Logical rules for natural deduction

We describe when I' - 4, i.e. 9 is derivable from a finite set I' = 1)1, ..., 9, by the following
rules. We write F ) for I' - 4 if I is empty.

pel
| T
| VN Py —op | T
'y = T'Fe
F'FyYAp F'FyYyAp 'y ke
'y 'k T'FyYyAp
'k L'k 'y Vve LoykEd Tpkd
Py Ve Py Ve I'-o
Lyyt-L 'ek—p T F
-y L
-1
L4
' [zo/x] 'V
'V I'Eft/x]
' lt/x] -3z 9 Lyfxo/z] F 6
'3z v r'+o

In the rule of V introduction xg should not occur free in the conclusion. This was essentially
the rule found by Frege (1879).
In the rule of 3 elimination g should not occur free in I' and ¢ and Jx .

The following example illustrates well the use of Frege’s rule for V introduction
Vo (P(x) = Q(x)), Vx P(x) FVz Q(x)

Russell, who was the one of the first to understand the importance of Frege’s discovery, talks
about the difference between all and any. In order to prove Vx Q(z) we prove that Q(z¢) holds
for any xg

Vz (P(z) = Q(z)), Yz P(z) - Q(xo)

and this we can prove since we have from the hypotheses P(zg) — Q(z¢) and P(xo) and we
can use modus-ponens.



0.1 Classical logic

The rule for classical logic (how to prove something true by assuming something false) is
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It is a good exercise to show that these rules (1) and (2) are equivalent. The formulation (1) is
due to Peirce (1885), who even had a (apparently more general) equivalent formulation
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It is remarkable that it corresponds to the type of continuation operators in programming
languages.

The formulations (1) and (3) are interesting since they illustrate how to use classical logic:
in order to prove 1 from some hypotheses, we can always add —, or any formula ¥ — ¢ in the
hypotheses. For instance, we can show p from I' = (p — ¢) — 7,7 — p since we can show r,
and hence p, from ', p — q.

0.2 Soundness Theorem

All these rules are valid for the relation I' F 1. For instance if both ¢» — ¢ and ¢ are valid in a
model, then so is ¢.
Since I' 9 is (by definition) the least relation satisfying these rules, it follows that we have

Ty = TEY

which is precisely the soundness Theorem.

0.3 Equality

The rules for equality are.
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This implies symmetry and transitivity of equality.
This implies that we have t = v, u = v - t = u: the relation of equality is euclidean, two
objects which are “equal to the same are equal to each other”.

Equality reasoning can be really powerful.

Here is an example: if we know f(a,z) = 2 and f(x,g(z)) = a then we deduce g(a) = a.

This is because, if we consider the substitution [a/x], we both get f(a,g(a)) = g(a) and
f(a,g(a)) = a and hence g(a) = a.

(This is connected to the Knuth-Bendix algorithm, which is a general technique to deduce
interesting equational consequences from a set of equations.)



0.4 Non empty domain

The following is a valid derivation: we have - x9 = x¢ hence - 3z (z = z). It corresponds to
the fact that we want to describe the logic of non empty universes.
Similarly we can show Yz ¢ - Jx .

0.5 Examples

We show Vx =P (z) from I' = —~(3z P(x)).

This is because I', P(x() is contradictory.

We show ¢ = 3z —P(z) from I" = =(Va P(z)). This is because I = I', =) is contradictory,
which is because we can show P(zg) Vx P(z) from I". In turn this is because I, = P(x0) is
contradictory.



