
Lesson 2 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Races, locks and semaphores

Lesson’s menu

• Concurrent programs

• Races

• Synchronization problems

• Locks

• Semaphores

• Synchronization with semaphores

2

Concurrent programs

3

When convenient, we will use an abstract notation for multi-threaded applications, which is
similar to the pseudo-code used in Ben-Ari’s book but uses Java syntax.

Each line of code includes exactly one instruction that can be executed atomically:

– atomic statement ≅ single read or write to global variable

– precise definition is tricky in Java, but we will learn to avoid pitfalls

Abstraction of concurrent programs

code

local memory

shared memory

4

Traces
A sequence of states gives an execution trace of the concurrent program

(The program counter points to the atomic instruction that will be executed next)

5

One trace
(One possible
Interleaving)

Races

6

Race conditions
Concurrent programs are nondeterministic:

• Executing multiple times the same concurrent program with the same inputs may lead
to different execution traces

• A result of the nondeterministic interleaving of each thread’s trace to determine the
overall program trace

• In turn, the interleaving is a result of the scheduler’s decisions

The concurrent counter example has a race condition:
• in some executions the final value of counter is 2 (correct)

• in some executions the final value of counter is 1 (wrong)

Race conditions can greatly complicate debugging!

A race condition is a situation where the correctness of a

concurrent program depends on the specific execution

7

Concurrency humor

A1: Knock Knock

A2: "Who’s there?"

A1: "Race condition"

A1: Knock…

A2: "Who’s there?"

A1: Knock…
"Race condition"

A1: Knock Knock

A1: "Race condition"

A2: "Who’s there?"

8

Data races

Race conditions are typically caused by a lack of synchronization between
threads that access shared memory

A data race occurs when two concurrent threads:

• Access a shared memory location

• At least one access is a write

• The threads use no explicit synchronization mechanism to protect the
shared data

9

Data races
A data race occurs when two concurrent threads:

• Access a shared memory location

• At least one access is a write

• The threads use no explicit synchronization mechanism to protect the
shared data

Data race Data race
10

Data race

Data races vs. Race conditions

11

Not every race condition is a data race

• Race conditions can occur even when
there is no shared memory access

• Example: filesystems (open/close in
wrong order) or network access

Not every data race is a race condition

• The data race may not affect the result

• Example: if two threads write the same
value to shared memory

A data race occurs when two concurrent threads:

• Access a shared memory location

• At least one access is a write

• The threads use no explicit synchronization mechanism to protect the
shared data

Synchronization problems

12

Push out the races, bring in the speed

Concurrent programming introduces:

• the potential for parallel execution (faster, better resource usage)

• the risk of race conditions (incorrect, unpredictable computations)

The main challenge of concurrent programming is thus introducing parallelism
without introducing race conditions

This requires to restrict the amount of nondeterminism by synchronizing
processes/threads that access shared resources

13

Synchronization

We will present several synchronization problems that often appear in
concurrent programming, together with solutions

14

• Correctness (that is, avoiding race conditions) is more important than
performance
• An incorrect result that is computed faster is no good!

• However, we want to retain as much concurrency as possible
• Otherwise we might as well stick with sequential programming

Shared memory vs. Message passing synchronization

Shared memory synchronization:
• Synchronize by writing to and reading

from shared memory

• Natural choice in shared memory
systems such as threads

Message passing synchronization:
• Synchronize by exchanging messages

• Natural choice in distributed memory
systems such as processes

15

Shared memory vs. Message passing synchronization

Shared memory synchronization: Message passing synchronization:

16

The two synchronization models overlap:
• Send a message by writing to and reading from shared memory (ex: message board)

• Share information by sending a message (ex: order a billboard)

• In the first part of the course we will focus on synchronization problems that
arise in shared memory concurrency

• In the second part we will switch to message passing

The mutual exclusion problem
A fundamental synchronization problem which arises whenever multiple threads
have access to a shared resource

17

Simplifications to present solutions in a uniform way:
• the critical section is an arbitrary block of code

• threads continuously try to enter the critical section

• threads spend a finite amount of time in the critical section

• we ignore what the threads do outside their critical sections

Critical Section: Part of a program that accesses the shared resource (Ex: shared variable)

Mutual Exclusion Property: No more than 1 thread is in its critical section at any given time

Mutual Exclusion Problem: Devise a protocol for accessing a shared resource
that satisfies the mutual exclusion property

T shared;

thread tj thread tk

// continuously

while (true) {

entry protocol

critical section {

// access shared data

}

exit protocol

} /* ignore behavior

outside critical section */

// continuously

while (true) {

entry protocol

critical section {

// access shared data

}

exit protocol

} /* ignore behavior

outside critical section */

18

Mutual Exclusion Problem: Devise a protocol for accessing a shared
resource that satisfies the mutual exclusion property

The mutual exclusion problem

May depend
on thread

Depends
on computation

Mutual exclusion problem example: Concurrent Counter
Updating a shared variable consistently is an instance of the mutual exclusion
problem

19

int counter = 0;

thread t thread u

int cnt; int cnt;

while (true) {

entry protocol

critical section {

cnt = counter;

counter = cnt + 1;

}

exit protocol

return;

}

while (true) {

entry protocol

critical section {

cnt = counter;

counter = cnt + 1;

}

exit protocol

return;

}

Take turns
incrementing
counter

What's a good solution to the mutual exclusion problem?

A fully satisfactory solution is one that achieves three properties:

1. Mutual exclusion: at most one thread is in its critical section at any given
time

2. Freedom from deadlock: if one or more threads try to enter the critical
section, some thread will eventually succeed

3. Freedom from starvation: every thread that tries to enter the critical
section will eventually succeed

A good solution should also work for an arbitrary number of threads sharing the
same memory

(NOTE: Freedom from starvation implies freedom from deadlock)

20

Deadlocks

• A mutual exclusion protocol provides exclusive access to shared resources to
one thread at a time

• Threads that try to access the resource when it is not available will have to
block and wait

• Mutually dependent waiting conditions may introduce a deadlock

21

A deadlock is the situation where a group of threads wait forever
because each of them is waiting for resources that are held by another

thread in the group (circular dependency)

Deadlock: Example

A protocol that achieves mutual exclusion
but introduces a deadlock:

22

Entry protocol: Wait until all other threads
have executed their critical section

Via, resti servita Madama brillante – E. Tommasi Ferroni, 2012

A deadlock is the situation where a group of threads wait forever
because each of them is waiting for resources that are held by another

thread in the group (circular dependency)

The Dining Philosophers

• Dining philosophers: A classic synchronization problem introduced by Dijkstra

• It illustrates the problem of deadlocks using a colorful metaphor (by Hoare)

23

• Five philosophers are sitting around a dinner table, with
a fork in between each pair of adjacent philosophers

• Each philosopher alternates between thinking
(non-critical section) and eating (critical section)

• In order to eat, a philosopher needs to pick up the two
forks that lie to the philosopher’s left and right

• Since the forks are shared, there is a synchronization
problem between philosophers (threads)

Deadlocking philosophers
An unsuccessful attempt at solving the dining philosophers problem:

24

entry () {

left_fork.acquire(); // pick up left fork

right_fork.acquire();// pick up right fork

}

critical section { eat(); }

exit () {

left_fork.release(); // release left fork

right_fork.release();// release right fork

}

This protocol deadlocks if all philosophers get their
left forks, and wait forever for their right forks to
become available

The Coffman conditions

Necessary conditions for a deadlock to occur:

1. Mutual exclusion: threads may have exclusive access to the shared resources

2. Hold and wait: a thread may request one resource while holding another one

3. No preemption: resources cannot forcibly be released from threads that hold them

4. Circular wait: two or more threads form a circular chain where each thread waits for
a resource that the next thread in the chain is holding.

* Avoiding deadlocks requires to break one or more of these conditions

25

Breaking a circular wait
A solution to the dining philosophers problem that avoids deadlock by breaking
circular wait: pick up first the fork with the lowest id number

It avoids circular wait since not every philosopher will pick up their left fork first

26

entry () {
if (left_fork.id()< right_fork.id())
{ left_fork.acquire();

right_fork.acquire();
}

else
{ right_fork.acquire();

left_fork.acquire();
}

}
critical section { eat(); }
exit () { /* ... */ }

Ordering shared resources and forcing all
threads to acquire the resources in order is
a common measure to avoid deadlocks

2

0

0

1

3

4

2 3

1

4

Starving philosophers
A solution to the dining philosophers problem that avoids deadlock by breaking
hold and wait (and thus circular wait): pick up both forks at once (atomic op.)

27

entry () {

forks.acquire(); // pick up left

and right fork, atomically

}

critical section { eat(); }

exit () {

forks.release(); // release left

and right fork, atomically

}

It avoids deadlock, but it may introduce starvation: a
philosopher may never get a chance to pick up the forks

Starvation

No deadlock means that the system makes progress as a whole

However, some thread may still make no progress because it is treated unfairly
in terms of access to shared resources

28

Avoiding starvation requires an additional assumption about the scheduler

Starvation is the situation where a thread is

perpetually denied access to a resource it requests

Fairness

Applied to a scheduler:
• request = a thread is ready (enabled)

• fairness = every thread has a chance to execute

29

Avoiding starvation requires the scheduler to

“give every thread a chance to execute”

Starvation is the situation where a thread is

perpetually denied access to a resource it requests

Weak fairness: if a thread continuously requests (that is, without interruptions) access to a
resource, then access is granted eventually (or infinitely often)

Strong fairness: if a thread requests access to a resource infinitely often, then access is
granted eventually (or infinitely often)

Sequential philosophers
Other solution to dining philosophers problem to avoid deadlock and starvation:

A (fair) waiter decides which philosopher eats

The waiter gives permission to eat to one philosopher at a time

30

entry () {

while (!waiter.can_eat(k)) {

// wait for permission to eat

}

left_fork.acquire();

right_fork.acquire();

}

critical section { eat(); }

exit () { /* ... */ }

Having a centralized arbiter avoids deadlocks and starvation, but a waiter who only gives
permission to one philosopher a time basically reduces the philosophers to following a
sequential order without active concurrency.

Having a centralized arbiter
avoids deadlocks and starvation

• but a waiter who only gives
permission to one philosopher a
time obliges to follow a sequential
order without active concurrency

Locks

31

Lock objects

• Several threads share the same object lock of type Lock

• Many threads calling lock.lock(): exactly one thread 𝑡 acquires the lock
• 𝒕’s call lock.lock() returns: 𝒕 is holding the lock

• other threads block on the call lock.lock(), waiting for the lock to become available

• A thread 𝒕 that is holding the lock calls lock.unlock()to release the lock
• 𝒕’s call lock.unlock() returns: the lock becomes available

• another thread waiting for the lock may succeed in acquiring it

Locks are also called mutexes (they guarantee mutual exclusion)

32

interface Lock {

void lock(); // acquire lock

void unlock(); // release lock

}

A lock is a data structure with interface:

Using locks
With lock objects the entry/exit protocols are trivial:

• Entry protocol: call lock.lock()

• Exit protocol: call lock.unlock()

33

The implementation of the Lock interface should guarantee
mutual exclusion, deadlock freedom, and starvation freedom

Only one thread
will succeed in
getting the lock

Only when releasing
the lock, the other

thread can get it

Using locks in Java

// package with lock-related classes

import java.util.concurrent.locks.*;

// shared with other synchronizing threads

Lock lock;

while (true) {

lock.lock(); // entry protocol

try {

// critical section

// mutual exclusion is guaranteed

// by the lock protocol

}

finally { // lock released even if an exception

// is thrown in the critical section

lock.unlock(); // exit protocol

}

}

34

Why critical section
inside a try-finally?

To avoid holding the lock in
case of an exception

(blocking all other threads)

Counter with mutual exclusion

public class LockedCounter extends CCounter
{

@Override
public void run() {

lock.lock();
try {

// int cnt = counter;
// counter = counter + 1;
super.run();

}

finally {
lock.unlock();

}
}
// shared by all threads working
// on this object
private Lock lock = new ReentrantLock();

}

The main is as before, but
instantiates an object of class
LockedCounter

• What is printed by running:
java ConcurrentCount?

• May the printed value change
in different reruns?

35

Entry
protocol

Exit
protocol

Critical
section

To allow threads lock a resource
more than once

NO: Always 2

Built-in locks in Java
Every object in Java has an implicit lock, which can be accessed using the
keyword synchronized

36

Method locking (synchronized methods):

synchronized T m() {
// the critical section

// is the whole method body

}

Every call to m implicitly:
1. acquires the lock
2. executes m
3. releases the lock

Block locking (synchronized block):

synchronized(this) {
// the critical section

// is the block's content

}

Every execution of the block implicitly:
1. acquires the lock
2. executes the block
3. releases the lock

Counter with mutual exclusion: with synchronized

public class SyncCounter

extends CCounter

{

@Override

public synchronized

void run() {

// int cnt = counter;

// counter = counter + 1;

super.run();

}

}

public class SyncBlockCounter

extends CCounter

{

@Override

public void run() {

synchronized (this) {

// int cnt = counter;

// counter = counter + 1;

super.run();

}

}

}

37

Lock implementations in Java
The most common implementation of the Lock interface in Java is

class ReentrantLock

Mutual exclusion:
• ReentrantLock guarantees mutual exclusion

Starvation:
• ReentrantLock does not guarantee freedom from starvation by default
• however, calling the constructor with new ReentrantLock(true) “favors granting access

to the longest-waiting thread”
• this still does not guarantee that thread scheduling is fair

Deadlocks:
• one thread will succeed in acquiring the lock
• however, deadlocks may occur in systems that use multiple locks (remember the dining

philosophers)

38

Built-in lock implementations in Java

Built-in locks – used by synchronized methods and blocks – have the same
behavior as the explicit locks of java.util.concurrent.locks

(with no guarantee about starvation)

Built-in locks, and all lock implementations in java.util.concurrent.locks

are re-entrant: a thread holding a lock can lock it again without causing a
deadlock

39

Semaphores

40

* Photo: British railway semaphores David Ingham, 2008

Semaphores
A (general/counting) semaphore is a data structure with interface:

interface Semaphore {

int count(); // current value of counter

void up(); // increment counter

void down(); // decrement counter

}

Several threads share the same object sem of type Semaphore:
• initially count is set to a nonnegative value C (the initial capacity)

• a call to sem.up() atomically increments count by one

• a call to sem.down(): waits until count is positive, and then atomically decrements
count by one

41

Semaphores for permissions
A semaphore is often used to regulate access permits to a finite number of
resources:

• the capacity C is the number of initially available resources

• up (also called signal) releases a resource, which becomes available

• down (also called wait) acquires a resource if it is available

43

Mutual exclusion for two processes with semaphores
With semaphores the entry/exit protocols are trivial:

• initialize semaphore to 1

• entry protocol: call sem.down()

• exit protocol: call sem.up()

44

Semaphore sem = new Semaphore(1);

thread t thread u

int cnt; int cnt;

sem.down();

cnt = counter;

counter = cnt + 1;

sem.up();

sem.down();

cnt = counter;

counter = cnt + 1;

sem.up();

1
2
3
4

1
2
3
4

The implementation of the Semaphore interface guarantees mutual exclusion,
deadlock freedom, and starvation freedom

Acts as a lock

Weak vs. strong semaphores

Every implementation of semaphores should guarantee:

• the atomicity of the up and down operations

• deadlock freedom (for threads only sharing one semaphore: deadlocks may
still occur if there are other synchronization constraints)

Fairness is optional:

Weak semaphore: threads waiting to perform down are scheduled nondeterministically

Strong semaphore: threads waiting to perform down are scheduled fairly in FIFO (First In
First Out) order

45

Invariants

An object’s invariant is a property that always holds between calls to the
object’s methods:

• the invariant holds initially (when the object is created)
• every method call starts in a state that satisfies the invariant
• every method call ends in a state that satisfies the invariant

Ex: A bank account that cannot be overdrawn has an invariant balance >= 0

class BankAccount {
private int balance = 0;
void deposit(int amount)

{ if (amount > 0) balance += amount; }
void withdraw(int amount)

{ if (amount > 0 && balance > amount) balance -= amount; }
}

46

Invariants in pseudo-code

• We may annotate classes with the pseudo-code keyword invariant

• Note that invariant is not a valid Java keyword – we highlight it in a different color –
but we will use it whenever it helps make more explicit the behavior of classes

class BankAccount {

private int balance = 0;

void deposit(int amount)

{ if (amount > 0) balance += amount; }

void withdraw(int amount)

{ if (amount > 0 && balance > amount) balance -= amount; }

invariant{ balance >= 0; } // not valid Java code

}

47

Invariants of semaphores
A semaphore object with initial capacity C satisfies the invariant:

interface Semaphore {

int count();

void up();

void down();

invariant{

count() >= 0;

count() == C + #up - #down;

}

}

Invariants characterize the behavior of an object, and are very useful for proofs

48

Number of calls to up up can increment
beyond the initial capacity

NOT
valid

Java code

Number of calls to down

A semaphore with capacity 1 and such that count() is always at most 1 is
called a binary semaphore

interface BinarySemaphore extends Semaphore {
invariant
{ 0 <= count() <= 1;

count() == C + #up - #down; }
}

Binary semaphores

49

Mutual exclusion uses a
binary semaphore:

If the semaphore is strong this guarantees starvation freedom

Semaphore sem = new Semaphore(1);

// shared by all threads

thread t

sem.down();

// critical section

sem.up();

Binary semaphores vs. locks

Binary semaphores are very similar to locks with one difference:

• In a lock, only the thread that decrements the counter to 0 can increment it
back to 1

• In a semaphore, a thread may decrement the counter to 0 and then let
another thread increment it to 1

Thus (binary) semaphores support transferring of permissions

50

Using semaphores in Java

package java.util.concurrent;

public class Semaphore {

Semaphore(int permits);

// initialize with capacity `permits'
Semaphore(int permits, boolean fair);

// fair == true iff create a strong semaphore
// fair == false iff create a weak semaphore (default)

void acquire(); // corresponds to down
void release(); // corresponds to up
int availablePermits(); // corresponds to count

}

Method acquire may throw an InterruptedException: catch or propagate

51

Synchronization with
semaphores

52

The k-exclusion problem

• Mutual exclusion problem = 𝟏-exclusion problem

• The “hot desk” is an instance of the 𝑘-exclusion problem

53

A solution to the 𝑘-exclusion
problem using a semaphore of
capacity 𝑘: A straightforward
generalization of mutual exclusion

Semaphore sem = new Semaphore(k);

// shared by all threads

thread t

sem.down();

// critical section

sem.up();

The k-exclusion problem: devise a protocol that allows
up to k threads to be in their critical sections at the same time

Barriers

54

A solution to the barrier synchronization problem for 2 threads using binary
semaphores:

A barrier is a form of synchronization where there is a point (the barrier)
in a program’s execution that all threads in a group have to reach

before any of them is allowed to continue

Semaphore[] done = {new Semaphore(0), new Semaphore(0)};

t0 t1

// code before barrier

done[t0].up(); // t done
done[t1].down(); // wait u
// code after barrier

// code before barrier

done[t1].up(); // u done
done[t0].down(); // wait t
// code after barrier

Capacity 0 forces
up before down

up done
unconditionally

down waits until
the other thread
has reached the

barrier

	Slide 0
	Slide 1: Lesson’s menu
	Slide 2: Lesson’s menu
	Slide 3: Concurrent programs
	Slide 4: Abstraction of concurrent programs
	Slide 5: Traces
	Slide 6: Races
	Slide 7: Race conditions
	Slide 8: Concurrency humor
	Slide 9: Data races
	Slide 10: Data races
	Slide 11: Data races vs. Race conditions
	Slide 12: Synchronization problems
	Slide 13: Push out the races, bring in the speed
	Slide 14: Synchronization
	Slide 15: Shared memory vs. Message passing synchronization
	Slide 16: Shared memory vs. Message passing synchronization
	Slide 17: The mutual exclusion problem
	Slide 18: The mutual exclusion problem
	Slide 19: Mutual exclusion problem example: Concurrent Counter
	Slide 20: What's a good solution to the mutual exclusion problem?
	Slide 21: Deadlocks
	Slide 22: Deadlock: Example
	Slide 23: The Dining Philosophers
	Slide 24: Deadlocking philosophers
	Slide 25: The Coffman conditions
	Slide 26: Breaking a circular wait
	Slide 27: Starving philosophers
	Slide 28: Starvation
	Slide 29: Fairness
	Slide 30: Sequential philosophers
	Slide 31: Locks
	Slide 32: Lock objects
	Slide 33: Using locks
	Slide 34: Using locks in Java
	Slide 35: Counter with mutual exclusion
	Slide 36: Built-in locks in Java
	Slide 37: Counter with mutual exclusion: with synchronized
	Slide 38: Lock implementations in Java
	Slide 39: Built-in lock implementations in Java
	Slide 40: Semaphores
	Slide 41: Semaphores
	Slide 42: Semaphores for permissions
	Slide 43: Semaphores for permissions
	Slide 44: Mutual exclusion for two processes with semaphores
	Slide 45: Weak vs. strong semaphores
	Slide 46: Invariants
	Slide 47: Invariants in pseudo-code
	Slide 48: Invariants of semaphores
	Slide 49: Binary semaphores
	Slide 50: Binary semaphores vs. locks
	Slide 51: Using semaphores in Java
	Slide 52: Synchronization with semaphores
	Slide 53: The k-exclusion problem
	Slide 54: Barriers
	Slide 55: QUIZ ”Races and Locks”

