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Synchronization problems with  
message-passing



• Barriers

• Resource allocator  

• Producer-consumer  

• Readers-writers  

• Dining philosophers

Today’s menu
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A gallery of synchronization problems
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In today’s class, we go through several classical synchronization  problems and 
solve them using processes and message passing.

On the course website you can download fully working  
implementations of some of the problems.

Solving these problems with message passing has a different style  than using 
semaphores or monitors:

• mutual exclusion is not an issue, since there are no shared  variables

• coordination is the main problem, which is achieved by  exchanging 
messages asynchronously

The solutions are in the style of servers, which run event-loop  functions that 
handle requests from clients thus coordinating them.

A gallery of synchronization problems



Barriers



-module(barrier).

% initialize barrier for ‘Expected’ processes

init(Expected) -> todo.

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) -> todo.

Reusable barrier: implement module barrier such that:

a process blocks on wait until all processes have reached the  Barrier

after Expected threads have executed wait, the barrier is closed  again

Reusable barriers – recap
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Processes continuously approach the barrier, which must guarantee  that 

they synchronize each access.

Processk

process(Barrier) ->

% code before barrier

barrier:wait(Barrier) % synchronize at barrier

% code after barrier

process(Barrier).

Processes at a reusable barrier
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The barrier process keeps track of the processes that have arrived at  the barrier:

• when a new process arrives, it sends an arrived message to the  barrier; the barrier 
updates its list of arrived processes

• when the list of arrived processes is complete, the barrier sends  a continue
message to all processes

• after notifying all processes, the barrier goes back to the initial  state, ready for a 
new iteration

We implement the barrier’s event loop as a server function:

barrier(Arrived, Expected, PidRefs)

where Arrived processes have arrived so far, out of a total of  Expected; PidRefs is 
a list of the pids and unique references of  arrived messages sent to the barrier 
(thus it has Arrived elements).

Barrier process
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% event loop of barrier for ‘Expected’ processes

% Arrived: number of processes arrived so far

% PidRefs: list of {Pid, Ref} of processes arrived so far

barrier(Arrived, Expected, PidRefs) when Arrived =:= Expected ->  % all processes arrived

% notify all waiting processes

[To ! {continue, Ref} || {To, Ref} <- PidRefs],

% reset barrier

barrier(0, Expected, []);  

barrier(Arrived, Expected, PidRefs) ->

receive % still waiting for some processes

{arrived, From, Ref} ->

% one more arrived: add {From, Ref} to PidRefs list

barrier(Arrived+1, Expected, [{From, Ref}|PidRefs])

end.

Arrived is redundant because it is equal to length(PidRefs), butwe  keep it for clarity.

The server function barrier
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The function wait exchanges messages with the Barrier process running

barrier; it is used so that synchronizing processes do not need to know about the

format of exchanged messages.

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) ->

Ref = make_ref(),

% notify barrier of arrival

Barrier ! {arrived, self(), Ref},

% wait for signal to continue

receive {continue, Ref} -> through end.

The function wait
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pid of process executing wait

dummy value



Initializing a barrier consists of spawning a process running barrier.

% initialize barrier for ‘Expected’ processes

init(Expected) ->

spawn(fun () -> barrier(0, Expected, []) end).

The caller gets the barrier’s pid, which should be distributed to all  processes that 

want to use the barrier.

Barrier initialization
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initially, no processes have arrived yet



Resource allocator



An allocator grants users exclusive access to a number of resources:

• users asynchronously request resources and release them back

• the allocator ensures resources are given exclusively to one user  at a time, and keeps tracks 
of how many resources are available

-module(allocator).

% register ‘allocator’ with list of Resources

init(Resources) -> todo.

% get ‘N’ resources from ‘allocator’

request(N) -> todo.

% release ‘Resources’ to ‘allocator’

release(Resources) -> todo.

Resource allocator problem: implement allocator such that:

• an arbitrary number of users can access the allocator

• users are granted exclusive access to resources

Resource allocator: the problem – recap
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Users continuously and asynchronously access the allocator, which  must guarantee 

proper synchronization.

userk
user() ->

% how many resources are needed?

N = howMany(),
% get resources from allocator

Resources = allocator:request(N),
% do something with resources

use(Resources),
% release resources  

allocator:release(Resources),  
user().

Users
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The allocator process keeps track of the list of available resources:

• when a process requests some resources that are available, the allocator sends a granted message to the

process, and removes those just granted from the list of available resources

• when a process releases some resources, the allocator sends a released message to the process, and adds

those just released to the list of available resources

• requests that exceed the availability implicitly queue in the allocator’s mailbox; they will be served as soon

as enough resources are available

We implement the allocator’s event loop as a server function:

allocator(Resources)

where Resources is the list of available resources.

Allocator process
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allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests if enough resources are available

{request, From, Ref, N} when N =< Available ->

% Granted ++ Remaining =:= Resources

% length(Granted) =:= N

{Granted, Remaining} = lists:split(N, Resources),

% send resources to requesting process

From ! {granted, Ref, Granted},

% continue with Remaining resources

allocator(Remaining);

The server function allocator: handling requests
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does not match if N > Available



allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests: previous slide...

% serve releases

{release, From, Ref, Released} ->

% notify releasing process

From ! {released, Ref},

% continue with previous and released resources

allocator(Resources ++ Released)

end.

The server function allocator: handling releases
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The functions request and release exchange messages with the  process registered as 

allocator; they are used so that synchronizing  processes do not need to know about the format of 

exchanged  messages.

% get ‘N’ resources from ‘allocator’; block if not available

request(N) ->

Ref = make_ref(),

allocator ! {request, self(), Ref, N},

receive {granted, Ref, Granted} -> Granted end.

% release ‘Resources’ to ‘allocator’

release(Resources) ->  

Ref = make_ref(),

allocator ! {release, self(), Ref, Resources},

receive {released, Ref} -> released end.

The functions requestand release
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Producer-consumer



-module(buffer).

% initialize buffer with size ‘Bound’

init_buffer(Bound) -> todo.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) -> todo.

% get item from ‘Buffer’; block if empty

get(Buffer) -> todo.

Producer-consumer problem: implement buffer such that:

• producers and consumer access the buffer atomically

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)

Producer-consumer: the problem – recap
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Producers and consumers continuously and asynchronously access  the buffer, which must guarantee 
proper synchronization.

Note that atomic access is not an issue with processes: a single sequential process will actively modify 
the content of the buffer in  response to messages sent by other processes.

Producers and consumers
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producern

producer(Buffer) ->

% create a new item

Item = produce(),  

buffer:put(Buffer, Item),  

producer(Buffer).

consumerm

consumer(Buffer) ->

Item = buffer:get(Buffer),

% do something with ‘item’  

consume(Item),  

consumer(Buffer).



The buffer process keeps track of the items stored in the buffer:

• when a process asks to get one item and the buffer is not empty,  the buffer sends an 
item message to the process, and removes  the item just taken from the buffer list

• when a process asks to put one item and the buffer is not full, the  buffer sends a 
done message to the process, and adds the item  just sent to the buffer list

• as in the allocator example, requests that cannot be satisfied (get  with empty buffer, 
and put with full buffer) implicitly queue in the  allocator’s mailbox; they will be served 
as soon as it is possible

We implement the buffer’s event loop as a server function:

buffer(Content, Count, Bound)

where Content is the list of Count available resources and Bound is the  buffer’s
size.

Buffer process: bounded buffer
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buffer(Content, Count, Bound) ->

receive

% serve gets when buffer not empty

{get, From, Ref} when Count > 0 ->

[First|Rest] = Content,  % match first item

From ! {item, Ref, First}, % send it out

buffer(Rest, Count-1, Bound); % remove it from buffer

% serve puts when buffer not full

{put, From, Ref, Item} when Count < Bound ->

From ! {done, Ref},            % send ack

buffer(Content ++ [Item], Count+1, Bound) % add item to end

end.

The server function buffer: handling requests
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Content managed  as FIFO queue

Starvation is not possible: when the buffer is neither full nor empty,  requests are served 

in the order they arrive in the mailbox. If the  buffer fills up, put is disabled; after finitely 

many gets are served the buffer is no longer full, which disables get, thus allowing put

to be served. Similarly, put activates getwhen the buffer is empty.



In an unbounded buffer, the condition Count < Bound always holds:

% serve puts

{put, From, Ref, Item} when Count < Bound ->

% ...

Instead of removing the condition (as well as all the occurrences of  Bound), we can 

take advantage of Erlang’s order between numbers and atoms (every number is less 

than any atom): setting Bound to  infinity ensures that Count < Bound will 

always evaluate to true.  This way, we can use the very same implementation both in 

the  bounded and in the unbounded case.

Buffer process: unbounded buffer
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The functions get and putexchange messages with the process with pid Buffer; they are used so 

that synchronizing processes do not  need to know about the format of exchanged messages.

% get item from ‘Buffer’; block if empty

get(Buffer) ->

Ref = make_ref(),

Buffer ! {get, self(), Ref},

receive {item, Ref, Item} -> Item end.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) ->  

Ref = make_ref(),

Buffer ! {put, self(), Ref, Item},

receive {done, Ref} -> done end.

The functions getand put
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Readers-writers



-module(board). 

init(Name) -> todo.  % register board with ‘Name’

begin_read(Board) -> todo.  % get read access to ‘Board’

end_read(Board) -> todo. % release read access to ‘Board’

begin_write(Board) -> todo. % get write access to ‘Board’

end_write(Board) -> todo. % release write access to ‘Board’

Readers-writers problem: implement board such that:
• multiple reader can operate concurrently

• each writer has exclusive access

Invariant: #WRITERS = 0 ∨ (#WRITERS = 1 ∧ #READERS = 0)

Other properties that a good solution should have:

• support an arbitrary number of readers and writers

• no starvation of readers or writers

Readers-writers: the problem – recap
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Readers and writers continuously and asynchronously try to access  the board, which must guarantee 
proper synchronization.

Readers and writers
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readern

reader(Board) ->

board:begin_read(Board),

% read messages  

board:end_read(Board),  

reader(Board).

writerm

writer(Board) ->

board:begin_write(Board),

% write messages  

board:end_write(Board),  

writer(Board).



A first solution to the readers-writers problem can extend the idea  behind the allocator: serve requests 

when possible and let other requests queue in the mailbox. The board process keeps track of the  

number of readers and writers that are active on the board:

• when a new request to begin reading arrives and no writer is  active, the board sends an OK to read

message to the requester,  and increases the count of readers;

• when a new request to begin writing arrives and no readers or writers are active, the board sends

an OK to write message to the requester, and increases the count of writers;

• conversely, when notifications to end read or end write arrive, the  board decreases the count of 

readers or writers;

• requests that cannot be served implicitly queue in the board’s  mailbox; they will be served as soon 

as the board is freed

Board process – first version
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% ‘Readers’ active readers and ‘Writers’ active writers

board_RoW(Readers, Writers) ->

receive

{begin_read, From, Ref} when Writers =:= 0 ->  
From ! {ok_to_read, Ref},  
board_RoW(Readers+1, Writers);

{begin_write, From, Ref} when (Writers =:= 0) and (Readers =:= 0) ->  
From ! {ok_to_write, Ref},
board_RoW(Readers, Writers+1);

{end_read, From, Ref} ->  From ! {ok, Ref},
board_RoW(Readers-1, Writers);

{end_write, From, Ref} ->  From ! {ok, Ref},
board_RoW(Readers, Writers-1)

end.

The server function board_RoW – first version
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In board_RoW, the “waiting conditions” follow directly from the invariant;  thus, the 
resulting solution is correct in that it ensures mutual  exclusion according to the 
readers-writers invariant.

However, it gives priority to readers over writers:

• new reading requests get served without waiting as long as a  reader is active

• writing requests waiting in the mailbox have to wait until the last  reader sends an 
end_read message

• as long as reading requests keep arriving and queuing in the  mailbox, the 
waiting writing requests will never execute

Exchanging the order of clauses in the receive does not solve the  problem (nor 
does it give priority to writers over readers): the scenario  where readers starve writers 
can still happen because the condition for writing is stronger than the condition for 
reading, and writers cannot maintain their condition without the cooperation of readers.

Readers-writers: the first version prioritizes readers
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We could achieve fairness by replicating the pattern behind the  solution 

with monitors:

• the board keeps track of the lists of pending read and write requests

• read requests are served as long as there are no active writers and no 

pending write requests

• notifications to end write let in one pending read request, or one  waiting write 

request if there are no reading requests

This approach works, but it is quite cumbersome to implement with message 

passing. The main issue is that it requires a duplication of  the information that 

is already implicit in the mailbox queue, which  complicates ensuring that 

messages are processed exactly once.

Readers-writers: towards a fair solution
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We implement a fair solution where the board can be in one of two  macro states:

empty: there are neither active readers nor active writers

readers: there are some active readers and no active writers

When the board is in macro state empty:

• read requests are served immediately, then the board switches to macro state readers

• write requests are served immediately and synchronously: the board waits until writing ends, then the 

board is empty again

When the board is in macro state readers:

• read requests are served immediately, and the macro state remains readers

• write requests are served as soon as possible: the board waits until all reading ends, then the writing 

request is served  synchronously, and then the board is empty again

Readers-writers: fair solution
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This state/transition diagram formalizes the solution illustrated  informally above. The partitioning of 

states in the diagram according  to their color corresponds to the macro states empty and readers.

Readers-writers: fair solution (cont’d)
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R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

end_write
R = 0

begin_read,

end_read,

R := R − 1



By inspecting the diagram, we can understand that it guarantees fairness provided outgoing transitions 
from the same state have the  same priority (they are served in arrival order). The solution in Erlang  
implements the behavior of this diagram, using two server functions  empty_board and readers_board, 
which call each other.

Readers-writers: fair solution (cont’d)
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empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

R = 0

end_write
R = 0

begin_read,

end_read,

R := R − 1



% board with no readers and no writers

empty_board() ->

receive

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref}, % notify reader

readers_board(1); % board has one reader

% serve write request synchronously

{begin_write, From, Ref} ->

From ! {ok_to_write, Ref}, % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} ->

empty_board() % board is empty again

end

end.

The server function empty_board
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% board with no readers (and no writers)

readers_board(0) -> empty_board();

% board with ‘Readers’ active readers (and no writers)

readers_board(Readers) ->

receive

% serve write request

{begin_write, From, Ref} ->

% wait until all ‘Readers’ have finished

[receive {end_read, _From, _Ref} -> end_read end || _ <- lists:seq(1, Readers)],

From ! {ok_to_write, Ref},  % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} -> empty_board()

end; % board is empty again

The server function readers_board: serving write requests
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Now the order of clauses in the receive does not matter: requests  are 

processed in the mailbox order because none of the three  clauses 

(begin_read, end_read, and begin_write) has a condition  stronger than the

others.

readers_board(Readers) ->
receive

% serve write requests: previous slide...

% serve read request

{begin_read, From, Ref} ->  
From ! {ok_to_read, Ref},  % notify reader

readers_board(Readers+1); % board has one more reader

% serve end read

{end_read, _From, _Ref} ->  

readers_board(Readers-1) % board has one less reader

end.

The server function readers_board: serving read requests
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As usual, the functions begin_read, end_read, begin_write, and end_write exchange messages 

with the board server process with  pid Board; they are used so that synchronizing processes do not 

need  to know about the format of exchanged messages.

For example:

% get read access to ‘Board’

begin_read(Board) ->  

Ref = make_ref(),

Board ! {begin_read, self(), Ref},

receive

{ok_to_read, Ref} -> ok_to_read

end.

Note that the behavior of the board process changes over time, but  the pid Board stays the same.

The functions begin_read, end_read, begin_write, and end_write
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Initializing a board consists of spawning a process running empty_board.

% initialize empty board and register with ‘Name’

init(Name) ->

register(Name, spawn(fun empty_board/0)).

After initialization, Name can be used to access theboard.

Board initialization

39/42



Dining philosophers



-module(philosophers).

% set up table of ‘N’ philosophers

init(N) -> todo.

% philosopher picks up ‘Fork’

get_fork(Fork) -> todo.

% philosopher releases ‘Fork’

put_fork(Fork) -> todo.

Dining philosophers: the problem – recap
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Dining philosophers problem: implement philosophers such that:

• forks are held exclusively by one philosopher at a time

• each philosopher only accesses adjacent forks

• no philosopher starves



We could replicate solutions based on locking; for example, setting up  a server for each pair of forks, 

which grants access to both forks  atomically to the first philosopher that sends a request.

Instead, let’s explore an approach that is more congenial to message  passing. A waiter process 

supervises access to the table. Each  philosopher asks the waiter for permission to sit before picking up  

both forks and notifies the waiter after putting down both forks.

As long as the waiter allows strictly fewer philosophers than the total  number of forks to sit around the 

table at the same time, deadlock  and starvation are avoided.

The waiter’s interface consists of two functions:

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) -> todo.

% ask ‘Waiter’ to leave

leave(Waiter) -> todo.

Philosophers with waiter
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Philosophers continuously alternate between thinking and eating,  while coordinating with the waiter.

philosopherk

% Forks: fork#{left, right} of fork pids

% Waiter: waiter process

philosopher(Forks, Waiter) ->  think(),

sit(Waiter), % ask to be seated  

get_fork(Forks#forks.left), % pick up left fork  

get_fork(Forks#forks.right), % pick up right fork  

eat(),

put_fork(Forks#forks.left), % put down left fork  

put_fork(Forks#forks.right), % put down right fork  

leave(Waiter), % notify leaving  

philosopher(Forks, Waiter).

Philosophers
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The waiter process keeps track of how many philosophers are eating  at the table:

• when a philosopher asks to be seated and the table is not full,  the waiter sends an 
ok_to_sit message to the philosopher and  increases the count of eating 
philosophers

• when a philosopher notifies leaving, the waiter sends an  ok_to_leave
message to the philosopher and decreases the  count of eating philosophers

• requests to sit that arrive when the table is full queue in the  waiter’s mailbox; they 
will be served as soon as a seat frees up

We implement the waiter’s event loop as a server function:

waiter(Eating, Seats)

where Eating philosophers are sitting and eating, out of a total of Seats
available seats (Seats is the number of seats that can be  occupied at the same
time).

Waiter process
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waiter(Eating, Seats) ->
receive

% serve as long as seats are available

{sit, From, Ref} when Eating < Seats ->

io:format("~p eating (~p at table)~n", [From, Eating+1]),

From ! {ok_to_sit, Ref},

waiter(Eating+1, Seats); % one more eating

% can leave at any time

{leave, From, Ref} ->

io:format("~p leaving (~p at table)~n", [From, Eating-1]),  

From ! {ok_to_leave, Ref},

waiter(Eating-1, Seats) % one less eating

end.

Printing the table’s state at every change is for debugging purposes.

The server function waiter
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As usual, the functions sit and leavehide the format of messages  exchanged between philosophers 

and waiter.

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) ->

Ref = make_ref(),

Waiter ! {sit, self(), Ref},

receive {ok_to_sit, Ref} -> ok end.

% ask ‘Waiter’ to leave

leave(Waiter) -> 

Ref = make_ref(),

Waiter ! {leave, self(), Ref},

receive {ok_to_leave, Ref} -> ok end.

The functions sitand leave

46/42



Each fork has a fork process which keeps track of whether the fork is  free (on the table) or held 

by a philosopher.

The server function for a fork can be in two states according to  whether the fork is held or 

not.

For simplicity, put requests do not get an acknowledgment; they just  take effect

immediately.

The fork processes and functions
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% a fork not held by anyone

fork() ->

receive

{get, From, Ref} ->

From ! {ack, Ref},  

fork(From) % fork held

end.

% a fork held by Owner

fork(Owner) ->

receive

{put, Owner, _Ref} ->  

fork() % fork not held

end.



The structure of get_fork and put_fork are similar to things we’ve seen:

% pick up ‘Fork’; block until available

get_fork(Fork) -> 
Ref = make_ref(),
Fork ! {get, self(), Ref},
receive {ack, Ref} -> ack end.

% put down ‘Fork’

put_fork(Fork) -> 
Ref = make_ref(),
Fork ! {put, self(), Ref}.

The functions get_fork andput_fork
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Initializing a table consists of spawning the processes running waiter,  fork, and 

philosopher, as well as connecting each philosopher to  their pair of forks.

% set up table of ‘N’ philosophers

init(N) ->

% spawn waiter process

Waiter = spawn(fun () -> waiter(0, N-1) end),  

Ids = lists:seq(1,N), % [1, 2, ..., N]

% spawn fork processes

Forks = [spawn(fun fork/0) || _ <- Ids],

% spawn philosopher processes

[spawn(fun () ->

Left = lists:nth(I, Forks),

Right = lists:nth(1+(I rem N), Forks), % 1-based indexes

philosopher(#forks{left=Left, right=Right}, 

Waiter) end) || I <- Ids].

Table initialization
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at most N-1 eating philosophers at once
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