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~ “...malfunction that caused
the vehicle to accelerate
- on its own.”
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Engineering memo suggests electronic problem in prototype car m ?
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2010

Over 6000 complaints of unintended
acceleration

US Congress instigates NASA investigation



Carnegie Mellon

NASA Conclusions
v NASA didn't find a “smoking gun’

o Tight timeline & limited information  (gockeut 20t3-10-44 391840
+  Did notexonerate system

Proof for the hypothesis that the ETCS-1 caused the large throttle opening UAS as described in
submitted VOQs could not be found with the hardware and software testing performed.

Because proof that the ETCS-1 caused the reported UAs was not found does not mean 1t could
ot occur, However, the testing and analysis described in this report did not find that TMC
ETCS- electronics are a likely cause of large throttle openings as described in the VOQs.

[NASA UA Report. Executive Summary]

+But, U.S. Transportation Secretary Ray LaHood said,
‘We enlisted the best and brightest engineers to study Toyota's
electronics systems, and the verdict is in. There is
no electronic-based cause for unintended high-speed
acceleration in Toyotas.”
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News & Analysis

Toyota Case: Single Bit Flip That

Killed
Junko Yoshida see

14 saves
10/25/2013 03:35 PM EDT LOGIN TO RATE

104 comments

During the trial, embedded systems experts who reviewed Toyota's
electronic throttle source code testified that they found Toyota's
source code defective, and that it contains bugs -- including bugs
that can cause unintended acceleration.

"We've demonstrated how as little as a single bit flip can cause the
driver to lose control of the engine speed in real cars due to
software malfunction that is not reliably detected by any fail-safe,"
Michael Barr, CTO and co-founder of Barr Group, told us in an
exclusive interview. Barr served as an expert witness in this case.

Stack overflow and software bugs led to memory corruption, he
said. And it turns out that the crux of the issue was these memory
corruptions, which acted "like ricocheting bullets.”
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Bugs per line of code?

SOFTWARE SIZE (MILLION LINES OF CODE)

Source: NASA, IEEE, Wired, Boeing, Microsoft, Linux Foundation, Ohich
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Concurrent Programming

Natural programming model in
e embedded systems

e operating systems

e GUIs

But it is easy to get wrong!



Sequential program

int counter = 0;

for(int i=8; i<1000000;i++) {
counter++;
}

2019-02-21
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Concurrent Program

int counter = 9;

for(int 1=0; 1<1000000;i++) { for(int i=0; i<1000000;i++) {
counter++; counter++;

} }




Demo

class Race implements Runnable {
int counter = 0;

public void run() {
for(int i=0; i<1000000;i++) { counter++; }
}

public static void main(String[] args) {
try {

Race r = new Race();
Thread A = new Thread(r);
Fhread B = new Thread(r);
A.start(); B.start(); // Start both threads
A.join(); B.join(); // Wait for them to finish
System.out.println("Final counter: " + r.counter);

}
} catch (Exception e) { }
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Thread A

Thread B

Integer

17

read

17

Data Race

[- increment -*

17+1 = 18
[-increment-*
17 17+1 = 18
A
read write
| v
18

Time

write

18



Learn More!

Concurrent Programming
TDA384/DIT391 LP1, LP3

Testing, Debugging, and Verification
TDA567/DIT082, LP2



Bugs might make
things go wrong



will
Bugs miht make
things go wrong

Software Technology — D&IT lunchseminarium — Chalmers



= ———

\ " SECURITY WILL
| RETURN IN

5 MINUTES

FAIL

FAILBLOG.ORG
17




No bugs = Secure?



No bugs = Secure?

Does the software treat our sensitive data in an
appropriate way?



What Information Flow Control
do we want?

o Confidentiality, Privacy

— Information about sensitive data cannot be
deduced by observing public channels

 Integrity

— Untrusted data should not influence the
values sent on trusted channels

e Erasure
— Information is no longer available after use









if (input != “attack at dawn”)
{ output(“BANG!”); }




Our Chief Weapon

https://youtu.be/IN6OOWICYOQA
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https://youtu.be/1N6OOWtCYQA

Our Chief Weapon

; 1 >= 0;

return p;

}

throw new NoSuchElementException();
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Our Chief Weapon

system(“/usr/
ucb/mail “ ++ x)
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Our Chief Weapons

T R

Transformation
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Our Chief Weapons

T R

Transformation

code
Main =
do { x <- readFile
“Contact”;

system(“/usr/
ucb/mail “ ++ x)

+ policy
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Our Chief Weapons

L
il

Libraries
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Our Chief Weapons

New Programming
Languages

Transformation

Static Analysis
Monitoring
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Home >> News >> Languages >>

I PROGRAMMER

Main Menu

Home

Book Reviews
Book Watch
News

Projects

The Core
Babbage's Bag

History

Swift's Spreadsheets

The Stone Tapes
Professional Programmer
eBooks

Programmer Puzzles
Bargain Computer Books
CodeBin

| Programmer Weekly

ortware Technology — D&IT lunc

Login Register Edit Profile Chane

Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers obtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you're writing your app

31
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Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers abtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you're writing your app
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The alternative, developed by Niklas Broberg at the University
of Gothenburg is called Paragon, and the techniques used by
the programming language are shown in his thesis "Practical,
Flexible Programming with Information Flow Control".

“The main strength of Paragon is its ability to automatically
identify potential information leaks while the program is being
developed,”

says Niklas Broberg.

a r
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New programming language to
plug information leaks in
software

NEWS: NOV

The curreni
individuals
have acces:
the code m
Broberg of
programmi
informatior
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Paragon identifies potential information leaks while the program
is being written

As a solution to these problems, Niklas Broberg
has developed the programming language
Paragon. The methodology is presented in his
thesis "Practical, Flexible Programming with
Information Flow Control" which was written in
August 2011.

“"The main strength of Paragon is its ability to
automatically identify potential information
leaks while the program is being developed,”
says Niklas Broberg. “Paragon is an extension
of the commonly-used programming language
Java and has been designed to be easy to use. A programmer will easily be
able to add my specifications to his or her Java program, thus benefiting

from the strong security guarantees that the language provides.”
Software Technology — D&IT lunchseminarium — Chalmers
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What do we need to achieve this?

Deep understanding of programming language
design and implementation



Where to start?

Programming Language Technology
LP2 DAT151/DIT230



More to come (MSc)

e Compiler Construction TDA283/DIT300, LP4

e Language-based Security TDA602/DIT103, LP3



Courses

Concurrent programming

Testing, Debugging,
& Verification

Bachelor’s level

Language-Based
Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level




... an error in java.util

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)
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... an error in java.util

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)

Proving that Android’s, Java’'s and

Python’s sorting algorithm is broken (and
showing how to fix it)

(O February 24,2015 @ Envisage Written by Stijn de Gouw. & S$s

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-
br@&%—ﬂz_—éhd_how_to_ﬁx_it/ Software Technology — D&IT lunchseminarium — Chalmers 40



http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
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The KeY project

Software Technology — D&IT lunchseminarium — Chalmers

KeY lets you specify the
desired behaviour of your
program in the well-known
specification language JML,
and helps you prove that your
programs conforms to its
specification. That way, you
did not only show that your
program behaves as expected
for some set of test values -
you proved that it works
correctly for all possible
values!

Wolfgang Ahrendt (Chalmers)
and others

41



A brief demo of KeY

https://www.key-project.org/
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More to come (MSc)

 Formal Methods for TDA294/DIT271, LP1
Software Development



Courses

Concurrent programming

Testing, Debugging,
& Verification

Bachelor’s level

Language-Based
Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level
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Establishing Compiler Correctness

Maybe it is worth the cost!

Cost reduction?

Alternatives 1

‘Proving the correctness of a compiler is prohibitively expensive
(however, see the CompCert project)

gTesting is the only viable option
/\

A

... but with testing you never know you caught all bugs!
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All (unverified) compilers have bugs

“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input. ”

PLDI'1

Finding and Understanding Bugs in C Compilers

Xugun Yang YangChen  Eric Eide John Regehr

“[The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code
errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

= pUUC U RVEriSoE - ched, the Deee VE SUTONSSS
wwaﬁlwmﬂuﬁﬁmwﬁdnu— almers
| qbeet of Cwhileavoidngt _ the
W@F@ﬁﬁ%ﬁ?&mwdd@w‘ba!'w \A s rected Camith, arm@ta'@?fﬁaiﬁmﬁ
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Project lead: Magnus
Myreen

ing @ system that 1S end-to-en
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SCaIing up...

\_ (now at Ch
almers)
CakeML: yerified | mp\ementat\on of ML
Ramana Kumer 1 Magnus©O. Myresn” 1 Miched Norrigh? Seott Owens
1 Computer Laboratory, university Cambridge, UK
2 Canberma Research LaD, NICTA Australia
3 gchool of Computing, University of Kent
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... in a connected world:
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.. in a connected world:

‘lmtagnum
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& & Dave Sands
& 12 hours ago with [Raul Pardo|at{Chalmers Pub|- @

Having some beers at the pub

Like - Comment - Share

g7 Devdatt and 20 people like this.

Gerardo Schneider Huh? Raul is supposed to be working on tomorrow's
presentation at FMPriv

Like - Reply - g 15 - 5 mins

Write a comment ...
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N=9M PRIVACY POLICIES
' | i

Gerardo Schneider Nice picture! Is the paper ready for tomarmrow's
% deadline?
Like - Reply - g 1452



Where to start?

TDA294 / DIT271

Formal Methods for Software Development

( DAT060 / DIT201 Logic in computer science )
( DAT350 / DIT232 Types for Programs and Proofs )



All problems are not solved:

SPECTRE

Information leakage due to speculation in hardware implementation.

2018: https://meltdownattack.com/
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