
Requirements and Analysis Document
for the Monopoly project (RAD)

Version: 1.0

Date: 2017-02-31

Author: Joachim von Hacht, hajo@chalmers.se

This version overrides all previous versions.

1 Introduction

The project aims to create a prototype for computer based generic version of the well known
board game Monopoly by Parker brothers. Generic in the sense that it's should be possible
to adapt the game to different locations and more, see further below. For definitions, terms
and rules of the game see references.

The application will be a desktop, standalone (non-networked), multi-player application with
a graphical user interface for the Windows/Mac/Linux platforms.

Some general characteristics:

- The application will be turn based. The actual player must explicitly end his or her
turn. The next player is chosen by the application from a preset ordering. The
ordering is generated randomly by the application at start of the round.

- There's no time constraints for a round.
- The application will end according to the rules or possibly be canceled.
- If the game is canceled the player with most resources will be the winner.
- The application will handle all of the bank's responsibilities.
- The application will use a GUI very similar to the original game.
- The application does not include a computer-player. It's impossible to play the game

alone (a person can of course choose to play against herself).
- The application does not save interrupted games or collect any statistics (high score

or other).

1.1 Definitions, acronyms and abbreviations
Technical definitions

- GUI, graphical user interface.
- Java, platform independent programming language.
- JRE, the Java Runtime Environment. Additional software needed to run an Java

application.
- Host, a computer where the game will run.

Most definitions and terms regarding the core Monopoly game are as defined in the
references section. Some terms not defined or redefined:

- Round, one complete game ending in a winner or possible canceled.
- Turn, the turn for each player. The player can only act during his or her turn (roll

dices, buy, sell, etc.). Though, the player can be affected during other player's turns
(i.e. pay to actual player, etc.)

- Resources (for players), the total value of the properties, buildings and cash of a
single player. A player is bankruptcy when he or she has no more resources.

2 Requirements

2.1 Graphical user interface
The user interface will look like the real game. It should be possible later to add perspective
or animations etc.

Application will use a fixed (non skinnable, non themeable) GUI following standard
conventions. The GUI must take into account different screen sizes, possible very small
(minimum size: 320 x 480 (HVGA) at 163 ppi). See APPENDIX for screens and navigational
paths.

(just an example)

(Missing comments to GUI here)

2.2 Functional requirements

Functionality for the application includes:

1. Set options:
a. Select how many player for the game
b. What color for each player
c. What piece for each player.

2. Start a new game using the options.
3. Do a turn. During the turn, he or she can

a. Roll dices. This will possible trigger a response from the application (i.e. move
the piece, show a dialog for Chance card, GO to Jail, get money when
passing GO, etc.)

i. NOTE: There's no explicit move command
b. Respond to any cards etc.
c. Buy or sell properties and building (or mortgage).
d. End the turn.

4. Exit the application (will end turn and round).

Ordering of use cases by priority

- Move (this includes roll dices and move piece).
- End turn
- Buy property
- Sell property
- Respond to card
- Start game
- Set options

2.3 Non-functional requirements

Game
The game should be possible to play for at least two different locations (sets of streets etc.
example: London and Gothenburg).

Usability is high priority. Normal users should be able to play the game within a very short
period.

There should be an English built in user manual, how to play the game.

Technical
The application must be implemented so that the GUI is easily modifiable to suit other
platforms (Web, Mobile Apps, Pads, e.t.c.).

The implementation should prepare for the dividing of the application into a
client/server-architecture for net based games. It should be easy to partitioning the
application into a client-server architecture. A time estimation for this should be included.

There should be automated test verifying all use cases. Code related to the GUI could be
tested manually.

To achieve platform independence the application will use the Java environment. All hosts
must have the JRE installed and configured. FOr now the application needs to be installed
on all hosts where it will run (possibly downloaded).

The application will be delivered as an jar-archive containing.

1. A file for the application code (a standard Java jar-file).
2. All needed resources, internationalization and localization files, icons, e.t.c.
3. Start programs (scripts) to start the game on the different platforms.
4. A README-file documenting installation and start of application.

The source code will NOT be part of the package:

3 Use cases
Use case overview

(clarifications/comments to use cases here)

Use Case Listing

1. Move
Summary: The game has started. Actual player is in turn
Priority: High
Extends: DoTurn
Includes: Roll dices
Participators: Actual player

 Actor System

1 Click Roll button

2 Result for two dices shown
Piece removed from actual
position and put in new position
Roll button disabled

2.1 Passed Go If player passed go, player
balance flashes (updated) and a
“cash”-sound is played

2.2 Landed on
owned property

See Pay Rent

2. End turn

….

N. Pay rent
Summary: Player have moved piece and landed on property owned by other player
Priority: High
Extends: Roll dices 2.2
Includes:
Participators: Player

 Actor System

1 Shows a dialog

2 Clicks Pay Rent button in dialog

3 Dialog closes
Player and owner balances
updated (flashes), “cash”-sound

3.1 No cash See Sell

3.2 Broke See Player Broke

(more UC texts here)

4 Domain model

4.1 Class responsibilities
Monopoly: Is the overall representation of the game.
Space: Represents a location on the board. May hold visitors (players) and buildings
Board: Is a collections of spaces.
… (more)

5 References
Monopoly, Wikipedia
History of Monopoly
Java 8

https://en.wikipedia.org/wiki/Monopoly_(game)
https://en.wikipedia.org/wiki/History_of_the_board_game_Monopoly
http://docs.oracle.com/javase/8/

