Software Technology

Sandro Stucki

D&IT lunch seminar — 2019-02-21

(Using material from previous years, including material by
David Sands and Magnus Myreen)

2019-02-21

——

~ “...malfunction that caused
the vehicle to accelerate
- on its own.”

EHCLUSl?E
+indeson | TOYOTA INVEST'GAT'GN

Cooper 360/

Engineering memo suggests electronic problem in prototype car m ?

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers 3

Fal P,
i\

By Rory Devine, Mari Payton and R. Stickney | Tuesday, Sep 1, 2009

Mo i) Bl | B hSAN DIEGO

Source: http://www.nbcsandiego.com/news/local/CHP-Of ficer-Family-Killed-in-Crash-56629472 .html

o ¥
-

) “Saylor”
/28 Aug '09

ortware lechnology — Do unchseminarium — almers

2010

Over 6000 complaints of unintended
acceleration

US Congress instigates NASA investigation

Carnegie Mellon

NASA Conclusions
v NASA didn't find a “smoking gun’

o Tight timeline & limited information (gockeut 20t3-10-44 391840
+ Did notexonerate system

Proof for the hypothesis that the ETCS-1 caused the large throttle opening UAS as described in
submitted VOQs could not be found with the hardware and software testing performed.

Because proof that the ETCS-1 caused the reported UAs was not found does not mean 1t could
ot occur, However, the testing and analysis described in this report did not find that TMC
ETCS- electronics are a likely cause of large throttle openings as described in the VOQs.

[NASA UA Report. Executive Summary]

+But, U.S. Transportation Secretary Ray LaHood said,
‘We enlisted the best and brightest engineers to study Toyota's
electronics systems, and the verdict is in. There is
no electronic-based cause for unintended high-speed
acceleration in Toyotas.”

Software Technology — D&IT lunchseminarium — Chalmers

Electrcal & Computer hitp:/www.nhtsa gov/PR/DOT-16-11
O EXGREERNG @

© Copynght 2014, Philp Koopman. CC Afribution 4 0 Internafional icense.

2019=02-21

AUTOMOTIVE

News & Analysis

Toyota Case: Single Bit Flip That

Killed
Junko Yoshida see

14 saves
10/25/2013 03:35 PM EDT LOGIN TO RATE

104 comments

During the trial, embedded systems experts who reviewed Toyota's
electronic throttle source code testified that they found Toyota's
source code defective, and that it contains bugs -- including bugs
that can cause unintended acceleration.

"We've demonstrated how as little as a single bit flip can cause the
driver to lose control of the engine speed in real cars due to
software malfunction that is not reliably detected by any fail-safe,"
Michael Barr, CTO and co-founder of Barr Group, told us in an
exclusive interview. Barr served as an expert witness in this case.

Stack overflow and software bugs led to memory corruption, he
said. And it turns out that the crux of the issue was these memory
corruptions, which acted "like ricocheting bullets.”

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

Bugs per line of code?

SOFTWARE SIZE (MILLION LINES OF CODE)

Source: NASA, IEEE, Wired, Boeing, Microsoft, Linux Foundation, Ohich

Modern High-end car

Facebook
Windows Vista |
Large Hadron Collider “
Boeing 787 | NN
Android |G

Google Chrome [}
Linux Kernel 2.6.0 [}

Mars Curiosity Rover [JJij
dubble Space Telescope .
F-22 Raptor [

Space Shuttle |
0 10 20 30 40 50 60 70 80 S0 100

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers 8

Concurrent Programming

Natural programming model in
e embedded systems

e operating systems

e GUIs

But it is easy to get wrong!

Sequential program

int counter = 0;

for(int i=8; i<1000000;i++) {
counter++;
}

2019-02-21

Software Technology — D&IT lunchseminarium — Chalmers

10

Concurrent Program

int counter = 9;

for(int 1=0; 1<1000000;i++) { for(int i=0; i<1000000;i++) {
counter++; counter++;

} }

Demo

class Race implements Runnable {
int counter = 0;

public void run() {
for(int i=0; i<1000000;i++) { counter++; }
}

public static void main(String[] args) {
try {

Race r = new Race();
Thread A = new Thread(r);
Fhread B = new Thread(r);
A.start(); B.start(); // Start both threads
A.join(); B.join(); // Wait for them to finish
System.out.println("Final counter: " + r.counter);

}
} catch (Exception e) { }

}2019—0121 Software Technology — D&IT lunchseminarium — Chalmers 12

Thread A

Thread B

Integer

17

read

17

Data Race

[- increment -*

17+1 = 18
[-increment-*
17 17+1 = 18
A
read write
| v
18

Time

write

18

Learn More!

Concurrent Programming
TDA384/DIT391 LP1, LP3

Testing, Debugging, and Verification
TDA567/DIT082, LP2

Bugs might make
things go wrong

will
Bugs miht make
things go wrong

Software Technology — D&IT lunchseminarium — Chalmers

= ———

\ " SECURITY WILL
| RETURN IN

5 MINUTES

FAIL

FAILBLOG.ORG
17

No bugs = Secure?

No bugs = Secure?

Does the software treat our sensitive data in an
appropriate way?

What Information Flow Control
do we want?

o Confidentiality, Privacy

— Information about sensitive data cannot be
deduced by observing public channels

 Integrity

— Untrusted data should not influence the
values sent on trusted channels

e Erasure
— Information is no longer available after use

if (input != “attack at dawn”)
{ output(“BANG!”); }

Our Chief Weapon

https://youtu.be/IN6OOWICYOQA

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

https://youtu.be/1N6OOWtCYQA

Our Chief Weapon

; 1 >= 0;

return p;

}

throw new NoSuchElementException();

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers 25

Our Chief Weapon

system(“/usr/
ucb/mail “ ++ x)

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

Our Chief Weapons

T R

Transformation

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

2019-02-21

Our Chief Weapons

T R

Transformation

code
Main =
do { x <- readFile
“Contact”;

system(“/usr/
ucb/mail “ ++ x)

+ policy

Software Technology — D&IT lunchseminarium — Chalmers

Our Chief Weapons

L
il

Libraries

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

Our Chief Weapons

New Programming
Languages

Transformation

Static Analysis
Monitoring

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

Home >> News >> Languages >>

I PROGRAMMER

Main Menu

Home

Book Reviews
Book Watch
News

Projects

The Core
Babbage's Bag

History

Swift's Spreadsheets

The Stone Tapes
Professional Programmer
eBooks

Programmer Puzzles
Bargain Computer Books
CodeBin

| Programmer Weekly

ortware Technology — D&IT lunc

Login Register Edit Profile Chane

Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers obtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you're writing your app

31

2019-02-21

Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers abtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you're writing your app

Software Technology — D&IT lunc 32

r -

O
L >

The alternative, developed by Niklas Broberg at the University
of Gothenburg is called Paragon, and the techniques used by
the programming language are shown in his thesis "Practical,
Flexible Programming with Information Flow Control".

“The main strength of Paragon is its ability to automatically
identify potential information leaks while the program is being
developed,”

says Niklas Broberg.

a r
2019-02-21 Software Technology — D&IT lunc

33

New programming language to
plug information leaks in
software

NEWS: NOV

The curreni
individuals
have acces:
the code m
Broberg of
programmi
informatior

2019-02-21

Paragon identifies potential information leaks while the program
is being written

As a solution to these problems, Niklas Broberg
has developed the programming language
Paragon. The methodology is presented in his
thesis "Practical, Flexible Programming with
Information Flow Control" which was written in
August 2011.

“"The main strength of Paragon is its ability to
automatically identify potential information
leaks while the program is being developed,”
says Niklas Broberg. “Paragon is an extension
of the commonly-used programming language
Java and has been designed to be easy to use. A programmer will easily be
able to add my specifications to his or her Java program, thus benefiting

from the strong security guarantees that the language provides.”
Software Technology — D&IT lunchseminarium — Chalmers

34

What do we need to achieve this?

Deep understanding of programming language
design and implementation

Where to start?

Programming Language Technology
LP2 DAT151/DIT230

More to come (MSc)

e Compiler Construction TDA283/DIT300, LP4

e Language-based Security TDA602/DIT103, LP3

Courses

Concurrent programming

Testing, Debugging,
& Verification

Bachelor’s level

Language-Based
Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level

... an error in java.util

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

39

... an error in java.util

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)

Proving that Android’s, Java’'s and

Python’s sorting algorithm is broken (and
showing how to fix it)

(O February 24,2015 @ Envisage Written by Stijn de Gouw. & S$s

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-
br@&%—ﬂz_—éhd_how_to_ﬁx_it/ Software Technology — D&IT lunchseminarium — Chalmers 40

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

2019-02-21

The KeY project

Software Technology — D&IT lunchseminarium — Chalmers

KeY lets you specify the
desired behaviour of your
program in the well-known
specification language JML,
and helps you prove that your
programs conforms to its
specification. That way, you
did not only show that your
program behaves as expected
for some set of test values -
you proved that it works
correctly for all possible
values!

Wolfgang Ahrendt (Chalmers)
and others

41

A brief demo of KeY

https://www.key-project.org/

. L
nnnnnn

More to come (MSc)

 Formal Methods for TDA294/DIT271, LP1
Software Development

Courses

Concurrent programming

Testing, Debugging,
& Verification

Bachelor’s level

Language-Based
Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level

v

01P-

Establishing Compiler Correctness

Maybe it is worth the cost!

Cost reduction?

Alternatives 1

‘Proving the correctness of a compiler is prohibitively expensive
(however, see the CompCert project)

gTesting is the only viable option
/\

A

... but with testing you never know you caught all bugs!

Software Technology — D&IT lunchseminarium — Chalmers

All (unverified) compilers have bugs

“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input. ”

PLDI'1

Finding and Understanding Bugs in C Compilers

Xugun Yang YangChen Eric Eide John Regehr

“[The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code
errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

= pUUC U RVEriSoE - ched, the Deee VE SUTONSSS
wwaﬁlwmﬂuﬁﬁmwﬁdnu— almers
| qbeet of Cwhileavoidngt _ the
W@F@ﬁﬁ%ﬁ?&mwdd@w‘ba!'w \A s rected Camith, arm@ta'@?fﬁaiﬁmﬁ

2019-02-21

46

Project lead: Magnus
Myreen

ing @ system that 1S end-to-en

~

SCaIing up...

_ (now at Ch
almers)
CakeML: yerified | mp\ementat\on of ML
Ramana Kumer 1 Magnus©O. Myresn” 1 Miched Norrigh? Seott Owens
1 Computer Laboratory, university Cambridge, UK
2 Canberma Research LaD, NICTA Australia
3 gchool of Computing, University of Kent
Abgract 1. \ntr odudtion
W have deve OP dmechanica\\y yerified called Thelast decade has geen @ st int i yerified compilation
L, which ports @ pstantia aub and there Ve been signiﬁcant hi gh—prohle reaults, meny b

CakeML s implem ed a8 interactive on the ComP + compl o for C 1L 14 29) This interest 1S
REPL) N x86-6 ine code. Our correctness easy tojustify: 1" fne context of program verificall unvernttl
that this REPL imp\ema\tauon prints only those compiler formsa \arge nd ex part of the tru ed mputing
by the antics eML. Our V owev our knowledge none of the existing work O
a breadth of topics i juding lexing p verified compilers for @ erd—purpose'la”\ eshasd dressed @l

emental and dy compilation oo £ 2 compil e o dimend one, the ompilation
precision ithmetic d compiler F o from @ sour strmgtoanst of

Our contributions : ir ~cntion of that

ot st bootstrappin
gofa

r «w~h a yaification effort can !
= one of

pracre=

formally verified compiler.

-Annd(“.d(e\\f\\..,andltlbawu = ‘
QITTS @2 “and OCaml. BY Y=
W2y codeaongr

... in a connected world:

2019-02-21

.. in a connected world:

‘lmtagnum

Software Technology — D&IT lunchseminarium — Chalmers

49

i 10 ol L
? = I.H‘Jtl'!

& & Dave Sands
& 12 hours ago with [Raul Pardo|at{Chalmers Pub|- @

Having some beers at the pub

Like - Comment - Share

g7 Devdatt and 20 people like this.

Gerardo Schneider Huh? Raul is supposed to be working on tomorrow's
presentation at FMPriv

Like - Reply - g 15 - 5 mins

Write a comment ...

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers

50

JERE'S A 70 (3%

FACER <72V

PR]VAr]/l,, “
|

N=9M PRIVACY POLICIES
' | i

Gerardo Schneider Nice picture! Is the paper ready for tomarmrow's
% deadline?
Like - Reply - g 1452

Where to start?

TDA294 / DIT271

Formal Methods for Software Development

(DAT060 / DIT201 Logic in computer science)
(DAT350 / DIT232 Types for Programs and Proofs)

All problems are not solved:

SPECTRE

Information leakage due to speculation in hardware implementation.

2018: https://meltdownattack.com/

2019-02-21 Software Technology — D&IT lunchseminarium — Chalmers 54

	Software Technology
	Slide Number 2
	Slide Number 3
	Slide Number 4
	2010
	Slide Number 6
	2013 Civil
	Bugs per line of code?
	Concurrent Programming
	Sequential program
	Concurrent Program
	Demo	
	Data Race
	Learn More!
	Bugs might make things go wrong�
	Bugs might make things go wrong�
	Slide Number 17
	No bugs = Secure?
	No bugs = Secure?
	What Information Flow Control�do we want?
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Our Chief Weapon
	Our Chief Weapon
	Our Chief Weapon
	Our Chief Weapons
	Our Chief Weapons
	Our Chief Weapons
	Our Chief Weapons
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	What do we need to achieve this?
	Where to start?
	More to come (MSc)
	Courses
	… an error in java.util
	… an error in java.util
	The KeY project
	Slide Number 42
	More to come (MSc)
	Courses
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
			 PRIVACY POLICIES
	Where to start?
	All problems are not solved:

