Chalmers | GOTEBORGS UNIVERSITET
Sandro Stucki, Computer Science and Engineering

Principles of Concurrent Programming TDA383/DIT390
Wednesday, 21 August 2019, 14:00-18:00
(including example solutions)

Exam set and supervised by: Sandro Stucki (sandros@chalmers.se, 076 420 8639)
Examiner: K. V. S. Prasad (prasad@chalmers.se)

Q1. Filing cabinet (10p)

The following pseudo code models a filing cabinet with the capacity to hold 100 files.
(See Appendix A.1 for a full Java version of the code.)

class LockedCabinet {
int[] files = {1, 1, ..., 1 }; // one hundred ’1’s
Lock lock = new ReentrantLock();

lock.lock();
while (files[index] <= 0) { lock.unlock(); lock.lock(); } // busy wait
files[index] = files[index] - 1;
lock.unlock();
10}
11
12 void store(int index) {
13 lock.lock();

1
2
3
4
5 void checkout(int index) {
6
7
8
9

14 files[index] = files[index] + 1;
15 lock.unlock();

16}

17 }

The field files[7] indicates the status of the i-th file: files[:] = 1 means that the file
is currently stored in the cabinet, files[7] = O means the file has been checked out. All
100 files are initially stored in the cabinet. The methods checkout() and store() are
used to checkout and return the file at position index. If a thread tries to checkout a file
that is not in the cabinet, it waits for the file to be returned. To avoid multiple threads
accessing the cabinet simultaneously, all read and write instructions to files are guarded
by a lock.

(Part a) Why does the while loop on line 7 repeatedly acquire and release the lock?
What could go wrong if the calls to lock() and unlock() in the loop were removed?
Describe a scenario where this would happen. (2p)

1

N O L RN =

Solution of 1.a: Without these instructions, calls to checkout () could deadlock. Assume,
for example, a system with two threads ¢ and u, where thread ¢ has just successfully
checked out the file at position index, so that files[index] == 0, and neither thread
holds the lock. Next, thread u tries to checkout the file at the same position. It calls
lock.lock(), obtains the lock, and enters the busy loop, waiting for the file to be returned.
But because u is holding the lock, no other thread can return the file, so the value of
files[index] remains 0, and u remains stuck in the loop. If ¢ tries to return the file, it
blocks indefinitely on lock, and neither thread can make progress.

(Part b) Assume that two threads ¢ and u concurrently access the filing cabinet. Thread
t calls store(0), while thread u simultaneously calls checkout (0). Can any data races
occur in this situation? If so, give an example. Otherwise, explain why the code is free
from data races. (2p)

Solution of 1.b: there are no data races. Recall the definition of a data race given in the
course:

A data race occurs when two concurrent threads

e access a shared memory location,
e at least one access is a write,
e the threads use no explicit mechanism to prevent the accesses from be-

ing simultaneous.

In this case, the concurrent threads ¢ and w try to access the shared memory location
files[0]. Thread ¢ writes to files[0] on line 14, thread « reads files[0] on line 7 and
writes to it on line 8. However, all three accesses are explicitly guarded by lock, so no
data races can occur.

A semaphore-based implementation

Consider the following alternative, semaphore-based implementation of a filing cabinet.

class SemaphoreCabinet {

Semaphore[] files = {
new Semaphore(l), ..., new Semaphore(l) // one hundred semaphores
b
void checkout(int index) { files[index].acquire(); }
void store(int index) { files[index].release(); }
}

Instead of an array of integers and a lock, SemaphoreCabinet uses an array of semaphores
to keep track of files. The value of the semaphore files[:] indicates the status of file 7.
A value of 1 means the file is in the cabinet, 0 means it has been checked out. To checkout
a file, a thread must acquire the corresponding semaphore; to return a file, it releases the
semaphore. (See Appendix A.2 for a full Java version.)

(Part ¢) Assume we are given one instance lc = new LockedCabinet() of the lock-
based implementation, and one instance sc = new SemaphoreCabinet() of the sema-

2

phore-based implementation. What is the maximum number of threads that can call
store() on the lock-based instance 1c concurrently without blocking? What about the
semaphore-based instance sc? Justify your answers. 2p)

Solution of 1.c: the maximum number of concurrent, non-blocking calls to store()
on lc is one because the LockedCabinet class uses a single lock to guard all calls to
store(). Because the class SemaphoreCabinet uses individual semaphores for each file
instead, every file can be released independently, so the maximum number of concurrent
non-blocking calls to sc.store() is 100.

Assume that there are a hundred threads, each executing the following code:
for (int j = 0; j < 10000; ++j) { c.checkout(id); c.store(id); }

where c is either an instance of LockedCabinet or of SemaphoreCabinet, and id is the
thread identifier (id = 0,1, ...,99).

(Part d) On a system with N = 100 CPU cores, which choice of implementation for
¢ will make the program complete faster, LockedCabinet or SemaphoreCabinet? How
does your answer change if there is only N = 1 CPU core? For each case, give a rough
estimate of the speedup/slowdown of the semaphore-based implementation compared to
the lock-based implementation (1x, 10x, 100X, ...). Justify your answers. (4p)

Solution of 1.d: the semaphore-based solution is about 100x faster for N = 100 CPU
cores; for N = 1 core, the two solutions will have roughly the same performance.

Since there is no code executed between the calls to checkout() and store(), the
threads will spend all their time either acquiring and releasing locks/semaphores, or wait-
ing (if they are blocked). As explained in Part c, the lock-based solution allows only
one thread to execute store() concurrently without blocking, and the same is true for
checkout (). In a system with a hundred CPU cores, all threads can in principle run in
parallel, but most will be blocked if the lock-based implementation is used (contention is
high). The semaphore-based implementation, on the other hand, allows all threads to run
in parallel (there is no contention). Hence the semaphore-based implementation should
be up to 100 x faster.

If there is only N = 1 core, there is no potential for parallelism and most threads
will spend their time waiting, even if they are not trying to acquire a lock or semaphore.
The two implementations should therefore not perform significantly differently in that
scenario.

Code and transition table for Q2 and Q3

The code below models a pair of threads ¢ and u collaborating to solve two tasks. See Q2
for a detailed explanation of the code, and Appendix A.3 for the full Java program.

boolean[] done =

{ false, false }; Lock[] lock = { ... };

thread ¢

while (true) {

O o0 NN N W R W =
—

}

—_
=]

lock[?].lock();
if (!'done[t]) {
done[t{] = true;
else {
lock[u].lock();
if (!'done[u]) done[u] = true;
else break; // exit loop
lock[u].unlock();

11 lock[t].unlock();
12} // t terminates

thread u

while (true) {

lock[u].lock();
if ('donel[u]) {
done[u] = true;

} else {

lock[t].lock();

if (!done[t]) done[t] = true;

else break; // exit loop
lock[t].unlock();

}

lock[u] .unlock();

} // u terminates

O 00 N AN W R W =

_ =
- O

12

Below is an incomplete state transition table for this program. Each state consists of the
current values of the program counters (pc;, pc,), and the arrays done (d;, d,) and lock
(13,) for each thread. The value of /; is the thread holding lock[%]. In the table, pc; and
pc, only take the values 2, 6,9, 11 or 12; pc; = 2 means the next line executed by ¢ is 2.

current state

s'(t) = next state

s'(u) = next state

s = (pcy, pey, dyy dy, Uy, 1) if t moves if u moves

s1 (2, 2,EF —-) (11, 2, T E t,-)=s2 (2, 11,ET, — u)=s;3

ss (11, 2,T.F t,-) (2, 2T.FE——-)=s5 (1,11, T,T, t,u)=s4

s (2,11,E T, — u) (1,11, TT, t,u)=s4 (2, 2ZET,—, -) =35

sqg (11,11, T, T, t,u) (2,11, TT,—w=s, 11, 2, T, T, t,-)=sg

ss (2, 2,T.F—-) (6, 2T.E t,-)=s9 (2,11, T, T,— u)=s7

s¢ (2, 2,ET,— - (11, 2, T T, ¢t,-)=ss (2, 6,E T, — u)=s19
sy (2,11, T, T, — w) (6,11, T, t,u)=s11 (2, 2,T,T,— —) =513
sg (11, 2, T,T, t,-) (2, 2,TT,—-)=s13 (11, 6, T, T, t,u) =512
s (6, 2,T,F t,-) (9, 2,TT,t,t)y=s14a (6,11, T, 7T, t,u) =511
si.o (2, 6ET, — u) (11, 6, T T, t,u)y=s12 (2, 9, T, T u,u)=s5
s11 (6,111, T, ¢, u) no move (6, 2,T.T, t,-) =s16
s12 (11, 6, T, T, t,u) (2, 6T, T,—, u)=s17 nomove

s13 (2, 2,T,T,— -) (6, 2T.T, t,-)=s16 (2, 6,T,T,— u)=s17
sy (9, 2,T,T, ¢, 1) (11, 2, T, T, t,—)=sg no move

s15 (2, 9T, T, uu) no move (2,11, T, T,— u)=s7

S16 (6, 2, T, T, t, —) (12, 2, T, T, t, IL) = S19 (6, 6, T, T, Tf, 'll,) = 518
si7 (2, 6,T, T, — u) (6, 6,TT, t,uy=s18 (2,12, T, T, u, u) = S99
s1g (6, 6,T,T, t,u) no move no move

s19 (12, 2,71, T, ¢, 1) no move no move

Soo (2,12, T, T, u, u) no move no move

Q2. Collaborating threads — state transitions (20p)

The pseudo-code given on page 4 models a pair of threads ¢ and u collaborating to solve
two tasks. Each task is represented by a Boolean done[7] indicating whether task ¢ has
been completed. Each thread is assigned a task and attempts to complete that task first.
Once it has completed its task, it attempts to steal and complete the task assigned to the
other thread. If it discovers that both tasks have been completed already, it terminates.

To ensure that only one thread works on a given task, the array done is guarded by a
pair of locks. Before a thread can read or modify done[¢], it must acquire lock[7].

Page 4 also contains an incomplete state transition table modeling the behavior of the
two threads. To keep the table small, only program positions relevant to the concurrent
behavior of the program are tracked: lines where a lock is acquired (2 and 6) or released
(9 and 11), and the end of the threads (line 12). Remember that pc, = 2 means the next
line executed by ¢ is 2.

Your task is to complete the state transition table and prove or disprove that the code is
free from deadlocks and starvation.

(Part a) Fill in the missing fields in rows ss, S, S11, S14, S16, S18, S19 and sy of the tran-
sition table. Make sure your solution is consistent with the names given for the missing
fields in rows s, S7, S13 and s17. Don’t write directly into the table on page 4. Instead,
write down the complete rows as s; : (X,Y,...), (U, V,...)... on a separate sheet of
paper with the rest of your solutions. (8p)

Solution of 2.a: see completed table on page 4.

(Part b) Does the table contain any final states? If so, list all of them, otherwise explain
what the absence of final states means for the program. (1p)

Solution of 2.b: there are no final states. Only states where both threads have terminated
are final states. The states s;g and s, are candidates because, in each case, one of the
threads has terminated. But, in both cases, the other thread is blocked (rather than ter-
minated), so neither state is final. This means that at least one of the threads does not
terminate (and hence the program does not terminate either).

(Part c) Are any of the fields in the state tuples redundant? Is it possible to remove any of
the variables pc;, pcy, dy, d,,, l;, [, without collapsing two previously distinct states? (2p)

Solution of 2.c: the fields /; and [,, are redundant since their information is contained in
the values of pc; and pc,,. We have

— ifpe; = 2 and pe, € {2,6,9},
li=<u if pe; =2and pc, € {11,12},
t otherwise,

and similarly for [,,.

Deadlock

A thread is blocked in state s if it cannot move from s even though it has not yet termi-
nated. For example w is blocked in s15. A deadlock occurs if the program reaches a state
where both threads are blocked.

(Part d) Can the program deadlock? Prove your answer from the state transition table. If
your answer is yes, also give a trace (i.e. a sequence of states starting from the initial state
s1) that exhibits the deadlock. (2p)

Solution of 2.d: there is a deadlock, as witnessed by the state s;g. In this state, neither
thread can move because each thread is waiting for a lock held by the other thread. Any
trace ending in s13 exhibits the deadlock. For example, (s1, S, S4, S7, $13, S16, S18)-

Starvation

Remember that a thread is starving if it is blocked indefinitely while other threads can
make progress or terminate. We say a thread has become immortal if it is starving while
all other threads have terminated.

(Part e) Can either of the threads become immortal? Prove your answer from the state
transition table. If your answer is yes, also give a trace (i.e. a sequence of states starting
from the initial state s;) that exhibits starvation. 2p)

Solution of 2.e: both threads can become immortal. Thread v is immortal in state sy,
thread ¢ is immortal in state so9. In each case, the immortal thread is waiting on a lock held
by the terminated thread. Any trace that ends in one of these states exhibits starvation.
For example, (s1, S2, S4, S7, S13, S16, S19)-

Releasing locks on termination

Assume that line 8 in the code for threads ¢ and u is changed from
else break; // exit loop

to
else { lock[?].unlock(); lock[u].unlock(); break; }

As a consequence, the values of states s19 and sy must be updated, and 3 new states have
to be added to the transition table.

si9 (12, 2,T,T,—, —) nomove (12, 6, T, T, — u) =891

Soo (2,12, T,T,—,—-) (6,12, T, T, t,—) =89 nomove
so1 (12, 6, T, T,—, u) nomove (12, 12, T, T, —, —) = Sa3
Soo (6,12, T, T, ¢t,—) (12,12, T, T,—, —) =893 no move
Soz (12,12, T, T,—,—) no move no move

(Part f) Fill in the missing fields in rows s;;—s93 in the updated state transition table.
Make sure your solution is consistent with the updated rows s;9 and so. 3p)

6

Solution of 2.f: see table above.

(Part g) Do your answers to Parts d and e change after the code update to line 8? If so,
prove your new answers from the updated state transition table. (2p)

Solution of 2.g: deadlocks can still occur, but neither thread can become immortal now.
The update has not changed state s;5, which still witnesses a deadlock (and all traces
leading to s;g3 remain unchanged). The states s19 and s59, which previously witnessed the
immortality of u and ¢, no longer do so because neither thread is blocked in the updated
states. In fact, there are no longer any states in the updated table where one thread is
blocked while the other thread has terminated, so there are no immortal threads.

Q3. Collaborating threads — logical reasoning (8p)

Consider again the collaboration problem described in its original form on page 4 (not the
updated version from Q2.f). See Q2 for an explanation of the code.

Here in Q3, you must argue from the program, not from the state transition table
(though you may seek inspiration from it). You get full credit for correct reasoning,
whether you use formal logic, everyday language, or a mixture. Formulas and logical
laws make your argument concise and precise, and help you keep track. With everyday
language, be careful not to be fuzzy, or to mistake wishful thinking for proof. Appendix B
reviews briefly the notation of propositional logic and linear temporal logic.

In your reasoning you may assume the following basic invariants about ¢ and u:

1. the threads are only ever observed at the following locations:

pe €4{2,6,11,9,12} and pc, € {2,6,11,9,12};

2. the done flags are Boolean-valued: either d; or —d; and similarly for d,,.

3. the possible values of the locks /; and [, are [, € {—,t,u} and [, € {—,t,u};

4. at any given time, the program counters, and locks have exactly one value:

pc; =@ A pe; = j if and only if © = j, and similarly for pc,, l;, and [,.
Consider the following propositions:
e Bi=(poy=2N1l;# =)V (pe =6 ANl # —),
B,=(pc, =2N1, # =)V (pcy, =6 ANl # —),

W = (pc, = 6 A pe, = 6),

D = B, \ By,

F, = By — <(pe = 12).

(Part a) Describe the propositions B;, D and F; in words. Which concurrency properties
do D and F; correspond to? 3p)

Solution of 3.a: B; says that the thread ¢ is trying to acquire lock[t] or lock[u] but the
respective lock (/; or [,) is already locked. In other words, B; says that ¢ is blocked. Sim-
ilarly, B, says that u is blocked. D says that ¢ and u are simultaneously blocked, which
means that there is a deadlock. F; says that, if ¢ is currently blocked, it will eventually
terminate, i.e. move to line 12, which implies starvation freedom for t.

(Part b) Explain briefly why the following invariants hold at any point during the execu-
tion of the program:

(I1) whenever pc; = 6, we must have [, = t;

(I2) whenever pc, = 6, we must have [, = u. (Ip)

Solution of 3.b: (I1) holds because, for thread ¢ to arrive at line 6, it must have executed
line 2, and hence it must hold the lock lock[t]. (I2) holds by a similar argument for
thread w.

(Part ¢) Show that, at any point in the execution of the program, if W holds, so does D.
(Hint: you may use the invariants from Part b.) (2p)

Solution of 3.c: here is an example proof by contradiction.

Assume W holds, but D does not, that is, either ¢ or © can make a move. We proceed
by case-analysis on these two options (¢ moves, © moves).

First assume ¢ can make a move, then

_'Bt = (pct#Q\/lt:—)/\(pct%fi\/lu:—)
From W we know that pc; = 6 # 2, so we can simplify the above to
(TVlii=—)ANFVl,=—-) = TAlL=— = Il,=-—

which means lock[u] is unlocked. But from W we know that pc, = 6, so [, = —
contradicts (12).

Similarly, if we assume that v can move, we arrive at a contradiction to (I1). Hence,
D must hold, after all.

(Part d) Give a counterexample to F3, i.e. describe a program run where B; becomes true,
but pc; = 12 can never become true afterwards. (2p)

Solution of 3.d: this amounts to giving a scenario where ¢ starves. One such scenario is
for u to execute two iterations of the loop and terminate before ¢ starts its first iteration. In
so doing, u first completes its own task, then steals ¢’s task and, in the process, locks both
lock[u] and lock[t]. At that point, [; = [, = u, pc; = 2, and pc,, = 12, so B, holds (¢ is
blocked). Since u has terminated and ¢ is blocked, neither thread can move, and pc; = 12
will never come true.

Q4. Fork/join parallelism (10p)

The following recursive Java method computes the sum of the values stored in an array
arr between index start and index end (excluding arr[end]).

8

1 int sum(int[] arr, int start, int end) {

2 if (end <= start) return 0;

3 else return arr[start] + sum(arr, start + 1, end);
4 %}

Based on this method, Billy has implemented the following naive fork-join task for sum-
ming up numbers in an array. (See Appendix A.4 for a full code listing.)

class SumTask extends RecursiveTask<Integer> {
protected int[] arr;
protected int start, end;

1
2

3

4

5 SumTask(int[] arr, int start, int end) {

6 this.arr = arr; this.start = start; this.end = end;
7

8

9

}
@Override public Integer compute() {
10 if (end <= start) return 0;
11 else {
12 SumTask t = new SumTask(arr, start + 1, end);
13 t.fork();
14 int s = t.join();
15 return arr[start] + s;
16 }
17 }
18 }

(Part a) Draw the dependency graph for a run of SumTask(arr, 0, 8) assuming arr
has exactly 8 elements. Each node should represent a task instance, with leaf nodes
representing the base cases (where end <= start). Edges should represent parent-child
relationships between tasks. How many nodes does the graph contain? (2p)

Solution of 4.a: there are 8 + 1 = 9 nodes.

© ® 9 O U A W N =

10
11

13
14

(Part b) What is the approximate runtime of SumTask(arr, 0, 8) assuming each task
takes about one unit of time to perform its computation? What is the maximum number of
tasks that can be executed in parallel in this implementation (excluding parent tasks wait-
ing for a child task to finish)? How can these numbers be inferred from the dependency

graph? (4p)

Solution of 4.b: the total runtime is approximately 9 time units — the depth of the de-
pendency graph — and at most one task can run in parallel — the width of the dependency
graph.

After taking a class on concurrent programming, Billy adjusts the compute () method of
SumTask as follows:

@Override public Integer compute() {

if (end <= start) return 0;
else if (end == start + 1) return arr[start];
else {

int mid = (start + end) / 2;

SumTask tl = new SumTask(arr, start, mid);
SumTask t2 = new SumTask(arr, mid, end);
t1l.fork();

t2.fork();

int sl = tl.join();

int s2 = t2.join();

return sl + s2;

(Part ¢) What is the total number of tasks created by the updated implementation when
running an instance of SumTask(arr, 0, 8)? Assume this instance is running on a ma-
chine with 8 or more CPU cores. Does the new implementation improve the total runtime

10

O 00 N AN W R W N =

—_
(=]

compared to the naive one? If so, why? Justify your answers by drawing the dependency
graph for SumTask(arr, 0, 8) using the new implementation of compute(). (4p)

Solution of 4.c: there are 15 tasks (= number of nodes in the dependency graph). The
total runtime is now approximately 4 time units (= depth of the graph) which is a clear
improvement. This is because more tasks can run in parallel now: the maximum number
of parallel tasks improved from 1 to 8 (= width of the graph).

’arr[l] Harr[Z] Harr[B] Harr[4] Harr[S] Harr[6] Harr[7] Harr[8] ‘

Q5. Event counter (12p)

The following Erlang function implements the event handler of a so-called event counter.

handler(Goal, Done, Clients) when Done == Goal -> % Goal reached
[C ! {done, N} || {C , N} <- dict:to_list(Clients)],
handler(Goal, 0, dict:new()); % reset server state
handler(Goal, Done, Clients) -> % Goal not yet reached
receive
{event, From} ->
From ! ok,

NewClients = dict:update_counter(From, 1, Clients),
handler(Goal, Done + 1, NewClients)
end.

An event counter is a server that receives and counts event messages from clients. The
server keeps track of the total number of received events using the argument Done, and of
the number of events received from particular clients using the dictionary Clients. When
Done reaches a predefined number Goal, the server sends a done message to all its clients
and resets its state (except for the Goal argument, which never changes).

Clients interact with the server by calling the functions event/0 and wait/0.

event() ->
counter ! {event, self()},
receive ok -> ok end.

wait() ->
receive {done, N} -> N end.

Clients notify the server of events by calling event(). When a client calls wait(), it
blocks until it receives a done message from the server.
See Appendix A.5 for a full code listing.

11

(Part a) List all the message types processed by the server. For each type, describe

the name of the message (e.g. “ok™);

the sender and receiver of the message (e.g. “from server to client”);

the payload of the message (e.g. “the sender PID” or “no payload”);

what causes a message to be sent (e.g. “a client calls the event function”). (3p)

Solution of 5.a: There are three types of messages:

e {done, N} — sent from the server to clients when Done has reached Goal; N is the
number of events registered from the respective client since the last server reset;

e ok — sent from the server to clients to acknowledge the reception of an event (no
payload);

e {event, From} — sent from a client with PID From to the server when the client
calls event ().

(Part b) What is the meaning of the number returned by a call to wait()? (1p)

Solution of 5.b: wait() returns the number of events sent from the calling client to the
server since the last reset of the server state (i.e. since the server was created, or since the
last reached Goal events).

Assume an event counter with Goal=2 has just been initialized and two processes P and Q
are spawned from the main process using the following code:

Main = self(), % remember PID of main process

P = spawn(fun() -> event(), event(), Main ! {self(), wait()} end),
Q = spawn(fun() -> event(), Main ! {self(), wait()} end),
event(). % event generated by the main process

Here are two possible sequences of messages received by the Main process after P and Q
terminate:

1. {P,2},{0Q,1}.

2. {Q,1}, {P,1}.

(Part c¢) For each sequence, give a corresponding sequence of messages received by the
server that explains the messages seen by Main. Your answer should be of the form
(Mjy, Dy), (Ms, Dy), ..., where each M, is a message received by the server and D; is the
value of Done before M is processed by the server. (2p)

Solution of S.c: Here are two example sequences (others are possible):
1. ({event, P}, 0), ({event,P}, 1), ({event,Q}, 0), ({event,Main}, 1).
2. ({event,P}, 0), ({event,Q}, 1), ({event,Main}, 0), ({event,P}, 1).

12

Resetting the server

Sometimes it is necessary to reset the event counter. For this, we introduce a new type of
message — reset — that can be sent to the server from any other process. reset messages
are handled as follows.

By the server: when the server receives a message of the form {reset, P} from process
P, it first responds to P with an ok message. It then sends a reset message to all its
clients (those listed in the Clients dictionary). Finally, it resets its internal state (Done
and Clients).

By clients: clients that receive a reset message while waiting for a done message from
the server (in a call to wait ()) exit the wait function and return error to indicate that the
server was reset without reaching its goal.

You are now asked to write a short piece of code. You may use Erlang, pseudo code, or
a mixture of both. Syntax details, such as punctuation, are not important, but an experi-
enced Erlang programmer should be able to understand your code. Your code must use
functional style: use recursion, list comprehensions or higher-order functions instead of
mutable state or loops. You are not expected to write more than 20 lines of code in total.

(Part d) Implement the reset mechanism according to the above specification. Describe
the necessary changes to the functions wait/0 and handler/3. You don’t need to repeat
parts of the code that do not change. Describe also the new function reset/0 used to reset
the server. Calls to reset() should block until an acknowledgment from the server has
been received. (6p)

Solution of 5.d: here is an example implementation:

wait() ->
receive
{done, N} -> N;
reset -> error % add clause handling ‘reset’ messages
end.

reset() ->
counter ! {reset, self()},
receive ok -> ok end.

handler(Goal, Done, Clients) when Done == Goal -> ... % no changes
handler(Goal, Done, Clients) -> % Goal not yet reached
receive
{event, From} -> ... % no changes
{reset, From} ->
From ! ok,

[C! reset || {C, _} <- dict:to_list(Clients)],
handler(Goal, 0, dict:new()) % reset server state
end.

13

1
2
3
4
5
6
7
8
9

14

26

31
32

1

Q6. Monitor-based filing cabinet (10p)

Recall the lock-based filing cabinet from Q1 (page 1).

class LockedCabinet {
int[] files={1, 1, ..., 1 }; // one hundred ’'1’s
Lock lock = new ReentrantLock();
void checkout(int index) {
lock.lock();
while (files[index] <= 0) { lock.unlock(); lock.lock(); } // busy wait
files[index] = files[index] - 1;
lock.unlock();
}
void store(int index) {
lock.lock(); files[index] = files[index] + 1; lock.unlock();
}
}

Here in Q6, you will be asked to reason about the following monitor-based variant of
LockedCabinet, and to compare the two versions. (See Appendices A.1 and A.6 for the
full Java code of each version.)

class MonCabinet {

private int[] files = {1, 1, ..., 1 }; // one hundred ’'1’s
Lock lock = new ReentrantLock();
Condition returned = lock.newCondition(); // new!

void checkout(int index) {
lock.lock();
while (files[index] <= 0) { returned.await(); } // changed!
files[index] = files[index] - 1;
lock.unlock();
}
void store(int index) {
lock.lock();
files[index] = files[index] + 1;
returned.signal(); // new!
lock.unlock();

}

Note the new condition variable returned. The variable is used by threads executing the
checkout () method to wait for the file at position index to be returned. Whenever a file
is returned, the store() method uses returned to notify waiting threads.

Let sc be a filing cabinet that is accessed by 100 different threads executing the following
code on a 4-core CPU:

for (int j = 0; j < 100000; ++j) {

14

[NV N)

22

// switch between files across iterations
sc.checkout(j % 100);
sc.store(j % 100);

}

(Part a) Which of the implementations do you expect to perform better in this setting,
LockedCabinet or MonCabinet? Justify your answer. (2p)

Solution of 6.a: the monitor-based version should perform better.

No code is executed between the calls to checkout() and store(), so threads will
spend all their time locking/unlocking lock, signaling, or waiting (if they are blocked).
Contention is high because there is only one lock guarding the methods store() and
checkout (). To make matters worse, most threads are trying to access the same file at
roughly the same time, and will thus be waiting in checkout ().

Since LockedCabinet uses a busy-wait strategy, threads waiting in checkout () do
not yield and instead waste precious CPU time repeatedly locking and unlocking lock.
The MonCabinet class, on the other hand, uses the condition variable returned to block
waiting threads. This frees up CPU cores and makes them available to other threads that
are not waiting. Since there are many more threads than CPU cores, the strategy used by
MonCabinet will be much more efficient in this case.

(Part b) Assume that the while loop on line 22 in the code listing for MonCabinet is
replaced by the following if statement:

if (files[index] <= 0) { returned.await(); } }

How does this change affect the behavior of checkout () if a signal-and-continue strategy
is used? Does it make a difference if a signal-and-wait strategy is used? (4p)

Solution of 6.b: with this change, the checkout () method may behave incorrectly, irre-
spective of the choice of strategy.

If a signal-and-continue strategy is used, the value of files[index] may have re-
turned to zero once a thread waiting on returned at line 22 resumes execution. This may
happen, for example, if threads ¢ and u are both waiting on returned and ¢ is scheduled
before u. By the time u resumes execution, ¢ may have acquired the file at index, so
files[index] ==

If a signal-and-wait strategy is used, checkout () may still behave incorrectly, but the
cause is more subtle. Assume thread ¢ executes store(index) with index == 0 while
thread u is waiting to resume execution of a call to store(index) with index == 1. Note
the different values of index in the respective calls! After ¢ calls signal() on returned,
u may resume execution and find that files[0] > 0 but files[1] == 0. Since all calls
to checkout()/store() use the same condition variable, irrespective of the value index
they were called with, a newly activated thread may well find that files[index] ==
for its local value of index.

In either case, a waking thread may decrease files[index] even though the value of
the latter is 0, which violates the specification of the checkout () method.

15

O 00 9 A W B~ W N =

[S T T S S
AN R WD = O

Using multiple locks

Consider the following variant of MonCabinet which uses separate locks and condition
variables for each of the 100 files.

class MultiMonCabinet {
private int[] files = {1, 1, ..., 1 }; // one hundred ’'1’s
Lock[] locks = { ... }; // one hundred locks
Condition[] returned = { ... }; // one hundred condition variables
void checkout(int index) {
locks[index].lock();
while (files[index] <= 0) { returned[index].await(); }
files[index] = files[index] - 1;
locks[index].unlock();
}
public void store(int index) {
locks[index].lock();
files[index] = files[index] + 1; returned[index].signal();
locks[index].unlock();

(Part ¢) Assume 100 different threads executing the code given in Part a on a 4-core
CPU. Which of the monitor-based implementations do you expect to perform better,
MonCabinet or MultiMonCabinet? Justify your answer. (2p)

Solution of 6.c: MultiMonCabinet should perform better.

Again, there is no code executed between the calls to checkout() and store(), so
the threads will spend most of their time waiting to acquire locks. However, contention is
much higher in MonCabinet since there is only one lock guarding the methods store()
and checkout (), while MultiMonCabinet has a separate lock for each file. Hence, when-
ever two threads running on different cores are trying to checkout two different files, one
of them will be blocked in MonCabinet, while both might succeed in MultiMonCabinet.
This leads to a more efficient utilization of CPU resources in MultiMonCabinet and re-
duces overall runtime.

(Part d) Would the behavior of MultiMonCabinet.checkout() change if line 7 in the
above code were changed as follows? Assume a signal-and-wait strategy. (2p)

if (files[index] <= 0) { returned[index].await(); } }

Solution of 6.d: the checkout () method should behave correctly, despite the change.

Since a signal-and-wait strategy is used, threads resuming execution at line 7 are guar-
anteed to find files[index] > 0. Unlike MonCabinet, which used a single condition
variable to signal events for multiple files, MultiMonCabinet uses a separate condition
variable for each file in the cabinet. Consequently, there is no risk of mixing up signals
pertaining to different files.

16

There is a caveat, however. If threads waiting on returned[index] at line 7 can
wake up even though returned[index] has not been signaled, then they might find that
files[index] == 0. This could happen, for example, if some other thread is interrupted
and the scheduling policy allows resuming threads that are currently waiting on a condi-
tion variable.

17

Appendix A. Full code listings

Appendix A.1. Code for Q1 and Q6

1 import java.util.concurrent.x;

2 import java.util.concurrent.locks.*;

3

4 class LockedCabinet {

5 final private int[] files = new int[100];

6 final private Lock lock = new ReentrantLock();

7 public LockedCabinet() {

8 for (int i = 0; i < 100; ++i) { files[i] = 1; }
9

}
10 public void checkout(int index) {
11 lock.lock();
12 try {
13 while (files[index] <= 0) { lock.unlock(); lock.lock(); }
14 files[index] = files[index] - 1;
15 } finally { lock.unlock(); }
16}

17 public void store(int index) {

18 lock.lock();

19 try { files[index] = files[index] + 1; } finally { lock.unlock(); }
20 }

21 public static void main(String[] args) {

22 LockedCabinet 1c = new LockedCabinet();

23 Thread[] ts = new Thread[100];

24 for (int i = 0; i < ts.length; ++i) {

25 final int id = i;

26 ts[i] = new Thread() {

27 @Override public void run() { // thread code for Q1
28 for (int j = 0; j < 10000; ++j) {

29 lc.checkout(id); lc.store(id);

30 }

31 }

32 b

33 ts[i].start();

34 }

35 for (int i = 0; i < ts.length; ++i) {

36 try { ts[i].join(); } catch (InterruptedException ie) {}
37 }

38 }

39 }

18

Appendix A.2. Code for Q1

import java.util.concurrent.x*;

1
2
3 class SemaphoreCabinet {

4 final private Semaphore[] files
5 public SemaphoreCabinet() {
6

7

8

9

new Semaphore[100];

for (int i = 0; i < 100; ++i) { files[i] = new Semaphore(1l); }

}
public void checkout(int index) {
try { files[index].acquire(); } catch (InterruptedException ie) {}

10}
11 public void store(int index) {
12 files[index].release();
13 }
14 public static void main(String[] args) {
15 SemaphoreCabinet sc = new SemaphoreCabinet();
16 Thread[] ts = new Thread[100];
17 for (int i = 0; i < ts.length; ++i) {
18 final int id = i;
19 ts[i] = new Thread() {
20 @Override public void run() { // thread code for Q1
21 for (int j = 0; j < 10000; ++j) {
22 sc.checkout(id); sc.store(id);
23 }
24 }
25 }
26 ts[i].start();
27 }
28 for (int i = 0; i < ts.length; ++i) {
29 try { ts[i].join(); } catch (InterruptedException ie) {}
30 }
31 }
32 }

19

Appendix A.3. Code for Q2 and Q3

1 import java.util.concurrent. *;

2 import java.util.concurrent.locks.*;

3

4 class TaskThread extends Thread {

5 private int id;

6 public static boolean[] done = { false, false };

7 public static Lock[] lock = { new ReentrantLock(), new ReentrantLock() };
8
9

TaskThread(int id) { this.id = id; }
10
11 @Override public void run() {

12 int me = id;

13 int other = 1 - id;

14 while (true) {

15 lock[me].lock();

16 if (!'donel[me]) {

17 done[me] = true;

18 System.out.println("Thread " + me + " completed task " + me);
19 } else {

20 lock[other].lock();

21 if (!'done[other]) {

22 done[other] = true;

23 System.out.println("Thread " + me + " completed task " + other);
24 } else {

25 break; // exit loop

26 }

27 lock[other].unlock();

28 }

29 lock[me].unlock();

30 }

31 System.out.println("Thread " + me + " done.");
32 }

33
34 public static void main(String[] args) {

35 TaskThread t0 = new TaskThread(0);
36 TaskThread t1 = new TaskThread(1l);
37 t0.start(); tl.start();

38 try {

39 t0.join(); tl.join();

40 } catch (InterruptedException i) {}
41}

42 }

20

Appendix A.4. Code for Q4

1 class SumTaskNaive extends RecursiveTask<Integer> {

2 protected int[] arr;

3 protected int start, end;

4

5 static int sum(int[] arr, int start, int end) {

6 if (end <= start) return 0;

7 else return arr[start] + sum(arr, start + 1, end);
8 }

9

10 SumTaskNaive(int[] arr, int start, int end) {

11 this.arr = arr; this.start = start; this.end = end;
12}

13 @Override public Integer compute() {

14 if (end <= start) return 0;

15 else {

16 SumTaskNaive t = new SumTaskNaive(arr, start + 1, end);
17 t.fork(); int s = t.join();

18 return arr[start] + s;

19 }

20 }

21 public static void main(String[] args) {

22 final int N = 200; int[] numbers = new int[N];

23 for (int i = 0; i < N; ++i) { numbers[i] = i; }

24 SumTaskNaive t = new SumTaskNaive(numbers, 0, N);
25 int res = ForkJoinPool.commonPool().invoke(t);

26 System.out.println("Sum: " + res);

27}

28 }

29

30 class SumTask extends SumTaskNaive {
31 SumTask(int[] arr, int start, int end) { super(arr, start, end); }
32 @Override public Integer compute() {

33 if (end <= start) return 0;

34 else if (end == start + 1) return arr[start];
35 else {

36 int mid = (start + end) / 2;

37 SumTask tl = new SumTask(arr, start, mid);
38 SumTask t2 = new SumTask(arr, mid, end);
39 tl.fork(); t2.fork();

40 int sl = tl.join(); int s2 = t2.join();

41 return sl + s2;

42 }

43}

44 }

21

O 00 N N W AW N =

L W W W NN NN NN NN D = = e s e e s e
W D = O O 0 AN N R WD = O 0 0N R WD = O

Appendix A.5. Code for QS

-module(counter).
-export([init/1,event/0,wait/0,reset/0]).

% start the event counter process with a given Goal
init(Goal) ->
register(counter, spawn(fun () -> handler(Goal, 0, dict:new()) end)).

% notify the counter about an event
event() ->
counter ! {event, self()},
receive ok -> ok end.
% wait until the counter reaches its goal
wait() ->
receive {done, N} -> N end.

% synchronously reset the counter
reset() ->
todo.

% the server’s event handler
handler(Goal, Done, Clients) when Done == Goal -> % Goal reached

[C ! {done, N} || {C , N} <- dict:to_list(Clients)],
handler(Goal, 0, dict:new()); % reset server state
handler(Goal, Done, Clients) -> % Goal not yet reached
receive
{event, From} ->
From ! ok,

NewClients = dict:update_counter(From, 1, Clients),
handler(Goal, Done + 1, NewClients);
{reset, From} ->
todo
end.

22

Appendix A.6. Code for Q6

1 import java.util.concurrent. *;
2 import java.util.concurrent.locks.*;

4 class MonCabinet {

5 final private int[] files = new int[100];

6 final private Lock lock = new ReentrantlLock();
7 final private Condition returned = lock.newCondition();
8 public MonCabinet() {

9 for (int 1 = 0; i < 100; ++i) { files[i] = 1; }

0}
11 public void checkout(int index) {
12 lock.lock();

13 try {

14 while (files[index] <= 0) {

15 try { returned.await(); } catch (InterruptedException ie) {}
16 }

17 files[index] = files[index] - 1;

18 } finally { lock.unlock(); }

19 }

20 public void store(int index) {

21 lock.lock();

22 try { files[index] = files[index] + 1; returned.signal(); }
23 finally { lock.unlock(); }

24}

25 public static void main(String[] args) {

26 MonCabinet mc = new MonCabinet();

27 Thread[] ts = new Thread[100];

28 for (int i = 0; i < ts.length; ++i) {

29 final int id = i;

30 ts[i] = new Thread() {

31 @Override public void run() {

32 for (int j = 0; j < 100000; ++j) {

33 mc.checkout(j % 100); mc.store(j % 100);
34 }

35 }

36 };

37 ts[i].start();

38 }

39 for (int i = 0; i < ts.length; ++i) {

40 try { ts[i].join(); } catch (InterruptedException ie) {}
41 }

42 }

43 }

23

Appendix B. Linear Temporal Logic (LTL) notation

1. An atomic proposition such as g2 (process q is at label ¢2) holds for a state s if and
only if process ¢ is at g2 in s.

2. Let ¢ and v be formulas of LTL. Formulas are either atomic propositions, or are
built up from other formulas using the following operators: — for “not", V for “or",
A for “and", — for “implies", O for “always", and < for “eventually”. A convenient
abbreviation is ¢ iff ¢ (i.e., ¢ if and only if ¥) for (¢ —) A (¢ — ¢).

These operators have the obvious meanings, but two differ from what might be your
interpretation of the names. First, ¢V (“¢ or ¢") is false iff both ¢ and ¢ are false.
This is an “inclusive or", so ¢ V # is also true if both ¢ and ¢ are true. Second,
¢ — Y (“¢ implies ©") is false iff ¢ is true and ¢ is false. So, in particular, ¢ — ¥
is true if ¢ is false. The meanings of the operators O and < are defined below.

3. A path is a possible future of the system, a possibly infinite sequence of states, each
reachable from the previous state in the path. A state s satisfies formula ¢ if every
path from s satisfies ¢.

A path 7 satisfies O¢ if ¢ holds for the first state of 7, and for all subsequent states
in 7. The path 7 satisfies ¢ ¢ if ¢ holds for some state in 7.

Note that O and < are duals:

O¢ = ~O¢ and O¢ = O,

24

