
Lecture 8 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Synchronization problems with
message-passing

• Barriers

• Resource allocator

• Producer-consumer

• Readers-writers

• Dining philosophers

Today’s menu

1/42

A gallery of synchronization problems

2/42

In today’s class, we go through several classical synchronization problems and
solve them using processes and message passing.

On the course website you can download fully working
implementations of some of the problems.

Solving these problems with message passing has a different style than using
semaphores or monitors:

• mutual exclusion is not an issue, since there are no shared variables

• coordination is the main problem, which is achieved by exchanging
messages asynchronously

The solutions are in the style of servers, which run event-loop functions that
handle requests from clients thus coordinating them.

A gallery of synchronization problems

Barriers

-module(barrier).

% initialize barrier for ‘Expected’ processes

init(Expected) -> todo.

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) -> todo.

Reusable barrier: implement module barrier such that:

a process blocks on wait until all processes have reached the Barrier

after Expected threads have executed wait, the barrier is closed again

Reusable barriers – recap

3/42

Processes continuously approach the barrier, which must guarantee that

they synchronize each access.

Processk

process(Barrier) ->

% code before barrier

barrier:wait(Barrier) % synchronize at barrier

% code after barrier

process(Barrier).

Processes at a reusable barrier

4/42

The barrier process keeps track of the processes that have arrived at the barrier:

• when a new process arrives, it sends an arrived message to the barrier; the barrier
updates its list of arrived processes

• when the list of arrived processes is complete, the barrier sends a continue
message to all processes

• after notifying all processes, the barrier goes back to the initial state, ready for a
new iteration

We implement the barrier’s event loop as a server function:

barrier(Arrived, Expected, PidRefs)

where Arrived processes have arrived so far, out of a total of Expected; PidRefs is
a list of the pids and unique references of arrived messages sent to the barrier
(thus it has Arrived elements).

Barrier process

5/42

% event loop of barrier for ‘Expected’ processes

% Arrived: number of processes arrived so far

% PidRefs: list of {Pid, Ref} of processes arrived so far

barrier(Arrived, Expected, PidRefs) when Arrived =:= Expected -> % all processes arrived

% notify all waiting processes

[To ! {continue, Ref} || {To, Ref} <- PidRefs],

% reset barrier

barrier(0, Expected, []);

barrier(Arrived, Expected, PidRefs) ->

receive % still waiting for some processes

{arrived, From, Ref} ->

% one more arrived: add {From, Ref} to PidRefs list

barrier(Arrived+1, Expected, [{From, Ref}|PidRefs])

end.

Arrived is redundant because it is equal to length(PidRefs), butwe keep it for clarity.

The server function barrier

6/42

The function wait exchanges messages with the Barrier process running

barrier; it is used so that synchronizing processes do not need to know about the

format of exchanged messages.

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) ->

Ref = make_ref(),

% notify barrier of arrival

Barrier ! {arrived, self(), Ref},

% wait for signal to continue

receive {continue, Ref} -> through end.

The function wait

7/42

pid of process executing wait

dummy value

Initializing a barrier consists of spawning a process running barrier.

% initialize barrier for ‘Expected’ processes

init(Expected) ->

spawn(fun () -> barrier(0, Expected, []) end).

The caller gets the barrier’s pid, which should be distributed to all processes that

want to use the barrier.

Barrier initialization

8/42

initially, no processes have arrived yet

Resource allocator

An allocator grants users exclusive access to a number of resources:

• users asynchronously request resources and release them back

• the allocator ensures resources are given exclusively to one user at a time, and keeps tracks
of how many resources are available

-module(allocator).

% register ‘allocator’ with list of Resources

init(Resources) -> todo.

% get ‘N’ resources from ‘allocator’

request(N) -> todo.

% release ‘Resources’ to ‘allocator’

release(Resources) -> todo.

Resource allocator problem: implement allocator such that:

• an arbitrary number of users can access the allocator

• users are granted exclusive access to resources

Resource allocator: the problem – recap

12/42

Users continuously and asynchronously access the allocator, which must guarantee

proper synchronization.

userk
user() ->

% how many resources are needed?

N = howMany(),
% get resources from allocator

Resources = allocator:request(N),
% do something with resources

use(Resources),
% release resources

allocator:release(Resources),
user().

Users

13/42

The allocator process keeps track of the list of available resources:

• when a process requests some resources that are available, the allocator sends a granted message to the

process, and removes those just granted from the list of available resources

• when a process releases some resources, the allocator sends a released message to the process, and adds

those just released to the list of available resources

• requests that exceed the availability implicitly queue in the allocator’s mailbox; they will be served as soon

as enough resources are available

We implement the allocator’s event loop as a server function:

allocator(Resources)

where Resources is the list of available resources.

Allocator process

14/42

allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests if enough resources are available

{request, From, Ref, N} when N =< Available ->

% Granted ++ Remaining =:= Resources

% length(Granted) =:= N

{Granted, Remaining} = lists:split(N, Resources),

% send resources to requesting process

From ! {granted, Ref, Granted},

% continue with Remaining resources

allocator(Remaining);

The server function allocator: handling requests

15/42

does not match if N > Available

allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests: previous slide...

% serve releases

{release, From, Ref, Released} ->

% notify releasing process

From ! {released, Ref},

% continue with previous and released resources

allocator(Resources ++ Released)

end.

The server function allocator: handling releases

16/42

The functions request and release exchange messages with the process registered as

allocator; they are used so that synchronizing processes do not need to know about the format of

exchanged messages.

% get ‘N’ resources from ‘allocator’; block if not available

request(N) ->

Ref = make_ref(),

allocator ! {request, self(), Ref, N},

receive {granted, Ref, Granted} -> Granted end.

% release ‘Resources’ to ‘allocator’

release(Resources) ->

Ref = make_ref(),

allocator ! {release, self(), Ref, Resources},

receive {released, Ref} -> released end.

The functions requestand release

17/42

Producer-consumer

-module(buffer).

% initialize buffer with size ‘Bound’

init_buffer(Bound) -> todo.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) -> todo.

% get item from ‘Buffer’; block if empty

get(Buffer) -> todo.

Producer-consumer problem: implement buffer such that:

• producers and consumer access the buffer atomically

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)

Producer-consumer: the problem – recap

19/42

Producers and consumers continuously and asynchronously access the buffer, which must guarantee
proper synchronization.

Note that atomic access is not an issue with processes: a single sequential process will actively modify
the content of the buffer in response to messages sent by other processes.

Producers and consumers

20/42

producern

producer(Buffer) ->

% create a new item

Item = produce(),

buffer:put(Buffer, Item),

producer(Buffer).

consumerm

consumer(Buffer) ->

Item = buffer:get(Buffer),

% do something with ‘item’

consume(Item),

consumer(Buffer).

The buffer process keeps track of the items stored in the buffer:

• when a process asks to get one item and the buffer is not empty, the buffer sends an
item message to the process, and removes the item just taken from the buffer list

• when a process asks to put one item and the buffer is not full, the buffer sends a
done message to the process, and adds the item just sent to the buffer list

• as in the allocator example, requests that cannot be satisfied (get with empty buffer,
and put with full buffer) implicitly queue in the allocator’s mailbox; they will be served
as soon as it is possible

We implement the buffer’s event loop as a server function:

buffer(Content, Count, Bound)

where Content is the list of Count available resources and Bound is the buffer’s
size.

Buffer process: bounded buffer

21/42

buffer(Content, Count, Bound) ->

receive

% serve gets when buffer not empty

{get, From, Ref} when Count > 0 ->

[First|Rest] = Content, % match first item

From ! {item, Ref, First}, % send it out

buffer(Rest, Count-1, Bound); % remove it from buffer

% serve puts when buffer not full

{put, From, Ref, Item} when Count < Bound ->

From ! {done, Ref}, % send ack

buffer(Content ++ [Item], Count+1, Bound) % add item to end

end.

The server function buffer: handling requests

18/42

Content managed as FIFO queue

Starvation is not possible: when the buffer is neither full nor empty, requests are served

in the order they arrive in the mailbox. If the buffer fills up, put is disabled; after finitely

many gets are served the buffer is no longer full, which disables get, thus allowing put

to be served. Similarly, put activates getwhen the buffer is empty.

In an unbounded buffer, the condition Count < Bound always holds:

% serve puts

{put, From, Ref, Item} when Count < Bound ->

% ...

Instead of removing the condition (as well as all the occurrences of Bound), we can

take advantage of Erlang’s order between numbers and atoms (every number is less

than any atom): setting Bound to infinity ensures that Count < Bound will

always evaluate to true. This way, we can use the very same implementation both in

the bounded and in the unbounded case.

Buffer process: unbounded buffer

23/42

The functions get and putexchange messages with the process with pid Buffer; they are used so

that synchronizing processes do not need to know about the format of exchanged messages.

% get item from ‘Buffer’; block if empty

get(Buffer) ->

Ref = make_ref(),

Buffer ! {get, self(), Ref},

receive {item, Ref, Item} -> Item end.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) ->

Ref = make_ref(),

Buffer ! {put, self(), Ref, Item},

receive {done, Ref} -> done end.

The functions getand put

24/42

Readers-writers

-module(board).

init(Name) -> todo. % register board with ‘Name’

begin_read(Board) -> todo. % get read access to ‘Board’

end_read(Board) -> todo. % release read access to ‘Board’

begin_write(Board) -> todo. % get write access to ‘Board’

end_write(Board) -> todo. % release write access to ‘Board’

Readers-writers problem: implement board such that:
• multiple reader can operate concurrently

• each writer has exclusive access

Invariant: #WRITERS = 0 ∨ (#WRITERS = 1 ∧ #READERS = 0)

Other properties that a good solution should have:

• support an arbitrary number of readers and writers

• no starvation of readers or writers

Readers-writers: the problem – recap

26/42

Readers and writers continuously and asynchronously try to access the board, which must guarantee
proper synchronization.

Readers and writers

27/42

readern

reader(Board) ->

board:begin_read(Board),

% read messages

board:end_read(Board),

reader(Board).

writerm

writer(Board) ->

board:begin_write(Board),

% write messages

board:end_write(Board),

writer(Board).

A first solution to the readers-writers problem can extend the idea behind the allocator: serve requests

when possible and let other requests queue in the mailbox. The board process keeps track of the

number of readers and writers that are active on the board:

• when a new request to begin reading arrives and no writer is active, the board sends an OK to read

message to the requester, and increases the count of readers;

• when a new request to begin writing arrives and no readers or writers are active, the board sends

an OK to write message to the requester, and increases the count of writers;

• conversely, when notifications to end read or end write arrive, the board decreases the count of

readers or writers;

• requests that cannot be served implicitly queue in the board’s mailbox; they will be served as soon

as the board is freed

Board process – first version

28/42

% ‘Readers’ active readers and ‘Writers’ active writers

board_RoW(Readers, Writers) ->

receive

{begin_read, From, Ref} when Writers =:= 0 ->
From ! {ok_to_read, Ref},
board_RoW(Readers+1, Writers);

{begin_write, From, Ref} when (Writers =:= 0) and (Readers =:= 0) ->
From ! {ok_to_write, Ref},
board_RoW(Readers, Writers+1);

{end_read, From, Ref} -> From ! {ok, Ref},
board_RoW(Readers-1, Writers);

{end_write, From, Ref} -> From ! {ok, Ref},
board_RoW(Readers, Writers-1)

end.

The server function board_RoW – first version

29/42

In board_RoW, the “waiting conditions” follow directly from the invariant; thus, the
resulting solution is correct in that it ensures mutual exclusion according to the
readers-writers invariant.

However, it gives priority to readers over writers:

• new reading requests get served without waiting as long as a reader is active

• writing requests waiting in the mailbox have to wait until the last reader sends an
end_read message

• as long as reading requests keep arriving and queuing in the mailbox, the
waiting writing requests will never execute

Exchanging the order of clauses in the receive does not solve the problem (nor
does it give priority to writers over readers): the scenario where readers starve writers
can still happen because the condition for writing is stronger than the condition for
reading, and writers cannot maintain their condition without the cooperation of readers.

Readers-writers: the first version prioritizes readers

30/42

We could achieve fairness by replicating the pattern behind the solution

with monitors:

• the board keeps track of the lists of pending read and write requests

• read requests are served as long as there are no active writers and no

pending write requests

• notifications to end write let in one pending read request, or one waiting write

request if there are no reading requests

This approach works, but it is quite cumbersome to implement with message

passing. The main issue is that it requires a duplication of the information that

is already implicit in the mailbox queue, which complicates ensuring that

messages are processed exactly once.

Readers-writers: towards a fair solution

31/42

We implement a fair solution where the board can be in one of two macro states:

empty: there are neither active readers nor active writers

readers: there are some active readers and no active writers

When the board is in macro state empty:

• read requests are served immediately, then the board switches to macro state readers

• write requests are served immediately and synchronously: the board waits until writing ends, then the

board is empty again

When the board is in macro state readers:

• read requests are served immediately, and the macro state remains readers

• write requests are served as soon as possible: the board waits until all reading ends, then the writing

request is served synchronously, and then the board is empty again

Readers-writers: fair solution

32/42

This state/transition diagram formalizes the solution illustrated informally above. The partitioning of

states in the diagram according to their color corresponds to the macro states empty and readers.

Readers-writers: fair solution (cont’d)

28/42

R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

end_write
R = 0

begin_read,

end_read,

R := R − 1

By inspecting the diagram, we can understand that it guarantees fairness provided outgoing transitions
from the same state have the same priority (they are served in arrival order). The solution in Erlang
implements the behavior of this diagram, using two server functions empty_board and readers_board,
which call each other.

Readers-writers: fair solution (cont’d)

28/42

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

R = 0

end_write
R = 0

begin_read,

end_read,

R := R − 1

% board with no readers and no writers

empty_board() ->

receive

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref}, % notify reader

readers_board(1); % board has one reader

% serve write request synchronously

{begin_write, From, Ref} ->

From ! {ok_to_write, Ref}, % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} ->

empty_board() % board is empty again

end

end.

The server function empty_board

35/42

% board with no readers (and no writers)

readers_board(0) -> empty_board();

% board with ‘Readers’ active readers (and no writers)

readers_board(Readers) ->

receive

% serve write request

{begin_write, From, Ref} ->

% wait until all ‘Readers’ have finished

[receive {end_read, _From, _Ref} -> end_read end || _ <- lists:seq(1, Readers)],

From ! {ok_to_write, Ref}, % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} -> empty_board()

end; % board is empty again

The server function readers_board: serving write requests

36/42

Now the order of clauses in the receive does not matter: requests are

processed in the mailbox order because none of the three clauses

(begin_read, end_read, and begin_write) has a condition stronger than the

others.

readers_board(Readers) ->
receive

% serve write requests: previous slide...

% serve read request

{begin_read, From, Ref} ->
From ! {ok_to_read, Ref}, % notify reader

readers_board(Readers+1); % board has one more reader

% serve end read

{end_read, _From, _Ref} ->

readers_board(Readers-1) % board has one less reader

end.

The server function readers_board: serving read requests

37/42

As usual, the functions begin_read, end_read, begin_write, and end_write exchange messages

with the board server process with pid Board; they are used so that synchronizing processes do not

need to know about the format of exchanged messages.

For example:

% get read access to ‘Board’

begin_read(Board) ->

Ref = make_ref(),

Board ! {begin_read, self(), Ref},

receive

{ok_to_read, Ref} -> ok_to_read

end.

Note that the behavior of the board process changes over time, but the pid Board stays the same.

The functions begin_read, end_read, begin_write, and end_write

38/42

Initializing a board consists of spawning a process running empty_board.

% initialize empty board and register with ‘Name’

init(Name) ->

register(Name, spawn(fun empty_board/0)).

After initialization, Name can be used to access theboard.

Board initialization

39/42

Dining philosophers

-module(philosophers).

% set up table of ‘N’ philosophers

init(N) -> todo.

% philosopher picks up ‘Fork’

get_fork(Fork) -> todo.

% philosopher releases ‘Fork’

put_fork(Fork) -> todo.

Dining philosophers: the problem – recap

41/42

Dining philosophers problem: implement philosophers such that:

• forks are held exclusively by one philosopher at a time

• each philosopher only accesses adjacent forks

• no philosopher starves

We could replicate solutions based on locking; for example, setting up a server for each pair of forks,

which grants access to both forks atomically to the first philosopher that sends a request.

Instead, let’s explore an approach that is more congenial to message passing. A waiter process

supervises access to the table. Each philosopher asks the waiter for permission to sit before picking up

both forks and notifies the waiter after putting down both forks.

As long as the waiter allows strictly fewer philosophers than the total number of forks to sit around the

table at the same time, deadlock and starvation are avoided.

The waiter’s interface consists of two functions:

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) -> todo.

% ask ‘Waiter’ to leave

leave(Waiter) -> todo.

Philosophers with waiter

42/42

Philosophers continuously alternate between thinking and eating, while coordinating with the waiter.

philosopherk

% Forks: fork#{left, right} of fork pids

% Waiter: waiter process

philosopher(Forks, Waiter) -> think(),

sit(Waiter), % ask to be seated

get_fork(Forks#forks.left), % pick up left fork

get_fork(Forks#forks.right), % pick up right fork

eat(),

put_fork(Forks#forks.left), % put down left fork

put_fork(Forks#forks.right), % put down right fork

leave(Waiter), % notify leaving

philosopher(Forks, Waiter).

Philosophers

43/42

The waiter process keeps track of how many philosophers are eating at the table:

• when a philosopher asks to be seated and the table is not full, the waiter sends an
ok_to_sit message to the philosopher and increases the count of eating
philosophers

• when a philosopher notifies leaving, the waiter sends an ok_to_leave
message to the philosopher and decreases the count of eating philosophers

• requests to sit that arrive when the table is full queue in the waiter’s mailbox; they
will be served as soon as a seat frees up

We implement the waiter’s event loop as a server function:

waiter(Eating, Seats)

where Eating philosophers are sitting and eating, out of a total of Seats
available seats (Seats is the number of seats that can be occupied at the same
time).

Waiter process

44/42

waiter(Eating, Seats) ->
receive

% serve as long as seats are available

{sit, From, Ref} when Eating < Seats ->

io:format("~p eating (~p at table)~n", [From, Eating+1]),

From ! {ok_to_sit, Ref},

waiter(Eating+1, Seats); % one more eating

% can leave at any time

{leave, From, Ref} ->

io:format("~p leaving (~p at table)~n", [From, Eating-1]),

From ! {ok_to_leave, Ref},

waiter(Eating-1, Seats) % one less eating

end.

Printing the table’s state at every change is for debugging purposes.

The server function waiter

45/42

As usual, the functions sit and leavehide the format of messages exchanged between philosophers

and waiter.

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) ->

Ref = make_ref(),

Waiter ! {sit, self(), Ref},

receive {ok_to_sit, Ref} -> ok end.

% ask ‘Waiter’ to leave

leave(Waiter) ->

Ref = make_ref(),

Waiter ! {leave, self(), Ref},

receive {ok_to_leave, Ref} -> ok end.

The functions sitand leave

46/42

Each fork has a fork process which keeps track of whether the fork is free (on the table) or held

by a philosopher.

The server function for a fork can be in two states according to whether the fork is held or

not.

For simplicity, put requests do not get an acknowledgment; they just take effect

immediately.

The fork processes and functions

47/42

% a fork not held by anyone

fork() ->

receive

{get, From, Ref} ->

From ! {ack, Ref},

fork(From) % fork held

end.

% a fork held by Owner

fork(Owner) ->

receive

{put, Owner, _Ref} ->

fork() % fork not held

end.

The structure of get_fork and put_fork are similar to things we’ve seen:

% pick up ‘Fork’; block until available

get_fork(Fork) ->
Ref = make_ref(),
Fork ! {get, self(), Ref},
receive {ack, Ref} -> ack end.

% put down ‘Fork’

put_fork(Fork) ->
Ref = make_ref(),
Fork ! {put, self(), Ref}.

The functions get_fork andput_fork

48/42

Initializing a table consists of spawning the processes running waiter, fork, and

philosopher, as well as connecting each philosopher to their pair of forks.

% set up table of ‘N’ philosophers

init(N) ->

% spawn waiter process

Waiter = spawn(fun () -> waiter(0, N-1) end),

Ids = lists:seq(1,N), % [1, 2, ..., N]

% spawn fork processes

Forks = [spawn(fun fork/0) || _ <- Ids],

% spawn philosopher processes

[spawn(fun () ->

Left = lists:nth(I, Forks),

Right = lists:nth(1+(I rem N), Forks), % 1-based indexes

philosopher(#forks{left=Left, right=Right},

Waiter) end) || I <- Ids].

Table initialization

49/42

at most N-1 eating philosophers at once

These slides’ license

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the

Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

