
Chalmers | GÖTEBORGS UNIVERSITET

Alejandro Russo, Computer Science and Engineering

Concurrent Programming TDA383

Saturday, October 24, 2015, M (salar i Maskinhuset), 14:00-18:00.

(including example solutions to programming problems)

Behrouz Talebi (Alejandro Russo), tel. 0707 997189 (0705 110896)

• The maximum amount of points you can score on the exam: 68 points. To pass the course, you
need to pass each lab, and get at least 24 points on the exam.

The grade for the exam is as follows:

Chalmers: grade 3: 24 - 38 points, grade 4: 39 - 53 points, grade 5: 54 - 68 points.
GU: Godkänd 24-53 points, Väl godkänd 54-68 points

The grade for the whole course is based on the points obtained in the exam and the labs. More
specifically, the course grade (exam + lab points) is determined as follows.

Chalmers: grade 3: 40 - 59 points, grade 4: 60 - 79 points, grade 5: 80 - 100 points.
GU: Godkänd if passed the labs and the exam. Väl godkänd is you score 80 points when
considering the points of the exam + the points of the labs.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok)

• Notes:

– Read through the paper first and plan your time.
– Answers preferably in English, some assistants might not read Swedish yet.
– If a question does not give you all the details you need, you may make reasonable assump-

tions. Your assumptions must be clearly stated. If your solution only works under certain
conditions, state them.

– Start each of the questions on a new page.
– The exact syntax of each programming language you are going to use is not so important

as long as the graders can understand the intended meaning. If you are unsure just put in
an explanation of your notation.

– Points will be deducted for solutions which are unnecessarily complicated.
– As a recommendation, consider spending around 45 minutes per exercise. However, this

is only a recommendation.
– To see your exam: by appointment (send email to Alejandro Russo) on Nov 25th, 12:00-

13:00, room 5128 (5th floor), EDIT building.

1

Question 1. Answer the following questions. You should always justify your reply when answering a
Yes/No question. Make it short and to the point.

a) During the lectures we studied the workers model. Which problem does this model mitigate?
(2p)
It mitigates or solves

b) We studied how to make a parallel implementation of the Erlang’s function map, which we
called pmap (where the initial p comes from parallel). Describe one situation when it is not
possible to parallelize a map function call. (3p)

c) How do you know if a function is tail-recursive? (2p)

d) What are spurious wake ups in Java? How do they affect your code when using monitors?
(2p)

e) Can the following code introduce polling? (3p)

while (!sem.tryAcquire()) ;

Question 2. The first solution presented for the shared-update problem was Peterson’s algorithm:

private int turn = 0;
private boolean flag[] = {false, false};
process CS ((int i=0;i<2;i++)) {

other = (i+1)%2;
while (true) {

flag[i] = true;
turn = other
while (flag[other] && turn==other) ;
// Critical section
flag[i] = false;

}
}

a) If we change turn == other by turn == i, does the algorithm still achieves mutual exclu-
sion? Justify your answer. (2p)

b) If we change turn = other by turn = i, does the algorithm still achieves mutual exclusion?
Justify your answer. (2p)

c) If we change turn = other by turn = i and turn == other by turn == i, does the algo-
rithm still achieves mutual exclusion? Is there any chance for deadlock? Justify your answer.
(4p)

Question 3. The Problem To deal with the increased number of song requests at a night club, the famous DJ
Tupac wants to invest in a new system that allows people to request songs via their smartphones,
thus DJ Tupac can focus only on mixing music!

DJ Tupac uses a deck system—the device you see DJs touching all the time when playing
music—which internally uses Java. More precisely, the deck uses the following class to admin-
istrate a play list.

2

class PlayList {
private List<Song> playlist = new List<Song>();
public void addSong (Song title) ;
public Song CurrentSong() ;
public Song nextSong() ;

}

Your assignment

You should use Java 5 monitors as synchronization primitive. Please, do not care about fairness
in your solution. No other synchronization constructs are allowed. Here is a short reference of
what you will need from java.util.concurrent.locks.

class ReentrantLock {
public ReentrantLock();
public Condition newCondition();
public void lock();
public void unlock();

}
class Condition {

public void await();
public void signal();
public void signalAll();

}

a) You are given the task to write up the Java class PlayListThreadSafe that has exactly the
same methods as PlayList but it is thread-safe, i.e., several threads can call its methods
concurrently without damaging the integrity of the playlist. People at the night club can
check out which song is being played or which one comes next as long as the play list is not
being modified.

class PlayListThreadSafe {
// some other fields...
PlayList pl;
public void addSong (Song title) ;
public Song CurrentSong() ;
public Song nextSong() ;

}

(8p)

b) DJ Tupac is now using the deck which includes the class PlayListThreadSafe which you
wrote! While it works, the DJ is a bit unhappy that sometimes people ask for too many songs
in a short time. To make the DJ Tupac happy again, he wants to use a switch on the deck to
disallow further requests or queries to the playlist. When the switch is on, the deck gets into
DJMode. When the DJMode is on, no more requests and queries to the playlist are accepted
until the mode is off. However, users who have requested songs or queried the playlist during
DJMode mode do not need to reissue their requests or queries. You should add the following
code to the previous PlayListThreadSafe class and modified it accordingly:

class PlayListThreadSafe {
... // The same methods and private variable as in the point a)
public void DJmodeON();

3

public void DJmodeOFF();
}

(4p)
Solution:
import java.util.LinkedList;
import java.util.concurrent.locks.*;

class DJMode extends PlayListThreadSafe{
private final Lock lock = new ReentrantLock();
private final Condition condVar = lock.newCondition();
private boolean isBusy = false;

private PlayList pl = new PlayList();

public Song CurrentSong() throws InterruptedException {
lock.lock();
try{

while(isBusy) {
condVar.await();

}
return pl.CurrentSong();

}
finally { condVar.signal(); lock.unlock();
}

}

public Song nextSong() throws InterruptedException {
lock.lock();
try{

while(isBusy) {
condVar.await();

}
return pl.nextSong();

}
finally { condVar.signal(); lock.unlock();
}

}

public void addSong(Song title) throws InterruptedException {
lock.lock();
try{

while(isBusy) {
condVar.await();

}
isBusy = true;
pl.addSong(title);
isBusy = false;
condVar.signal();

}
finally { lock.unlock();
}

}

4

public void DJmodeON() throws InterruptedException{
lock.lock();
try {
isBusy = true;
}
finally { lock.unlock(); }

}
public void DJmodeOFF() throws InterruptedException{

lock.lock();
try {

isBusy = false;
condVar.signal();

}
finally { lock.unlock(); }

}
}

Question 4. The Problem To deal with the heavy traffic over the river Göta Älv, the city of Gothenburg
builds a new bridge. The bridge has two car-lanes, one for each direction. Because of construc-
tion, the middle section of the bridge is currently a single one-way car lane shared by cars in
both directions.

Figure 1: New bridge

We assume the following things:

• Only one car is allowed to pass in one direction at a time on the middle section
• Once a car is passing the middle section it always reaches the end of it, i.e., no car is ever

stuck in the middle section.
• The barriers can be lifted/lowered by the bridge operator.

Your assignment
To get full points your solution must fulfill the following criteria:

• You must use Java. You must use semaphores for synchronization or mutual exclusion.
No other synchronization constructs are allowed.

5

a) You have to implement the simulation of the activity that occurs on the bridge. In this part
of the task you can ignore the barriers and just write the code for cars and assume that the
barriers are lifted, i.e., cars can proceed to the middle section as long as there are no other
cars there (recall that only 1 car can be in the middle section at a time). The same code needs
to be run for cars going Eastbound or Westbound. (4p) Solution:

import java.util.concurrent.Semaphore;

public class Bridge {

static final int N = 10;
Semaphore middle = new Semaphore(1); //Only one car allowed

public static void main(String[] args) {
new Bridge();

}

public Bridge() {
for (int i=0; i < 2*N; i++) {
new Car(i).start();

}
}

public class Car extends Thread {
private int plate;

public Car(int plate) {
this.plate = plate;

}

public void run() {
try{
System.out.println("Car " + plate + " waiting for crossing the bridge");
middle.acquire();
System.out.println("Car " + plate + " crossing the bridge");
this.sleep(500); // It takes some time to cross the bridge
System.out.println("Car " + plate + " crossed the bridge");
middle.release();

} catch (InterruptedException e) {
System.out.println("Exception: " + e);

}
}

}
}

b) At the beginning of rush hour, the bridge operator decides to lower both barriers. Then,
the operator allows N Westbound cars to proceed by raising up the Westbound BarrierA.
After that, the operator does the same thing but in the other direction, i.e., he/she lowers the
Westbound BarrierA, lifts the Eastbound BarrierB, allows N cars to proceed and then lowers
BarrierB. This behavior repeats until the rush hour is over. For simplicity, we will assume
that the amount of cars during that time is a multiple of 2N. In this exercise, you should
implement the code for the operator and cars going East- and Westbound. Recall that we are

6

still assuming that only one car can be at the middle point at a given time. (8p) Solution:

import java.util.concurrent.Semaphore;

public class Bridge {

static final int N = 10;
Semaphore middle = new Semaphore(1); //Only one car allowed

Semaphore east = new Semaphore(0);
Semaphore west = new Semaphore(0);
Semaphore eastDone = new Semaphore(0);
Semaphore westDone = new Semaphore(0);

public static void main(String[] args) {
new Bridge();

}

public Bridge() {
for (int i=0; i < 2*N; i++) {
if(i < N) {
new Car(i, east, eastDone).start();

} else {
new Car(i, west, westDone).start();

}
}
new Operator().start();

}

public class Car extends Thread {
private int plate;
private Semaphore barrierWait;
private Semaphore barrierDone;

public Car(int plate, Semaphore wait, Semaphore done) {
this.plate = plate;
this.barrierWait = wait;
this.barrierDone = done;

}

public void run() {
try{
System.out.println("Car " + plate + " waiting for barrier");
barrierWait.acquire();
System.out.println("Car " + plate + " waiting for crossing the bridge");
middle.acquire();
System.out.println("Car " + plate + " crossing the bridge");
this.sleep(100); // It takes some time to cross the bridge
middle.release();
System.out.println("Car " + plate + " notifying barrier");
barrierDone.release();

} catch (InterruptedException e) {

7

System.out.println("Exception in Car" + plate +" : " + e);
}

}
}

public class Operator extends Thread {

public void run() {
try{
System.out.println("Openning east barrier");
for (int i=0; i<N ; i++) {
east.release();

}

for (int i=0; i<N ; i++) {
eastDone.acquire();

}
System.out.println("All east cars passsed, closed east barrier");

System.out.println("Openning west barrier");
for (int i=0; i<N ; i++) {
west.release();

}

for (int i=0; i<N ; i++) {
westDone.acquire();

}
System.out.println("All west cars passsed, closed west barrier");

} catch (InterruptedException e){
System.out.println("Exception in Operator: " + e);

}
}

}
}

Question 5. During the course, we have seen different kind of primitives for concurrent programming:
semaphores, monitors, message passing, etc. In fact, we mentioned that these primitives are
equally expressive, i.e., what you can do with semaphores, you can do with monitors, what you
can do with monitors, you can do with semaphores, and so on.

Your assignment
Your solution must fulfill the following criteria:

• You must use Erlang. You must use Erlang’s message passing model. No other synchro-
nization constructs are allowed.

In this exercise, we are going to show that message passing is able to encode semaphores. For
that, you need to implement the following Erlang module.

module(sem)
-export([createSem/1, acquire/1, release/1]).

8

createSem(InitialValue) ->
...

acquire(Semaphore) ->
...

release(Semaphore) ->
...

Erlang’s processes can, for instance, use this module in the following manner:

Mutex = createSem(0),
acquire(Mutex),
%% critical section
release(Mutex),
%% rest of the program

Acquiring or releasing a semaphore should not delay acquiring or releasing another one—every
semaphore minds its own business.

(12p)

Question 6. The Problem In mathematics, the multiplication of a n-dimensional vector of the form

v =
[
x1 x2 x3 . . . xn

]
and a quadratic matrix A

A =

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. .
an1 an2 an3 . . . ann

is another vector if the form

v·A=
[
(x1a11 + x2a21 · · ·+ xnan1) (x1a12 + x2a22 · · ·+ xnan2) . . . (x1a1n + x2a2n · · ·+ xnann)

]
Your assignment
Your solution must fulfill the following criteria:

• You must use Erlang. You must use Erlang’s message passing model. No other synchro-
nization constructs are allowed.

Calculating each cell in the vector v ·A sequentially is not necessary since the cells are not
dependent on each other. This present a great opportunity to boost performance by introducing
concurrency. So one could calculate each cell in v ·A independent of each other and if you have
a multicore machine, your code could even run in parallel! Your task is to write Erlang code
which given a vector v and a quadratic matrix A, calculates the multiplication v ·A exploiting
concurrency as much as possible!

Assume the following:

• A matrix is represented as a list of lists of integers, i.e., A = [[1, 2], [3, 4]] where
each list in the list is always a full row.

9

• A vector is represented as a list of numbers.

• We assume that the vector v and matrix A can be always multiplied, i.e., the vector has n
elements and the matrix is quadratic and has n rows and n columns.

• You have the following functions at your hand:

– transpose(A) which returns the transposed matrix (where rows are converted into
columns). For instance, transpose([[1,2],[3,4]]) returns [[1,3][2,4]].

– pmap(F, Xs) which returns the list where every element in Xs has been applied to
function F. Importantly, pmap concurrently applies function F for every element in Xs,
i.e., it creates a process which computes F(X) for every element X in Xs. We saw how
to implement this function in the course, but here you can just use it!

– sum(Xs) which returns the sum of all the elements in the list. For instance, sum([1,2,3])
returns 6.

a) Assume that you have the function sum_of_products(Xs, Ys) which takes lists Xs and Ys

of equal length, and produces the sum of the point-wise multiplication of the list. In other
words, it produces the number X_1*Y_1 + X_2*Y_2 + ... + X_n*Y_n, where X_i is the i-
element of Xs, and Y_i is the i-element of Ys.
Implement the function mult_parallel(Vector,Matrix) which produces the result of mul-
tiplying a Vector of n elements with a quadratic matrix of size n×n using sum_of_product

and exploiting concurrency as much as possible.
Solution:

mult_parallel(Vector, Matrix) ->
Columns = transpose(Matrix),
pmap(fun (Column) -> sum_of_product(Vector, Column) end,

Columns)

(6p)

b) In this point, we want to boost performance even more by implementing concurrently the
multiplication of numbers in sum_of_products(Xs, Ys)—this is useful for multiplying rather
big numbers. The way that we are going to implement that is by first spawning every multi-
plication in a Erlang process and summing up the results produced by them. As a help, we
give you a code skeleton and you should complete the dots (. . .). (6p)

sum_of_product(Xs, Ys) -> sum_of_product_aux(Xs, Ys,length(Xs)).
sum_of_product_aux([],_,N) ->

Products = [receive {res, Result} -> Result end
|| Number <- seq(1,N)],

sum(Products) ;
sum_of_product_aux([X|XS], [Y|YS],N) ->

...

Solution:

sum_of_product(Xs, Ys) -> sum_of_product_aux(Xs, Ys,length(Xs)).
sum_of_product_aux([],_,N) ->

sum [receive {res, Result} -> Result || Number <- seq(1,N)] ;
sum_of_product_aux([X|XS], [Y|YS],N) ->

Myself = self(),
spawn(fun () -> Myself ! {res,X*Y} end)
sum_of_product_aux(XS,YS,N).

10

