tools: Bandera & Bogor

- Platform for model checking
- Java oriented
- Input language BIR
 - Models Java constructions
 - Static type system
 - Virtual method table
 - Heap & GC
 - Threads
 - Monitors
- More expressive => Specific optimizations
 - Canonical heap representation
- Also translate to SPIN, etc
Applications

- Verifying security protocols
- Verifying interface contracts
 - MOPS – simplistic
 - SLAM – advanced
- Information flow security
Conclusions

- Model checking can check
 - Safety
 - Liveness
 - Non-properties: information flow security
- Universality => Inefficiency
- Model checking
 - SPIN, Bandera & Bogor – reactive systems
 - MOPS – simple tool
 - SLAM – advanced tool
- Specialized analysis
 - Works best on single-threaded
Conclusions

- Data Flow Analysis \iff Model Checking + Abstract Interpretation

- Static analysis
 - Data Flow Analysis
 - Abstract Interpretation
 - Model checking

- Combine & reinforce!