Parallel Functional Programming
Data Parallelism

Mary Sheeran

http://www.cse.chalmers.se/edu/course/pfp
Data parallelism

Introduce parallel data structures and make operations on them parallel

Often data parallel arrays

Canonical example: NESL (NESted-parallel Language) (Blelloch)
Data parallelism

Introduce parallel data structures and make operations on them parallel

Often data parallel arrays

Canonical example: NESL (NESted-parallel Language) (Blelloch)

See video of ICFP10 invited talk on Lectures page
NESL

concise (good for specification, prototyping)

allows programming in familiar style (but still gives parallelism)

allows nested parallelism (as distinct from flat)

associated language-based cost model

gave decent speedups on wide-vector parallel machines of the day

Hugely influential!

http://www.cs.cmu.edu/~scandal/nesl.html
NESL

Parallelism without concurrency!

Completely deterministic (modulo floating point noise)

No threads, processes, locks, channels, messages, monitors, barriers, or even futures, at source level

Nesl

Nesl is a sugared typed lambda calculus with a set of array primitives and an explicit parallel map over arrays.

To be useful for analyzing parallel algorithms, Nesl was designed with rules for calculating the work (the total number of operations executed) and depth (the longest chain of sequential dependence) of a computation.
NESL

For modeling the cost of NESL we augment a standard call by value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation and a measure of the space taken by a sequential implementation. We show that a NESL program with w work (nodes in the DAG) d depth (levels in the DAG) and s sequential space can be implemented on a p processor butterfly network, hypercube or CRCW PRAM using $O(w/p + d \log p)$ time and $O(s + dp \log p)$ reachable space. For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.
A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner
Carnegie Mellon University
{blelloch, jdg}@cs.cmu.edu

Abstract

In this paper we prove time and space bounds for the implementation of the programming language NESL on various parallel machine models. NESL is a sugared typed λ-calculus with a set of array primitives and an explicit parallel map over arrays. Our results extend previous work on provable implementation bounds for functional languages by considering space and by including arrays. For modeling the cost of NESL we augment a standard call-by-value operational semantics to return two cost measures: a DAG representing the sequential dependence in the computation, and a measure of the space taken by a sequential implementation. We show that a NESL program with \(w \) work (nodes in the DAG), \(d \) depth (levels in the DAG), and \(s \) sequential space can be implemented on a \(p \) processor butterfly network, hypercube, or CRCW PRAM using \(O(w/p + d \log p) \) time and \(O(s + dp \log p) \) reachable space. \(^1\) For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

The idea of a provably efficient implementation is to add to the semantics of the language an accounting of costs, and then to prove a mapping of these costs into running time and/or space of the implementation on concrete machine models (or possibly to costs in other languages). The motivation is to assure that the costs of a program are well defined and to make guarantees about the performance of the implementation. In previous work we have studied provably time efficient parallel implementations of the λ-calculus using both call-by-value \([3] \) and speculative parallelism \([18] \). These results accounted for work and depth of a computation using a profiling semantics \([29, 30] \) and then related work and depth to running time on various machine models.

This paper applies these ideas to the language NESL and extends the work in two ways. First, it includes sequences (arrays) as a primitive data type and accounts for them in both the cost semantics and the implementation. This is motivated by the fact that arrays cannot be simulated efficiently in the λ-calculus without arrays (the simulation of an array of length \(n \) using recursive types requires a \(\Omega(\log n) \) slowdown). Second, it augments the profiling semantics with
Quotes

This paper adds the accounting of costs to the semantics of the language and proves a mapping of those costs into running time / space on concrete machine models.

A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner
Carnegie Mellon University
{blelloch,jdg}@cs.cmu.edu

Abstract

In this paper we prove time and space bounds for the implementation of the programming language NESL on various parallel machine models. NESL is a sugared typed λ-calculus with a set of array primitives and an explicit parallel map over arrays. Our results extend previous work on provable implementation bounds for functional languages by considering space and by including arrays. For modeling the cost of NESL we augment a standard call-by-value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation, and a measure of the space taken by a sequential implementation. We show that a NESL program with \(w \) work (nodes in the DAG), \(d \) depth (levels in the DAG), and \(s \) sequential space can be implemented on a \(p \) processor butterfly network, hypercube, or CRCW PRAM using \(O(w/p + d \log p) \) time and \(O(s + dp \log p) \) reachable space. For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

The idea of a provably efficient implementation is to add to the semantics of the language an accounting of costs, and then to prove a mapping of these costs into running time and/or space of the implementation on concrete machine models (or possibly to costs in other languages). The motivation is to assure that the costs of a program are well defined and to make guarantees about the performance of the implementation. In previous work we have studied provably time efficient parallel implementations of the λ-calculus using both call-by-value [3] and speculative parallelism [18]. These results accounted for work and depth of a computation using a profiling semantics [29, 30] and then related work and depth to running time on various machine models. This paper applies these ideas to the language NESL and extends the work in two ways. First, it includes sequences (arrays) as a primitive data type and accounts for them in both the cost semantics and the implementation. This is motivated by the fact that arrays cannot be simulated efficiently in the λ-calculus without arrays (the simulation of an array of length \(n \) using recursive types requires a \(\Omega(\log n) \) slowdown). Second, it augments the profiling semantics with
Connection Machine

First commercial massively parallel machine

65k processors

can see CM-1 and CM-5 (from 1993) at Computer History Museum, Mountain View

http://www.inc.com/magazine/19950915/2622.html
Hypercube
Nesl array operations

function factorial(n) =
 if (n <= 1) then 1
 else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]};

apply to each = parallel map (works with user-defined functions => load balancing)

list comprehension style notation
The result of:

function factorial(n) =

 if (n <= 1) then 1
 else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]};

is:

factorial = fn : int -> int

it = [6, 1, 5040] : [int]

Bye.

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html
apply to each (multiple sequences)

The result of:

\{a + b : a \text{ in } [3, -4, -9]; b \text{ in } [1, 2, 3]\};

is:

it = [4, -2, -6] : [int]

Bye.
apply to each (multiple sequences)

The result of:

\{a + b : a \in \{3, -4, -9\}; b \in \{1, 2, 3\}\};

is:

\text{it} = \{4, -2, -6\} : \text{[int]}

Bye.

Qualifiers in comprehensions are zipping rather than nested as in Haskell

Prelude> [a + b | a <- [3, -4, -9], b <- [1,2,3]]
[4,5,6,-3,-2,-1,-8,-7,-6]
Filtering too

The result of:

\{a \times a : a \text{ in } [3, -4, -9, 5] \mid a > 0\};

is:

it = [9, 25] : [int]

Bye
scan (Haskell first)

*Main> scanl1 (+) [1..10]
[1,3,6,10,15,21,28,36,45,55]

Main> scanl1 () [1..10]
[1,2,6,24,120,720,5040,40320,362880,3628800]
scan diagram

level 0

level 7

binary operator
Brent Kung (’79)
Brent Kung

forward tree + several reverse trees
recursive decomposition

\[S_i = a_i \times a_{i+1} \times \ldots \times a_j \]

indices from 1 here
recursive decomposition

\[
S_i^j = a_i \times a_{i+1} \times \ldots \times a_j
\]

one recursive call on n/2 inputs

divide
conquer
combine
prescan

"shifted right by one"

prescan of

\[[a_1, a_2, a_3, a_4, \ldots, a_n] \]

is

\[[1, a_1, a_1 * a_2, a_1 * a_2 * a_3, \ldots, a_1 * \ldots * a_{n-1}] \]
scan from prescan

easy (constant time)

\[[I, \quad a_1, a_1 \cdot a_2, a_1 \cdot a_2 \cdot a_3, \ldots, a_1 \cdot \ldots \cdot a_{n-1}] \quad a_n \]

\[[a_1, a_1 \cdot a_2, a_1 \cdot a_2 \cdot a_3, \ldots, a_1 \cdot \ldots \cdot a_{n-1}, a_1 \cdot \ldots \cdot a_n] \]
easy (constant time)

\[[l, \ a_1, \ a_1 \cdot a_2, \ a_1 \cdot a_2 \cdot a_3, \ \ldots, \ a_1 \cdot \ldots \cdot a_{n-1}]^\top a_n \]

\[[a_1, \ a_1 \cdot a_2, \ a_1 \cdot a_2 \cdot a_3, \ \ldots, \ a_1 \cdot \ldots \cdot a_{n-1}, a_1 \cdot \ldots \cdot a_n] \]

NOTE

scan = parallel prefix
the power of scan

Blelloch pointed out that once you have scan
you can do LOTS of interesting algorithms, inc.

To lexically compare strings of characters. For example, to determine that "strategy" should appear before "stratification" in a dictionary
To evaluate polynomials
To solve recurrences. For example, to solve the recurrences
\[x_i = a_i x_{i-1} + b_i x_{i-2} \text{ and } x_i = a_i + b_i / x_{i-1} \]
To implement radix sort
To implement quicksort
To solve tridiagonal linear systems
To delete marked elements from an array
To dynamically allocate processors
To perform lexical analysis. For example, to parse a program into tokens
and many more

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/ieee-scan.ps.gz
Prescan in NESL

```plaintext
function scan_op(op, identity, a) =
    if #a == 1 then [identity]
    else
        let e = even_elts(a);
        o = odd_elts(a);
        s = scan_op(op, identity, {op(e, o): e in e; o in o})
        in interleave(s, {op(s, e): s in s; e in e});
```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
 let e = even_elts(a);
 o = odd_elts(a);
 s = scan_op(op,identity,\{op(e,o): e in e; o in o\})
in interleave(s,\{op(s,e): s in s; e in e\});

prescan in NESL

zipWith op e o
zipWith op s e
function scan_op(op, identity, a) =
if #a == 1 then [identity]
else
 let e = even_elts(a);
 o = odd_elts(a);
 s = scan_op(op, identity, {op(e, o): e in e; o in o})
in interleave(s, {op(s, e): s in s; e in e});

scan_op('+', 0, [2, 8, 3, -4, 1, 9, -2, 7]);

is:

scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it = [0, 2, 10, 13, 9, 10, 19, 17] : [int]
prescan

function scan_op(op, identity, a) =
if #a == 1 then [identity]
else
 let e = even_elts(a);
 o = odd_elts(a);
 s = scan_op(op, identity, {op(e, o): e in e; o in o})
in interleave(s, {op(s, e): s in s; e in e});

scan_op(max, 0, [2, 8, 3, -4, 1, 9, -2, 7]);

is:

scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it = [0, 2, 8, 8, 8, 8, 9, 9] : [int]
Batcher’s bitonic merge

function bitonic_sort(a) =
if (#a == 1) then a
else
 let
 bot = subseq(a,0,#a/2);
 top = subseq(a,#a/2,#a);
 mins = {min(bot,top):bot;top};
 maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]})
bitonic_sort (merger)
bitonic_sort (merger)
bitonic sequence

inc (not decreasing) then dec (not increasing)

or a cyclic shift of such a sequence
Butterfly

bitonic
Now use Divide and Conquer (again) to do sorting

How??
bitonic sort

function batcher_sort(a) =
if (#a == 1) then a
else
 let b = {batcher_sort(x) : x in bottop(a)};
 in bitonic_sort(b[0]++reverse(b[1]));
bitonic sort

Read Batcher’s paper from 1968
It is a classic! (2753 citations on GS)

function Quicksort(A) = if (#A < 2) then A else
 let pivot = A[#A/2];
 lesser = {e in A| e < pivot};
 equal = {e in A| e == pivot};
 greater = {e in A| e > pivot};
 result = {quicksort(v): v in [lesser,greater]};
 in result[0] ++ equal ++ result[1];
parentheses matching

For each index, return the index of the matching parenthesis

```plaintext
function parentheses_match(string) =
  let
    depth = plus_scan({if c=='(' then 1 else -1 : c in string});
    depth = {d + (if c=='(' then 1 else 0) : c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
  in permute(ret, rnk);
```

one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts
For each index, return the index of the matching parenthesis one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts

```plaintext
function parentheses_match(string)
  let
    depth = plus_scan({
      if c=='(' then 1 else -1:
        c in string
    });
    depth = {d + (if c=='(' then 1 else 0):
      c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
  in permute(ret, rnk);
```

```plaintext
permute([7,8,9],[2,1,0]);
permute([7,8,9],[1,2,0]);

it = [9, 8, 7] : [int]

it = [9, 7, 8] : [int]
```

```plaintext
one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts
```
For each index, return the index of the matching parenthesis one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts
parentheses matching

For each index, return the index of the matching parenthesis one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts

function parentheses_match(string) =
 let
 depth = plus_scan({if c==`(` then 1 else -1 : c in string});
 depth = {d + (if c==`(` then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
What does Nested mean??

```
{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};
```

```
it = [[0, 2], [0, 8, 11], [0]] : [[int]]
```
What does Nested mean??

sequence of sequences apply to each of a PARALLEL function

```python
{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]
```
What does Nested mean??

sequence of sequences apply to each of a PARALLEL function

\{\text{plus}_\text{scan}(a) : a \text{ in } [[2,3], [8,3,9], [7]]\};

\text{it} = [[0, 2], [0, 8, 11], [0]] : [[[\text{int}]]]

Implemented using Blelloch’s Flattening Transformation, which converts nested parallelism into flat. Brilliant idea, challenging to make work in fancier languages (see DPH and good work on Manticore (ML))
What does Nested mean??

Another example

\[
\text{function } svxv \ (sv, v) = \\
\text{sum } \{ x \ast v[i] : (x, i) \in sv \};
\]

\[
\text{function } smxv \ (sm, v) = \\
\{ svxv(row, v) : row \in sm \}
\]
Nested Parallelism

Arbitrarily nested parallel loops + fork-join

Assumes no synchronization among parallel tasks except at join points => a task can only sync with its parent (sometimes called fully strict)

Deterministic (in absence of race conditions)

Advantages:
 Good schedulers are known
 Easy to understand, debug, and analyze
Nested Parallelism

Dependence graph is series-parallel
Nested Parallelism

Dependence graph is series-parallel

Task can only synchronise with its parent
But not
But not

Here, a task can only synchronise with an ancestor (strict (but not fully strict))
Back to examples
this prescan is actually flat

function scan_op(op, identity, a) =
if #a == 1 then [identity]
else
 let e = even_elts(a);
 o = odd_elts(a);
 s = scan_op(op, identity, {op(e, o): e in e; o in o})
in interleave(s, {op(s, e): s in s; e in e});
Batcher’s bitonic merge IS NESTED

```plaintext
function bitonic_sort(a) =
if (#a == 1) then a
else
  let
    bot = subseq(a,0,#a/2);
    top = subseq(a,#a/2,#a);
    mins = {min(bot,top):bot;top};
    maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});
```

and so is the sort
function bitonic_sort(a) =
if (#a == 1) then a
else
 let
 bot = subseq(a,0,#a/2);
 top = subseq(a,#a/2,#a);
 mins = {min(bot,top): bot;top};
 maxs = {max(bot,top): bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});

and so is the sort

nestedness is good for D&C and for irregular computations
Back to examples
parentheses matching is FLAT

For each index, return the index of the matching parenthesis

function parentheses_match(string) =
 let
 depth = plus_scan{"if c=='(then 1 else -1 : c in string});
 depth = {d + (if c=='(then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
What about a cost model?

Blelloch emphasises

1) work: total number of operations
 represents total cost (integral of needed resources over time = running time on one processor)

2) depth or span: longest chain of sequential dependencies
 best possible running time on an unlimited number of processors

claims:
1) easier to think about algorithms based on work and depth than to use running time on machine with P processors (e.g. PRAM)
2) work and depth predict running time on various different machines
 (at least in the abstract)
work

on a sequential machine = sequential time

but can maybe be shared among multiple processors
Work w

on a sequential machine = sequential time

but can maybe be shared among multiple processors

Evenly shared work on $\#\text{proc}$ processors would take (about) $w/\#\text{proc}$ time
Work on a sequential machine = sequential time

but can maybe be shared among multiple processors

Evenly shared work on \#proc processors would take (about) \(\frac{w}{\#\text{proc}} \) time perfect speedup
Spans (or depth)

Allows analysis of extent to which work can be shared among processors
(or depth)

Allows analysis of extent to which work can be shared among processors without resorting to details of machines, and how work is distributed over processors
scheduler

Assume a “reasonable” scheduler

A greedy scheduler guarantees that no processor will be idle (= not working on part of the computation) if there is work remaining to do
scheduler

Assume a “reasonable” scheduler

A greedy scheduler guarantees that no processor will be idle (= not working on part of the computation) if there is work remaining to do

Then runtime <= (work / #proc) + span
runtime $\leq (\text{work} / \#\text{proc}) + \text{span}$

If the first term dominates, then we are getting near perfect speedup (within a factor of 2)

Define

Parallelism = work / span

Number of processors for which the two terms are equal
Gives rough upper bound on number of processors can use effectively
Part 1: simple language based performance model

Call-by-value λ-calculus

\[\lambda x. e \Downarrow \lambda x. e \]
\[e_1 \Downarrow \lambda x. e \quad e_2 \Downarrow v \quad e[v/x] \Downarrow v' \]
\[e_1 e_2 \Downarrow v' \]

(LAM)

(APP)
The Parallel λ-calculus: cost model

\[e \Downarrow v; w, d \]

Reads: expression \(e \) evaluates to \(v \) with work \(w \) and span \(d \).

- **Work** (W): sequential work
- **Span** (D): parallel depth
The Parallel λ-calculus: cost model

$$\lambda x. e \Downarrow \lambda x. e; \quad 1,1$$ \hfill (LAM)

$$e_1 \Downarrow \lambda x. e; \quad \boxed{w_1, d_1} \quad e_2 \Downarrow v; \quad \boxed{w_2, d_2} \quad e[v/x] \Downarrow v'; \quad \boxed{w_3, d_3}$$ \hfill (APP)

$$e_1 e_2 \Downarrow v'; \quad 1 + w_1 + w_2 + w_3, \quad 1 + \max(d_1, d_2) + d_3$$

Work adds
Span adds sequentially, and max in parallel

d

slide from Blelloch’s ICFP10 invited talk
The Parallel λ-calculus cost model

$$\lambda x. e \downarrow \lambda x. e; 1,1 \quad \text{(LAM)}$$

$$\frac{e_1 \downarrow \lambda x. e; w_1, d_1 \quad e_2 \downarrow v; w_2, d_2 \quad e[v/x] \downarrow v'; w_3, d_3}{e_1 e_2 \downarrow v'; 1 + w_1 + w_2 + w_3, 1 + \max(d_1, d_2) + d_3} \quad \text{(APP)}$$

$$c \downarrow c; 1,1 \quad \text{(CONST)}$$

$$\frac{e_1 \downarrow c; w_1, d_1 \quad e_2 \downarrow v; w_2, d_2 \quad \delta(c, v) \downarrow v'}{e_1 e_2 \downarrow v'; 1 + w_1 + w_2, 1 + \max(d_1, d_2)} \quad \text{(APPC)}$$

$$c_n = 0, \ldots, n, +, +_0, \ldots, +_n, <, <_0, \ldots, <_n, \times, \times_0, \ldots, \times_n, \ldots \quad \text{(constants)}$$
Adding Functional Arrays: NESL

\{e_1 : x \text{ in } e_2 \mid e_3\}

e'[v_i / x] \Downarrow v'_i; w_i, d_i \quad i \in \{1 \ldots n\}

\{e' : x \text{ in } [v_1 \ldots v_n]\} \Downarrow [v'_1 \ldots v'_n]; 1 + \sum_{i=1}^n w_i, 1 + \max_{i=1}^{|y|} d_i

Primitives:

\texttt{<- : 'a seq * (int,'a) seq -> 'a seq}

* \texttt{[g,c,a,p] <- [(0,d),(2,f),(0,i)]}
 \texttt{[i,c,f,p]}

\texttt{elt, index, length} \quad \text{[ICFP95]}
Adding Functional Arrays: NESL

\{e_1 : x \in e_2 \mid e_3\}

Bleloch:
programming based cost models could change the way people think about costs and open door for other kinds of abstract costs doing it in terms of machines.... "that's so last century"

```haskell
<- : 'a seq * (int,'a) seq -> 'a seq
  [g,c,a,p] <- [(0,d),(2,f),(0,i)]
  [i,c,f,p]

elt, index, length
```

[ICFP95]
The Second Half:
Provable Implementation Bounds

Theorem [FPCA95]: If $e \downarrow v; w, d$ then v can be calculated from e on a CREW PRAM with p processors in $O\left(\frac{w}{p} + d \log p\right)$ time.

Can’t really do better than: $\max\left(\frac{w}{p}, d\right)$

If $w/p > d \log p$ then “work dominates”

We refer to w/d as the parallelism.

(Typo fixed by MS based on the video)
Brent’s lemma

If a computation can be performed in t steps with q operations on a parallel computer (formally, a PRAM) with an unbounded number of processors, then the computation can be performed in $t + (q-t)/p$ steps with p processors.

Back to our scan

oblivious or data independent computation

N = 2^n inputs, work of dot is 1
work = ?
deepth = ?

and bitonic sort?
function Quicksort(A) = if (#A < 2) then A else
 let pivot = A[#A/2];
 lesser = {e in A| e < pivot};
 equal = {e in A| e == pivot};
 greater = {e in A| e > pivot};
 result = {quicksort(v): v in [lesser,greater]};
 in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)
Quicksort

function Quicksort(A) = if (#A < 2) then A else
 let pivot = A[#A/2];
 lesser = {e in A| e < pivot};
 equal = {e in A| e == pivot};
 greater = {e in A| e > pivot};
 result = {quicksort(v): v in [lesser,greater]};
 in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)

(The depth is improved over the example with trees, due to the addition of parallel arrays as primitive.)
From the NESL quick reference

Basic Sequence Functions

Basic Operations Description

#a Length of a
a[i] ith element of a

dist(a,n) Create sequence of length n with a in each element.

zip(a,b) Elementwise zip two sequences together into a sequence of pairs.

[s:e] Create sequence of integers from s to e (not inclusive of e)
[s:e:d] Same as [s:e] but with a stride d.

Scans

plus_scan(a) Execute a scan on a using the + operator
min_scan(a) Execute a scan on a using the minimum operator
max_scan(a) Execute a scan on a using the maximum operator
or_scan(a) Execute a scan on a using the or operator
and_scan(a) Execute a scan on a using the and operator

<table>
<thead>
<tr>
<th>Work</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>O(e-s)</td>
<td>O(1)</td>
</tr>
<tr>
<td>O((e-s)/d)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
NESL : what more should be done?

Take account of LOCALITY of data and account for communication costs (Bleloch has been working on this.)

Deal with exceptions and randomness
Data Parallel Haskell (DPH) intentions

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited. Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used functional programming language, namely Haskell, and implement them in a state-of-the-art Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types, was focused entirely on nested data parallelism, and its implementation is an interpreter. Haskell is a higher-order language with an extremely rich type system; it already includes several other sorts of parallel execution; and its implementation is a compiler.

NESL also influenced

The Java 8 streams that you saw on Monday!!

Intel Array Building Blocks (ArBB)
That has been retired, but ideas are reappearing as C/C++ extensions

Collections seems to encourage a functional style even in non functional languages
(remember Backus’ paper from first lecture)
Summary

Programming-based cost models are (according to Blelloch) MUCH BETTER than machine-based models.

They open the door to other kinds of abstract costs than just work, depth, space ...

There is fun to be had with parallel functional algorithms (especially as the Algorithms community is still struggling to agree on useful models for use in analysing parallel algorithms).
End
parentheses matching

For each index, return the index of the matching parenthesis

function parentheses_match(string) =
let
 depth = plus_scan({if c=='(' then 1 else -1 : c in string});
 depth = {d + (if c=='(' then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
prescan (+)

\[
\begin{align*}
(& (& (& (&) &) &) & (& (&) &) &) \\
1 -1 & 1 & 1 & -1 & 1 -1 & -1 & 1 & 1 & 1 & -1 -1 & -1 \\
0 & 1 & 0 & 1 & 2 & 1 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 1
\end{align*}
\]
(((())) (()))
1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

+1 if (
+0 if)

1 1 1 2 2 2 2 1 1 1 2 3 3 2 1
\(\text{depth} \)
() (() ()) ((()))

string

1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

1 1 1 2 2 2 2 1 1 2 3 3 2 1

depth

0 1 2 6 7 8 9 3 4 10 12 13 11 5

rank(depth)
() (() ()) ((()))
string

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1
0 1 0 1 2 1 2 1 0 1 2 3 2 1
0 1 0 1 2 1 2 1 0 1 2 3 2 1

1 1 1 2 2 2 2 1 1 1 2 3 3 2 1
depth

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 2 3 4 5 6 7 8 9 10 12 13 11 5
0 1 2 3 4 5 6 7 8 9 10 12 13 11 5

[0:#string]
rank(depth)

0 1 2 7 8 13 3 4 5 6 9 12 10 11
rnk
() (() ()) ((()))

string

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

depth

0 1 0 1 2 1 2 1 0 1 2 3 2 1

rank(depth)

[0:#string]

permute

(0:#string),rank(depth));
() (() ()) ((())) string

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]
0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)

0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

1 0 7 2 13 8 4 3 6 5 2 9 11 10 ret
\[
() (() ()) ((())) \]

string

\[
1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 1 \ 1 \ 2 \ 3 \ 3 \ 2 \ 1
\]

depth

\[
0 \ \ 1 \ \ 2 \ \ 6 \ \ 7 \ \ 8 \ \ 9 \ \ 3 \ \ 4 \ \ 10 \ \ 12 \ \ 13 \ \ 11 \ \ 5
\]

rank(depth)

\[
0 \ \ 1 \ \ 2 \ \ 3 \ \ 4 \ \ 5 \ \ 6 \ \ 7 \ \ 8 \ \ 9 \ \ 10 \ \ 11 \ \ 12 \ \ 13
\]

[0:#string]

\[
0 \ \ 1 \ \ 2 \ \ 7 \ \ 8 \ \ 13 \ \ 3 \ \ 4 \ \ 5 \ \ 6 \ \ 9 \ \ 12 \ \ 10 \ \ 11
\]

rnk

\[
1 \ \ 0 \ \ 7 \ \ 2 \ \ 13 \ \ 8 \ \ 4 \ \ 3 \ \ 6
\]

interleave(odd_elts(rnk), even_elts(rnk))
() (() ()) ((())) string

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]

1 0 7 2 13 8 4 3 6 5 2 9 11 10 ret
0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

1 0 7 4 3 6 5 2 13 12 11 10 permute(ret,rnk);
string