
Chalmers | GÖTEBORGS UNIVERSITET

K. V. S. Prasad, Computer Science and Engineering

Concurrent Programming TDA383/DIT390

Saturday 25 October 2014, 14:00 to 18:00.

K. V. S. Prasad, tel. 0736 30 28 22

• Maximum you can score on the exam: 70 points. This paper has four pages, with seven ques-
tions, each carrying between 8 and 12 points.

To pass the course, you need to pass each lab, and get at least 24 points on the exam. Further
requirements for grades (Betygsgränser) are as follows:

CTH (total on exam + labs): grade 3: 40 - 59 pts, grade 4: 60 - 79 pts, grade 5: 80 - 102 pts.
GU (on exam): Godkänd 24-53 pts, Väl godkänd 54-70 pts

• Results: within 21 days.

• Permitted materials (Hjälpmedel):

– Dictionary (Ordlista/ordbok)

• Notes: PLEASE READ THESE

– Time planning: if you allow 3 minutes per point, you will have half an hour to look over
your work at the end. Do not get stuck for more time than you can afford on any
question or part. On no account can you receive, for any question or part, more than the
points assigned to it.

– Start each question on a new page.

– Answers in English only, please. Our graders do not read Swedish.

– A SUMMARY follows of Ben-Ari’s pseudo-code notation, used in this question paper.

– Ben-Ari’s pseudo-code should suffice for your programs, but you can use Java, Erlang or
Promela if you think they are appropriate. The exact syntax of the programming notations
you use is not so important as long as the graders can understand the intended meaning. If
you are unsure, add an explanation of your notation.

– If the correctness of your answer is not clear from inspection, you must justify it. If
you feel you need to, make reasonable assumptions beyond those given, but state them
clearly. If your solution only works under certain conditions, state the conditions.

– Be as precise as you can. Programs are mathematical objects, and discussions about them
may be formal or informal, but are best mathematically argued. Handwaving arguments
will get only partial credit. Unnecessarily complicated solutions will lose some points.

– DON’T PANIC!

1



SUMMARY OF BEN-ARI’S PSEUDO-CODE NOTATION

Global variables are declared centred at the top of the program.
Data declarations are of the form integer i := 1 or boolean b := true, giving type, variable

name, and initial value, if any. Assignment is written := also in executable statements. Arrays are
declared giving the element type, the index range, the name of the array and the initial values. E.g.,
integer array [1..n] counts := [0, ..., 0].

Next, the statements of the processes, often in two columns headed by the names of the processes.
If several processes p(i) have the same code, parameterised by i, they are given in one column.

So in Question 1, p and q are processes that the main program runs in parallel. The declarations
of f lag and n are global.

Numbered statements are atomic. If a continuation line is needed, it is left un-numbered or num-
bered by an underscore p-. Thus loop forever, repeat and so on are not numbered. Assignments
and expression evaluations are atomic.

Indentation indicates the substatements of compound statements.
The synchronisation statement await b is equivalent to while not b do nothing. This may

be literally true in machine level code, but at higher level, think of await as a sleeping version of the
busy loop.

For channels, ch => x means the value of the message received from the channel ch is assigned
to the variable x. and ch <= x means that the value of the variable x is sent on the channel ch.

When asked for a scenario, just list the labels of the statements in the order of execution.

——-END of SUMMARY——

Question 1. Consider the following program:

boolean flag := false, turn := false
p q
p1: while not flag q1: while not flag
p2: turn := not turn q2: if not turn

q3: flag := true
(Part a). Construct two scenarios for which the program terminates, one where turn is true at
the end, and one where it is false. (3+3p)
(Part b). Find a weakly fair scenario for which the program does not terminate. (3p)

Question 2. (Part a). Using synchronous channels, develop a program to sort n numbers, where 1≤ n≤ 100.
Assume that the numbers to be sorted are all distinct, positive, non-zero integers. The n numbers
are fed into a channel c0, and a sentinel value 0 is fed into c0 to signal the end of input.

Build a chain of n processes Pi, for 1 ≤ i ≤ n, and channels ci for 0 ≤ i ≤ n. Each process Pi

has channel ci−1 to its left and channel ci to its right. Process Pi takes input from channel ci−1
and delivers output via channel ci to process Pi+1 to its right. Process P1 takes from c0 the input
numbers to be sorted. If you need it, write a sink process to input numbers from cn and throw
them away.

When the program terminates, the input numbers should be stored one per process in local
memory. Let di be the number held by process Pi. Then for i and j such that i < j, it should be
that di < d j. Write the code for the processes Pi to sort the input as described. (8p)

(Part b). Adapt your program to work with asynchronous channels. Assume the buffering
capacity of each channel is 100. (3p)

2



Question 3. Here is yet another algorithm to solve the critical section problem, built from atomic “if” state-
ments (p2, q2 and p5, q5). The test of the condition following ‘if”, and the corresponding “then”
or “else” action, are both carried out in one step, which the other process cannot interrupt.

integer S := 0
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: if even(S) then S:=4 else S:=5 q2: if S < 4 then S:=3 else S:=7
p3: await (S6= 1 ∧ S 6=5) q3: await (S6= 6 ∧ S6=7)
p4: critical section q4: critical section
p5: if S ≥4 then S:=S-4 else skip q5: if odd(S) then S:=S-1 else skip

Below is part of the state transition table for an abbreviated version of this program, skipping
p1, p4, q1 and q4 (the critical and non-critical sections).

A state transition table is a tabular version of a state diagram. The left hand column lists the
states (where p and q are, and the value of S). The middle column gives the next state if p next
executes a step, and the last column gives the next state if q next executes a step. In many states
both p or q are free to execute the next step, and either may do so. But in some states, such as
5 below, one or other of the processes may be blocked. There are 10 states in all.

State = (pi, qi, Svalue) next state if p moves next state if q moves
1. (p2, q2, 0) (p3, q2, 4) (p2, q3, 3)
2. (p3, q2, 4) (p5, q2, 4) (p3, q3, 7)
3. – – –
4. – – –
5. (p3, q3, 7) (p5, q3, 7) no move
6. – – –
7. – – –
8. – – –
9. – – –
10. (p2, q2, 2) (p3, q2, 4) (p2, q3, 3)

(Part a) Complete the state transition table. (6p)
(Part b) Prove from your state transition table that the program ensures mutual exclusion. (2p)
(Part c) Prove from your state transition table that the program does not deadlock (there are
await statements, so it is possible for a process to block). (2p)

Question 4. Refer again to the program in Question 3. This time, you must argue from the program, not
from the state transition table (though you may seek inspiration from it!).

(Part a). Show that (p3∧ q3)→ (S = 5∨ S = 7) is invariant. Hint: Reason about what must
have happened for the program to get to (p3∧q3). (4p)

(Part b) Assume that (p3∧q5)→ (S=5). Prove that if p3∧q5, then p cannot move until after
q executes q5. (That is, mutual exclusion holds). (2p)

(Part c) Assume that p3∧q1→ (S = 4) is invariant, and that q always loops in q1. Then prove
that p3∧q1→�♦p5. (4p)

3



Question 5. (Part a). Solve the readers and writers problem with a protected object. There are two classes
of processes that compete for access to the object: readers and writers. Readers have to exclude
writers but not other readers. Writers have to exclude both readers and other writers. Write the
code for the protected object and for the reader processes and the writer processes. (5p)

(Part b). Suppose a process P is waiting on a barrier to an operation on the protected object.
How does the system know when P should be unblocked? (3p)

Question 6. Consider the program below, with binary semaphores as the sole communication method.

binary semaphore SA:=0, SB := 0, SC := 1
process A process B process C
loop forever loop forever loop forever

wait(SB); wait(SC); wait(SA)
print(”A”); print(”B”); print(”C”);
signal(SC) signal(SA) signal(SB)

(Part a). What does the program print? (3p)

(Part b). Show that when any process is printing, all three semaphores are zero. Where are the
other two processes at that time? (3p)

(Part c). Suppose we had declared the semaphores to be general semaphores instead, but with
the same initial values as above. Would the program printout be different? (2p)

(Part d). The given program always initialises SC to 1 and the other semaphores to zero.
Suppose we would like to initialise all the semaphores to zero, and then randomly signal one
of them to get the above program started. Write processes to run in parallel with A, B and
C, to achieve this without a random number generator. You may use as many processes and
semaphores as you like, but no other communication method. (4p)

Question 7. (Part a). Implement a bounded buffer of capacity n, where n ≥ 1, in Linda. Assume the
products to be stored in the buffer are all alike.

Write a producer process P and a consumer process C. The producer puts products v into the
buffer, and has to wait if (and only if) the buffer is full—that is, when there are n products in the
buffer. The consumer takes products from the buffer, and has to wait if (and only if) the buffer
is empty—that is, when there are no products in it.

Your program will get most credit if the processes wait only for the conditions described above,
and if the processes P and C maintain as little internal information as possible. But you can post
as much other information as you need into the space. (7p)

(Part b). Generalise your program to allow multiple instances of process P and multiple in-
stances of process Q. That is, to allow multiple producers (all running the same code P) and
multiple consumers (all running the same code C). (3p)

-
——-END of QUESTION PAPER——-

4


