
Software Development Overview
Slide Series #1

Engineering

Classical approach: Everything is fully specified before start to build!

Software Development
How to write an application!

Application

Software have some problems compared to classical engineering …

Software development (of the kind in course)
- Is often very complex because

- many stakeholder,
- concepts or specifications not well defined,

- Is a young engineering discipline, somewhat of an art ...
- Is in between very informal (dynamic/chaotic)
- Is short of mathematical tools (formulas)
- Is normally a group task
- Is highly dependent on communication

How to construct a high quality application fulfilling its intent?
- Unsolved problem ...
- … but many impressive applications constructed

Software Process

To try control the construction of the application (and thus deliver a high quality
application fulfilling its intent) we use a software development process

- An ordered (finite) number of “well defined” phases (or steps) to develop the
application

- The process should at least guarantee a better result than no process

https://en.wikipedia.org/wiki/Software_development_process

Software Processes
Agent-oriented programming, Agile software development, Agile Unified Process (AUP)
Aspect-oriented Programming (AOP), Behavior-driven development (BDD), Big Design Up Front (BDUF),
Black box engineering Brooks's law, Cathedral and the Bazaar (see also Release early, release often
(RERO)), Chief programmer team, CMMI Code and fix, Code reuse), Cone of Uncertainty, Constructionist
design methodology (CDM), Continuous integration Control tables, Convention over configuration,
Conway's Law, Cowboy coding, Crystal Clear, Design competition Design-driven development (D3), Design
Driven Testing (DDT), Domain-Driven Design (DDD) Don't Make Me Think (book by Steve Krug about human
computer interaction and web usability)
Source Of Truth (SSOT), Dynamic Systems Development Method (DSDM), Easier to Ask Forgiveness than
Permission (EAFP)Evolutionary prototyping, Extreme Programming (XP). Feature Driven Development (FDD).
Free software license Good Enough For Now (GEFN), Iterative and incremental development, Joint
application design, aka JAD or "Joint Application Development", Kaizen, Kanban, Lean software
development, Lean-To-Adaptive Prototyping in Parallel (L2APP) [1] Literate Programming, Microsoft
Solutions Framework (MSF), Model-driven architecture (MDA), MoSCoW Method Open source, Open
Unified Process, Pair programming, Project triangle, Protocol (object-oriented programming)
Quick-and-dirty, Rapid application development (RAD), Rational Unified Process (RUP), Release early,
release often (RERO) - see also The Cathedral and the Bazaar, Responsibility-driven design (RDD)
the Right thing, or the MIT approach, as contrasted with the New Jersey style, Worse is better., Scrum,
Service-oriented modeling, Spiral model, Stepwise Refinement, Structured Systems Analysis and Design
Method (SSADM) SUMMIT Ascendant (now IBM Rational SUMMIT Ascendant), Team Software Process
(TSP), Test-driven development (TDD) Two Tracks Unified Process (2TUP), Ubuntu philosophy, Unified
Process (UP) Unix philosophy, User-centered design (UCD), V-Model, Hybrid V-Model [2], Waterfall model
Wheel and spoke model, When it's ready [3], Win-Win Model, Worse is better (New Jersey style, as
contrasted with the MIT approach) ...

No common agreed upon approach, style or philosophy how to develop this kind of
software

- Software processes philosophies
- No silver bullet!

https://en.wikipedia.org/wiki/List_of_software_development_philosophies
https://en.wikipedia.org/wiki/List_of_software_development_philosophies
https://en.wikipedia.org/wiki/No_Silver_Bullet
https://en.wikipedia.org/wiki/No_Silver_Bullet

Agile Development

Hard to specify software. Requirement changes!

 As a reaction: Agile development
- Feedback (customer) is the primary control mechanism
- Start with a rather preliminary specification.
- Implement functionality iteratively and incrementally (repeatedly in small

steps) and learn
- Pros: Quick adaption to changes/problems
- Cons: Insufficient design and documentation (missing general aspects of the

problem)

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Iterative_and_incremental_development

Course Process

Use scenes/gui to create
object model

Dry run the model

Implement and test model

Define. Sketch a GUI and
create small “scenes”

Expand model add services

Idea

UML

Text/Pictures

Java

Finished???

JUnit

NO!

We use a simple (no name) agile process model
- We need to have some common vision what to build
- We should have some understanding (and some beginning of a solution)

before the implementation starts
- We start to implement some central functionality ...
- ... thereby gaining deeper understanding ...
- ... as a result we possibly update the current solution ...
- ... we refactor the code to clarify/reflect the new solution ...
- ... then we continue with a few more functions (and other stuff needed..)...
- ... until finished!

2. Analysis

3(4). Design &
Implementation

1. Requirement elicitation

Process Phases

Use scenes/gui to create
object model

Dry run the model

Implement and test model

Define. Sketch a GUI and
create small “scenes”

Expand model add services

Idea

Finished???

The phases/steps for one iteration
- Requirement Elicitation
- Analysis
- Design and Implementation
- … more to come

Iterations

Second phase

First phase

First Iteration

Agile Non-Agile
 (no iterations)

Second Iteration

Functionality

Time

Functionality

Time

All
Phases

Agile
- We’ll build an executable small portion of the application covering all

development phases
- We will have something to run after first (each) iteration
- Each iteration will increment functionality

Non-agile (just as a contrast)
- Each development phase is completed before next is started.
- Nothing to run until (close to) finished.

Iteration Planning

Iterations Last Iteration

 w1 w3 Demo

First runnable
version Add functionality

Iteration 1

w8

Finished Sun 24.00

Iterations and weeks
- Must have something to run late week 3 (probably some tests, more later …)!

Process Communication

Effective communication is a fundamental requirement for software development.

Find a room with a whiteboard and gather
- Don't spread the group!

Use issue trackers, can't remember everything…
- Most IDE have “TODO” lists (use // TODO in NetBeans, IntelliJ, ...)
- Web based issue trackers

Wordlist for definitions
- Have experienced group members using same notion for different concepts!

Confusion … time lost…
- If any ambiguity write down in wordlist (and/or as class comment).

Software Documentation

Software documentation is a very debated topic
- Very hard to achieve good documentation
- A topic in it’s own right (more in other courses)
- Many views, no real common opinion
- Problems: How to, what to, … how to keep in sync with code
- Agile documentation
- Criticism (and alternative)
- .. anyway we do some basic documentation

http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
https://www.needpoweredchange.com/latest-requirements-document-worse-useless/
https://www.needpoweredchange.com/latest-requirements-document-worse-useless/

SDD

Documentation in Course

RAD

This is a programming/design
course. If in any doubt always
prioritize the code!

Overall goal for documentation: To trace process, to understand application

Documentation consists of:
- Meeting agendas
- Two different documents describing the application

- The Requirements and Analysis Document (RAD)
- The System Design Document (SDD)
- … more to come.

For all documentation we prefer
- Short and focused
- If sections not applicable just put an "NA"
- Try to be Pedagogical

- Next person to be involved should have an easy road to understanding
- Use templates (on course page)

This is a First Year Course
- Can't expect professional documentation
- We'll not be able to produce "real" RAD and SDD.
- Sometimes we have to use our imagination to fill in, do so...
- ... but

- We will use the documentation during grading to get an understanding
of your application

- Easier to get a fair grade if we understand (time for grading is limited)

All documentation should be in Git repo!

Meetings and Agendas

You should
organize min. 2
documented
meetings/week

To keep the project focused and on track and controlling the process there should
be meetings organized by you

- There should be min. 2 organized meeting/week (besides the mandatory
supervised meeting)

The meeting should have an agenda (mandatory),
- What to discuss,
- A documented outcome!

- What decisions are made?
- Who is responsible for what?
- Outcome documented in agenda (i.e. same document)

Being a chairman is a qualified task (rotate);
- Keep time, keep discussion focused and on track, ...
- Be efficient!...socialize after the meeting...
- … and of course we all arrive in time and end in time

Target audience for documented agendas are
- First and foremost the group
- To a lesser degree assistants and later examiner
- It's not ok to update the agendas/outcomes, they are immutable

- Fix another meeting if previous failed...

Is this Suppose to Work?!

I claim this way to work will be better than no process
- But as noted … there are no silver bullets …
- Must use your skills and good judgement!

Common student comment after course: Now we know how we should have
worked …

- So this is a learning process

Summary

- We use a simple agile process
- The process has 3 (4) phases
- Communication is important and hard …
- We do as little documentation as possible

- RAD and SDD
- Meeting agendas

Next: Starting out with the process, Requirement elicitation

Cartoon: Not the way we do it!

