
W
IT
H
A
N
SW
E
R
S!
!!

Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391

Thursday, 26 October 2022

Exam supervisor: N. Piterman (piterman@chalmers.se, 073 856 49 10)

(Exam set by N. Piterman, based on the course given September-October
2022)

Material permitted during the exam (hjälpmedel): Two textbooks;
four sheets of A4 paper with notes (potentially on both sides of each paper);
English dictionary.

Visits to the exams rooms: The examiner will not be able to visit the
exam rooms. Teaching assistants will visit the exam rooms instead. Invigi-
lators are encourated to allow students to call the examiner for questions.

Grading: You can score a maximum of 70 points. Exam grades are: be-
tween 28�41 (3), between 42�55 (4), 56 or more (5).

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows: between 40�59 (3),
between 60-79 (4), 80 or more (5).

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

� Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

� Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

� Answer each question on a new page. Glance through the whole paper
�rst; �ve questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1

W
IT
H
A
N
SW
E
R
S!
!!

Q1 (10p). On the next page there is an excerpt from the implementation of the
simple software transactional memory machine presented in lecture 11.
The full code is available in appendix.

Currently, the implementation does not distinguish between variables
that are used for reading and for writing. That is, even if a variable is
unchanged, when the result of a transaction is committed it will get a
new version number.

(Part a). Change the program above so that a transaction will keep
track of which variables actually changed and increase the version num-
ber of only those that have changed.

(5p)

Answer: here is one possible implementation.

1 % Variable: {name, version, value, changed}

2 -record(var, {name, version = 0, value = undefined, changed = false}).

3

4 % read value of variable

5 read(#var{value = Value}) ->

6 Value.

7

8 % write ‘Value’ to ‘Var’

9 write(Var = #var{}, Value) ->

10 Var#var{value = Value, changed = true}.

11

12 stm(State = #state{storage = Storage},

13 {push, Vars}) ->

14 case try_push(Vars, Storage) of

15 {success, NewStorage} ->

16 {reply, State#state{storage =

17 NewStorage}, success};

18 fail ->

19 {reply, State, fail}

20 end.

21

22 try_push([], Storage) ->

23 {success, Storage};

24 try_push([Var = #var{name = Name, version = Version, changed = true} | Vars],

25 Storage) ->

26 case dict:find(Name, Storage) of

27 {ok, #var{version = Version}} ->

28 try_push(Vars,

29 dict:store(Name, Var#var{version = Version + 1}, Storage));

30 _ -> fail

2

W
IT
H
A
N
SW
E
R
S!
!!

31 end;

32 try_push([Var = #var{name = Name, version = Version, changed = false} | Vars],

33 Storage) ->

34 case dict:find(Name, Storage) of

35 {ok, #var{version = Version}} ->

36 try_push(Vars,Storage);

37 _ -> fail

38 end.

(Part b). Give an example of transactions and their execution order
that will expose the di�erence between the new and old implementa-
tions. (5p)

Answer:

For example, suppose that one process does:

1 Vara = pull(Server,a),

2 Varb = pull(Server,b),

3 Modb = write(Varb,read(Vara)+1),

4 push(Server,[Modb,Vara]).

and another process does:

1 Vara = pull(Server,a),

2 Varc = pull(Server,c),

3 Modc = write(Varc,read(Vara)+1),

4 push(Server,[Modc,Vara]).

In the original implementation which ever process pushes second will
fail. In the new implementation both can push their results.

3

W
IT
H
A
N
SW
E
R
S!
!!

1 % Variable: {name, version, value}

2 -record(var, {name, version = 0, value = undefined}).

3

4 % check out variable ‘Name’ from ‘Tm’

5 pull(Tm, Name) ->

6 ...

7

8 % commit all variables in list ‘Vars’ to ‘Tm’

9 push(Tm, Vars) when is_list(Vars) ->

10 ...

11

12 % read value of variable

13 read(#var{value = Value}) ->

14 Value.

15

16 % write ‘Value’ to ‘Var’

17 write(Var = #var{}, Value) ->

18 Var#var{value = Value}.

19

20 stm(State = #state{storage = Storage},

21 {push, Vars}) ->

22 case try_push(Vars, Storage) of

23 {success, NewStorage} ->

24 {reply, State#state{storage =

25 NewStorage}, success};

26 fail ->

27 {reply, State, fail}

28 end.

29

30 try_push([], Storage) ->

31 {success, Storage};

32 try_push([Var = #var{name = Name, version = Version} | Vars],

33 Storage) ->

34 case dict:find(Name, Storage) of

35 {ok, #var{version = Version}} ->

36 try_push(Vars,

37 dict:store(Name, Var#var{version = Version + 1}, Storage));

38 _ -> fail

39 end.

4

W
IT
H
A
N
SW
E
R
S!
!!

Q2 (18p). In the bounded bu�er problem, multiple producers and multiple con-
sumers have access to a shared resource and collaborate in adding items
to it (producers) and removing items from it (consumers).

If only one producer and one consumer are available, it is possible to im-
plement a simpler data structure, where two bounded bu�ers are allo-
cated, inbu�er and outbu�er. The producer continously produces new
data and add it to infbu�er until inbu�er is full. The consumer contin-
uously consumes data from outbu�er until outbu�er is empty. When
inbu�er is full and outbu�er is empty the two bu�ers are swapped.

Your task is to implement a class supporting this access pattern. A
skeleton for the code and the way it would be used by two threads is
available on the next page.

Notice that the code handles all exceptions by throwing them further,
so you do not have to handle exceptions.

Hint: Think about all synchronization mechanisms we have learned.

Notice: Solutions should allow the producer/consumer to produce/-
consume all the bu�er without synchronization. Synchronization should
occur only at points of exchange of bu�ers.

(Part a). Write the declarations of the variables you will use for
synchronization. Pay attention to types, initialization, and scope. (4p)

(Part b). Complete the implementation of the constructor. (2p)

(Part c). Complete the implementation of the method read according
to the description above. (6p)

(Part d). Complete the implementation of the method write accord-
ing to the description above. (6p)

Credits: this question is modi�ed from an exam given at the university
of Twente.

The rest of this page is left blank on purpose.

5

W
IT
H
A
N
SW
E
R
S!
!!

1 public class ProducerConsumer {

2 private int[] inbuffer, outbuffer;

3 private int readloc, writeloc;

4 final int size = 10;

5

6 // Introduce synchronization

7

8 ProducerConsumer() {

9 inbuffer = new int[size];

10 outbuffer = new int[size];

11 // Finalize initialization

12 }

13

14 int read() throws ... {

15 // Implement

16 return value;

17 }

18

19 void write(int val) throws ... {

20 // Implement

21 }

22

23 public static void main(String[] args) {

24

25 ProducerConsumer pc = new ProducerConsumer();

26

27 final Thread producer = new Thread(() -> {

28 while (true) {

29 try {

30 int val = 0; // produce

31 pc.write(val);

32 } catch (... e) {

33 throw new RuntimeException(e);

34 }}});

35

36 final Thread consumer = new Thread(() -> {

37 while (true) {

38 try {

39 int val = pc.read(); // consume

40 } catch (... e) {

41 throw new RuntimeException(e);

42 }}});

43

44 producer.start();

45 consumer.start();

46 }

47 }

6

W
IT
H
A
N
SW
E
R
S!
!!

Answer:

1 import java.util.concurrent.BrokenBarrierException;

2 import java.util.concurrent.CyclicBarrier;

3

4 public class ProducerConsumer {

5 private int[] inbuffer;

6 private int[] outbuffer;

7

8 private final CyclicBarrier barrier;

9 private int readloc;

10 private int writeloc;

11 final int size = 10;

12

13 ProducerConsumer() {

14 inbuffer = new int[size];

15 outbuffer = new int[size];

16 barrier = new CyclicBarrier(2);

17 readloc=size;

18 writeloc=0;

19 }

20

21 int read() throws InterruptedException, BrokenBarrierException {

22 if (readloc == size) {

23 barrier.await();

24 writeloc = 0;

25 readloc=0;

26 int[] tempbuffer = inbuffer;

27 inbuffer = outbuffer;

28 outbuffer = tempbuffer;

29

30 barrier.await();

31 }

32 System.out.println("Read " + readloc);

33 return outbuffer[readloc++];

34 }

35

36 void write(int val) throws InterruptedException, BrokenBarrierException {

37 if (writeloc == size) {

38 barrier.await();

39 barrier.await();

40 }

41 System.out.println("Wrote " + writeloc);

42 inbuffer[writeloc++]=val;

43 }

44

45 public static void main(String[] args) {

46 // as above

47 }

48 }

7

W
IT
H
A
N
SW
E
R
S!
!!

Q3 (14p). We include below the implementation of a Queue that uses locking to
ensure integrity of the data structure.

1 class SequentialNode<T> implements Node<T>

2 {

3 public T item; // value stored in node

4 public Node<T> next; // next node in chain

5

6 SequentialNode<T>(T item,Node<T> next) {

7 this.item = item;

8 this.next = next;

9 } }

10

11 class LockQueue<T> implements Queue<T>

12 { // access to front and back of queue

13 private Node<T> head = new SequentialNode<T>();

14 private Node<T> tail = new SequentialNode<T>();

15

16 // empty queue

17 public LockQueue() {

18 // value of sentinel does not matter

19 SequentialNode<T> sentinel = new SequentialNode<T>();

20 head.next = sentinel; tail.next = sentinel;

21 }

22

23 public void enqueue(T value) {

24 SequentialNode<T> newNode = new SequentialNode<T>(value,null);

25 synchronized (tail) {

26 SequentialNode<T> last = tail.next();

27 last.next = newNode;

28 tail.next = newNode;

29 } }

30

31 public T dequeue() throws EmptyException {

32 synchronized (head) {

33 SequentialNode<T> sentinel = head.next;

34 SequentialNode<T> first = sentinal.next;

35 if (first == null) throw new EmptyException();

36 T value = first.item;

37 head.next = first;

38 }

39 return value;

40 } }

This queue uses the same structure of the LockFreeQueue. It stores ref-

8

W
IT
H
A
N
SW
E
R
S!
!!

erences to the head and the tail of the queue. Furthermore, the linked
list representing the queue is never empty; its �rst element (the sen-
tinel) is always present but is not part of the queue. Thus, a linked list
that contains only the sentinel represents the empty queue. However,
it uses normal reference and not atomic references.

(Part a) Is it possible for two threads performing enqueue to be in a
data race? What would be the consequences of the data race? (3p)

Answer: No. The tail of the list is �xed for an instance of the queue.
Two enqueues e�ectively occur sequentially as they synchronize on the
tail.

(Part b) Is it possible for two threads performing dequeue to be in a
data race? What would be the consequences of the data race? (3p)

Answer: No. The head of the list is �xed for an instance of the queue.
Two dequeues e�ectively occur sequentially as they synchronize on the
head.

(Part c) Is it possible for a thread performing enqueue and a thread
performing dequeue to be in a data race? What would be the conse-
quences of the data race? (6p)

Answer: Yes. Consider the scenario where the queue is empty. That
is, the linked list contains only the sentinel. The enqueuing thread
(e) locks the tail and the dequeueing thread (d) locks the head. Both
threads access the sentinel, which is the same memory location. Now,
e writes to the sentinel.next while d reads the sentinel.next with no
synchronization between them. The e�ect on the behaviour of the
queue could be that the dequeue throws an exception when an items
have already been added by enqueue (or multiple enqueues).

(Part d) Suggest how to �x the program so that the problems high-
lighted in (a), (b), and (c) above are resolved. (4p)

Answer: Make the next �eld volatile. This would mean that there is
synchronization between writing and the reading.

9

W
IT
H
A
N
SW
E
R
S!
!!

Q4 (16p). In this question we create an Erlang �gate�. This is a device that is
either open or closed. When it is open it allows other processes to pass.
When it is closed it blocks processes until it is opened. This is similar
to the Erlang barrier shown in class whose code is given in the next
page.

Implement an Erlang gate that has the following interface:

1 -module(gate).

2 -export([init/1,wait/1,allow/1,block/1]).

3

4 % initialize an open gate

5 init() ->

6 ...

7

8 % if the gate is open continue

9 % if the gate is closed block until the gate is opened

10 wait(Gate) ->

11 ...

12

13 % open the gate

14 open(Gate) ->

15 ...

16

17 % close the gate

18 close(Gate) ->

19 ...

That is, you should implement a server that is initialized as an open
gate.

An open gate discards all open messages it receives. Once it receives
a close message it closes. It allows arrivals at the gate to immediately
pass through the gate.

A closed gate discards all close messages it receives. It blocks all ar-
rivals at the gate. Once it receives an open message it releases all those
who are waiting for the gate to open and becomes open.

(Part a). Implement the init function. (2p)

(Part b). Implement the wait function. (2p)

(Part c). Implement the open and close functions. (4p)

(Part d). Implement the server loop. (8p)

Credits: this question is modi�ed from an exam given at the university
of Twente.

Answer:

10

W
IT
H
A
N
SW
E
R
S!
!!

Here is an implementation:

1 -module(gate).

2 -export([init/1,wait/1,allow/1,block/1]).

3

4 % initialize gate for ‘Expected’ processes

5 init() ->

6 spawn(fun () -> gate(open) end).

7

8 % Open gate

9 % - First discard further open instructions

10 % - Then handle block instructions

11 % - Then allow arrivals to pass

12 gate(open) ->

13 receive

14 open ->

15 gate(open);

16 close ->

17 gate(closed, 0, []);

18 { arrived, From, Ref } ->

19 From ! { continue, Ref },

20 gate(open)

21 end;

22 % Closed gate

23 % - First discard further open instructions

24 % - Then handle block instructions

25 % - Then allow arrivals to pass

26 % Closed gate accumulates arrivals gives priority to open

27 % discared further blocking instructions

28 gate(closed,Num, PidRefs) ->

29 receive

30 close ->

31 gate(closed, Num, PidRefs);

32 open ->

33 [To ! { continue, Ref} || {To, Ref} <- PidRefs],

34 gate(open);

35 { arrived, From, Ref } ->

36 gate(closed, Num+1, [{From, Ref} | PidRefs])

37 end.

38

39 % block at ‘Gate’ until all processes have reached it

40 wait(Gate) ->

41 Ref = make_ref(),

42 % notify gate of arrival

11

W
IT
H
A
N
SW
E
R
S!
!!

43 Gate ! {arrived, self(), Ref},

44 % wait for signal to continue

45 receive {continue, Ref} -> through end.

46

47 open(Gate) ->

48 Gate ! open.

49

50 close(Gate) ->

51 Gate ! close.

12

W
IT
H
A
N
SW
E
R
S!
!!

For reference, here is the implementation of the Barrier.

1 -module(barrier).

2 -export([init/1,wait/1]).

3

4 % initialize barrier for ‘Expected’ processes

5 init(Expected) ->

6 spawn(fun () -> barrier(0, Expected, []) end).

7

8 % event loop of barrier for ‘Expected’ processes

9 % Arrived: number of processes arrived so far

10 % PidRefs: list of {Pid, Ref} of processes arrived so far

11 barrier(Arrived, Expected, PidRefs)

12 when Arrived =:= Expected -> % all processes arrived

13 % notify all waiting processes

14 [To ! {continue, Ref} || {To, Ref} <- PidRefs],

15 % reset barrier

16 barrier(0, Expected, []);

17 barrier(Arrived, Expected, PidRefs) ->

18 receive % still waiting for some processes

19 {arrived, From, Ref} ->

20

21 % one more arrived: add {From, Ref} to PidRefs list

22 barrier(Arrived+1, Expected, [{From, Ref}|PidRefs])

23 end.

24

25 % block at ‘Barrier’ until all processes have reached it

26 wait(Barrier) ->

27 Ref = make_ref(),

28 % notify barrier of arrival

29 Barrier ! {arrived, self(), Ref},

30 % wait for signal to continue

31 receive {continue, Ref} -> through end.

13

W
IT
H
A
N
SW
E
R
S!
!!

Q5 (12p). The following program is a failed attempt at producing mutual ex-
clusion between two threads using only shared variables. You are re-
quested to analyze the transition table of this concurrent program.

boolean flagp= false; boolean flagq= false;

p q

p1 while(true) { q1 while(true) {
p2 await(!flagq); q2 await(!flagp)
p3: flagp= true; q3: flagq= true;
p4: // critical section q4: critical section
p5: flagp= false; q5: flagq= false;
p6: } q6: }

The state of the program is a quadruple (pi, qj , flagp, flagq), where i
and j range over {2, 3, 5}, and flagp and flagq are Booleans.

Here is a partial state transition table for the program above. Only 9
states are reachable from the initial state (p2, q2, false, false).

state new state if p moves new state if q moves

s1 (2, 2, false, false) FILL THIS ENTRY FILL THIS ENTRY

s2 (2, 3, false, false) FILL THIS ENTRY FILL THIS ENTRY

s3 (2, 5, false, true) FILL THIS ENTRY FILL THIS ENTRY

s4 (3, 2, false, false) FILL THIS ENTRY FILL THIS ENTRY

s5 (3, 3, false, false) FILL THIS ENTRY FILL THIS ENTRY

s6 (3, 5, false, true) FILL THIS ENTRY FILL THIS ENTRY

s7 (5, 2, true, false) FILL THIS ENTRY FILL THIS ENTRY

s8 (5, 3, true, false) FILL THIS ENTRY FILL THIS ENTRY

s9 (5, 5, true, true) FILL THIS ENTRY FILL THIS ENTRY

(Part a) Fill in the blank entries in the table. (8p)

Answer:

state new state if p moves new state if q moves

s1 (2, 2, false, false) (3, 2, false, false) (s4) (2, 3, false, false) (s2)

s2 (2, 3, false, false) (3, 3, false, false) (s5) (2, 5, false, true) (s3)

s3 (2, 5, false, true) no move (s3) (2, 2, false, false) (s1)

s4 (3, 2, false, false) (5, 2, true, false) (s7) (3, 3, false, false) (s5)

s5 (3, 3, false, false) (5, 3, true, false) (s8) (3, 5, false, true) (s6)

s6 (3, 5, false, true) (5, 5, true, true) (s9) (3, 2, false, false) (s4)

s7 (5, 2, true, false) (2, 2, false, false) (s1) no move (s7)

s8 (5, 3, true, false) (2, 3, false, false) (s2) (5, 5, true, true) (s9)

s9 (5, 5, true, true) (2, 5, false, true) (s3) (5, 2, true, false) (s7)

(Part b) Explain how to see from your table that the protocol does
not ful�l mutual exclusion. (2p)

Answer: State s9 is reachable in the table.

14

W
IT
H
A
N
SW
E
R
S!
!!

(Part c) Explain what goes wrong (a very short explanation is enough).
(2p)

Answer: If both threads check that the other thread is not interested
at the same time (i.e., move from 2 to 3) then they both have already
made it possible to go into the critical section.

15

W
IT
H
A
N
SW
E
R
S!
!!

A Full code listings

A.1 Code for Q1

1 -module(stm).

2 -compile(exporet_all).

3

4 % Variable: {name, version, value}

5 -record(var, {name, version = 0, value = undefined}).

6

7 % initialize empty transactional memory and register as ‘Tm’

8 start(Tm) ->

9 Storage = dict:new(), % empty key/value map

10 register(Tm,

11 gserver:start(#state{storage = Storage},

12 fun stm/2)).

13

14 % shutdown ‘Tm’

15 stop(Tm) ->

16 gserver:stop(Tm).

17

18 % create variable ‘Name’ in ‘Tm’

19 % using initial ‘Value’

20 % return:

21 % ok -> success

22 % skip -> variable ‘Name’ already exists

23 create(Tm, Name, Value) ->

24 gserver:request(Tm, {create, Name, Value}).

25

26 % create variable ‘Name’ in ‘Tm’

27 % with ‘undefined’ initial value

28 % return:

29 % ok -> success

30 % skip -> variable ‘Name’ already exists

31 create(Tm, Name) ->

32 create(Tm, Name, undefined).

33

34 % remove variable ‘Name’ from ‘Tm’

35 % return:

36 % ok -> success

37 % skip -> variable ‘Name’ already exists

38 drop(Tm, Name) ->

39 gserver:request(Tm, {drop, Name}).

40

16

W
IT
H
A
N
SW
E
R
S!
!!

41 % check out variable ‘Name’ from ‘Tm’

42 % return:

43 % variable -> variable ‘Name’ found

44 % not_found -> variable ‘Name’ not found

45 pull(Tm, Name) ->

46 gserver:request(Tm, {pull, Name}).

47

48 % commit all variables in list ‘Vars’ to ‘Tm’

49 % return:

50 % success -> changes committed

51 % fail -> changes not committed, abort

52 push(Tm, Vars) when is_list(Vars) ->

53 gserver:request(Tm, {push, Vars});

54 % commit variable Var to ‘Tm’

55 push(Tm, Var) ->

56 push(Tm, [Var]).

57

58 % read value of variable

59 read(#var{value = Value}) ->

60 Value.

61

62 % write ‘Value’ to ‘Var’

63 write(Var = #var{}, Value) ->

64 Var#var{value = Value}.

65

66 stm(State = #state{storage = Storage},

67 {create, Name, Value}) ->

68 case dict:is_key(Name, Storage) of

69 true ->

70 % variable ‘Name’ already exists

71 {reply, State, skip};

72 false ->

73 % add variable

74 Var = #var{name = Name, value = Value},

75 {reply, State#state{storage =

76 dict:store(Name, Var, Storage)}, ok}

77 end;

78

79 stm(State = #state{storage = Storage},

80 {drop, Name}) ->

81 case dict:is_key(Name, Storage) of

82 true ->

83 {reply, State#state{storage =

84 dict:erase(Name, Storage)}, ok};

17

W
IT
H
A
N
SW
E
R
S!
!!

85 false ->

86 % variable ‘Name’ does not exist

87 {reply, State, skip}

88 end;

89

90 stm(State = #state{storage = Storage},

91 {pull, Name}) ->

92 case dict:is_key(Name, Storage) of

93 true ->

94 {reply, State, dict:fetch(Name, Storage)};

95 false ->

96 {reply, State, not_found}

97 end;

98

99 stm(State = #state{storage = Storage},

100 {push, Vars}) ->

101 case try_push(Vars, Storage) of

102 {success, NewStorage} ->

103 {reply, State#state{storage =

104 NewStorage}, success};

105 fail ->

106 {reply, State, fail}

107 end.

108

109 try_push([], Storage) ->

110 {success, Storage};

111 try_push([Var = #var{name = Name, version = Version} | Vars],

112 Storage) ->

113 case dict:find(Name, Storage) of

114 {ok, #var{version = Version}} ->

115 try_push(Vars,

116 dict:store(Name, Var#var{version = Version + 1}, Storage));

117 _ -> fail

118 end.

18

