
Design
Slide Series #5

Design and Technical Debt

Technical debt is "a concept in programming that reflects the extra development
work that arises when code that is easy to implement in the short run is used
instead of applying the best overall solution".

So from here the design is a matter of great concern to us!
- We design the model
- We design the full application

https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt

Starting out Iteration 2

Itration 1 DONE

We’ll run a complete cycle again (no new requirement for now)!
- The goal is to get a stable model! (before starting with full application design)

Add more classes to implement alternate flow for UCs Move
- Pay rent (landing on property owned by other)

- NOTE: This use case potentially will have a lot of user interaction (user
possibly must sell, broke, …)

- Go to jail (landing on Go to Jail)
- Speeding (3 consecutive double-sixes, must go to jail)

Interfaces

// Possibly to treat Spaces from some specific point
public class Space implements IBuyable {

...
}

// Probably not useful (don’t need to shield model classes
// from each other)
public class Space implements ISpace {

...
}

My convention
using leading ”I”
for interfaces

Use of interfaces
- Make objects “the same type”.

- Guarantee some general operations is present
- Possible to store heterogenous objects in Collections
- This use is possible in Model

- The “seams” in the system, shielding different parts of application.
- Not in model (model is a single part)

MP : Extending the Design Model

Street

Space IOwnable

setOwner()
getOwner()
getRent()

IBuildable

if (s instanceof IOwnable) {
IOwnable o = (IOwnable) s;
return o.getOwner() … // Or getRent()

} else {
...

}

Use of Space class
- Common data for Street, Chance, Community Chest factored out to base

class Space
- Easy to send List<Space> to GUI for rendering .. but need use instanceof ….

(not so good) .. to find runtime type.
- Spaces with specific characteristics (operations) implements interfaces

Update domain: (Street) and design model (Street, IOwnable, IBuildable)

Hmm, forgot: If in Jail when starting use case Move?
- Should show dialog, present possible actions … or?...
- … go back and modify use case text!

MP: Update Use Case Move

Actor System

1 Click Roll button

2 Result for two dices shown
Piece removed from actual
position and put in new position
Roll button disabled

2.1 Passed Go If player passed go, player
balance flashes (updated) and a
“cash”-sound is played

1. Move
Summary: The game has started. Actual player moves piece on the
board, Player not in Jail (see use case “In Jail”)
Priority: High
Extends: DoTurn
Includes: RollDice
Participators: Player

We forgot so have to updated use case text!

MP : Dry Run Pay Rent

actual: Player: Monopoly : Space

move()

checkPayRent()

Space s
getPosition()

Player owner

[s instanceof IOwnable]

: Ctrl

getOwner(): GUI

payRent()

Must sell or
broke?

[owner != NONE && owner != actual]

Conditionals

JUnit act
as

controller
for now

owner.income(s.getRent)
actual.income(-s.getRent)

owner: Player

We continue to use JUnit tests
- This UC need user interaction

- We know we will have a control layer because we use MVC (not all
applications do it like this)

- Interaction handled by control layer
- Control for now is the JUnit test.

If getting complex … !
- Simplify: Use notes, pseudo code, …

MP : Monopoly-0.2

Dɛʕʞ ˔ɸʕɛ

Download from course page, inspect and run!

Implementation Principles

Smells

There are quite a few design principles and best practices
- Can’t remember them all, … but during code reviews, check the list

Refactoring

Should refactor aggressively after each iteration!
- Check against implementation principles
- Refactoring patterns

https://dzone.com/refcardz/refactoring-patterns
https://dzone.com/refcardz/refactoring-patterns

Starting out Iteration 3

Itration 1 DONE

Going for full
application design!

This iteration will produce a complete application with GUI and a MVC model
- So for now will focus on system design (i.e. vs model design)

Application Design

Resources
Services

Control

Design Model

Domain
Model

This is an abstract view how an OO-application (system) “should” look (not
universally true, but ok for this course)

- Domain model is the core classes from the analysis
- Design model is the domain model adapted for implementation

- Extended with “technical”-support classes
- For MP: IOwnable, IBuildable (so far)

- Control is a layer coordinating the flow between the model and services
- So far handled by JUnit tests

- Services are everything supporting the model (no services so far)
- GUI
- Handling of resources
- Persistence (save to file, database)
- Communication (network, …)

- Resources
- Data for configuration, initialization, ...
- Images, sounds, …
- i18n data

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization

Package Structure

edu.chl.hajo.monopoly

ctrl

viewservice

util

event

core

Main

Application should be partitioned into packages.
- Will organize the overall structure of application.

- Each package should have a well defined purpose (same as classes,
methods)

- NOTE: Arrows shows dependencies
- util and config used by many but uses NONE (only incoming arrows)

- Arrows for util and config not shown, would clutter up
- NOTE: Model not dependent on services (used via ctrl more later ...)
- Package structure should guarantee unique qualified class names
- Use UML package diagram

Packages
- edu.chl.hajo.monopoly: (nested) package(s) for full application. Using approx.

reversed internet domain
- Only class (for now) Main. Application start class (main method)

- util: non-application specific classes (possibly reusable)
- service: classes for file handling, etc.
- ctrl: control classes
- event: event handling inside application (not Swing events) more to come
- view: GUI classes
- core: the model

https://vaughnvernon.co/?page_id=31
https://newcircle.com/bookshelf/java_fundamentals_tutorial/packaging
https://en.wikipedia.org/wiki/Package_diagram

Choosing GUI Technology

Many choices …
- .. search web!
- MP: Will use Swing (Java2D)
- Maven or Gradle should handle dependencies.

MVC Design Review

View

Model Control

Possibly mutual
dependencies (!)

Control access
model. Model
never access
control

Indirectly
GUI update
Model never
access view

View possibly
access model,
model never
access view
(directly)

Observer Pattern

There are many opinions about MVC.
- When using Observer this is a push design (vs. pull design)

Observer Design Choices

Observable

Observer

Observable

Observable

Observer

Observer

Observer

Observable

Observable

Observable

Observer

Observer

Observer

Observer

BUS

Ad hoc Observer Observer using Event bus

Prefer!

Implementation of observer better use an event based design with an event bus
- Bus globally accessible (Singleton)
- Observables publishes events
- Observers register as event handlers
- All event pass through the bus, possible to inspect/log events!

MP: Will use a simple, in house, event bus

Implementing Eventbus

public class DicePanel implements IEventHandler … {

// Somewhere ...
// EventBus.BUS.register(dicePanel);

@Override
public void onEvent(Event evt) {

 if (evt.getTag() == Event.Tag.DICE_FST) {
 int i = (int) evt.getValue();
 diceOne.setText(String.valueOf(i));
 } else if (evt.getTag() == Event.Tag.DICE_SEC) {
 int i = (int) evt.getValue();
 diceTwo.setText(String.valueOf(i));
 }
}

EventBus is a singleton class with methods register/unregister/publish.
IEventhandler is interface with method onEvent

Keep Model Clean
public class Dices {

private int first;
private int second;
...
private void setFirst(int first) {

this.first = first;
EventBus.BUS.

publish(new Event(Event.Tag.DICE_FST, first));
}

private void setSecond(int second) {
this.second = second;
EventBus.BUS.

publish(new Event(Event.Tag.DICE_SEC, second));
}

}

Don’t want to clutter model classes with event publishing all over
- Event publishing ONLY in setters (possibly private)

- Class must use setters, no bare assignments!
- Should make it easy to locate observables behaviour

Or…
- Wrap model class in Observable (forward calls to real model class)
- Extend Model class, add publishing in sub class

Existing Event Bus
import com.google.common.eventbus.*;
// Google Guava Eventbus
public static final EventBus BUS = new EventBus();

// Outgoing from model to GUI
@Subscribe
public void onEvent(MessageChangeEvt evt) {
 msg.setText(evt.getMsg());
}

public class Model {
 public void setMsg(String msg) {
 this.msg = msg;
 // State change inform view
 BUS.post(new MessageChangeEvt(msg));
 }
}

Google guava eventbus

https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained

The Need for a Control Layer

How should GUI and model interact in MVC?
- Should model be updated after each tile?
- No, … if so possible have to remove single chars, better let control compose a

full word, then add it (when to check word is a real word?)..

MVC vs MVP vs MVVM

This seems to be an issue for Android developers.
- Can’t see very principally different ideas, ….
- ….will possibly be beneficial for technical reasons?

- If so use!

MVC vs MVP vs MVVM

MVC vs. MVP vs.
MVVM on Android

https://news.realm.io/news/eric-maxwell-mvc-mvp-and-mvvm-on-android/
https://news.realm.io/news/eric-maxwell-mvc-mvp-and-mvvm-on-android/

MP : Monopoly-0.3 (MVC)

Dɛʕʞ ˔ɸʕɛ

Download from course page, inspect and run!

Distributed Application Design

Resources

Services
Control

Design
Model Domain

Model

Client Server

?
Calls

Where to put the parts if application distributed?
- The Remote Proxy design pattern!

https://en.wikipedia.org/wiki/Proxy_pattern#Remote_Proxy

Using a Graphics Framework

Model

data = getData()set(data)

If using a graphics framework normally no full MVC design
- Mostly using a pull design (render ask model for data)

- Vs. Observer, a push design!
- Control replaced by update game (method periodically called by framework)

Render Model

Model
data = getData()

w = wrap(data)

render(w)

w type supplied
by framework

Framework

NO rendering data in model!
- I.e. no import of framework classes in model

If rendering (physics) handled by framework
- Wrap model data in framework classes
- Keep model clean!!!

Visual Appearance

Model

Map<Data, Look> map ...

data = getData()
look = map.get(data)

render(look)

Framework

NO visual attributes (icons, sprites, names of files) in model!
- Let framework, given the data, find the look!

Starting out Iteration 4

Itration 1 DONE

Some final pieces!
- Add a service
- Exception handling
- Making life easier, code injection and generation , …

Use case Controllers

Single Use Case control
for (a flow of views)

Control layer could also be comprised of “use case controllers” (classes)
- Each UC (possibly part of) handled by a specific controller class.

- Easy to locate use cases
- Class runs UC parts not present in model or mediated UC between

view and model …
- … or between model and services.

- Slide shows a use case with many views (must not be the case)

Implementing a Service

<<Static Factory>>
ServiceFactory

+ getService(): IService

<<Interface>>
IService

<<Hidden>>
ServiceImpl

HelperClass

MyService

Application
dependency
(this is what
rest of
application
can see)

IService s = ServiceFactory.getService();
… s.doService(…);

Services implemented using Facade pattern
- I.e. an interface used by control and a Factory to get an implementing object
- All other classes are package private (i.e. no public)

- Possibly pure data classes implemented as immutable value
objects

- For application (control layer) to find a service possibly use the Service
locator design pattern

- If problems with dependencies use layering inside service
- Use of generics may remove dependencies

ALSO: Often need to decide on format for data
- Try to shield application from changes in data formats!

https://en.wikipedia.org/wiki/Value_object
https://en.wikipedia.org/wiki/Value_object
https://en.wikipedia.org/wiki/Value_object
https://en.wikipedia.org/wiki/Service_locator_pattern
https://en.wikipedia.org/wiki/Service_locator_pattern
https://en.wikipedia.org/wiki/Service_locator_pattern

Example Services

INetwork

send(…)
receive(…)

IPerisistence

read(…)
write(…)

Application Calls

Application Calls

Flat text file

XML

Database

Hard coded

?

XML-RPC

Kryonet

Emulate
?

RMI

Serialization

Any service is accessed via an interface (INetwork or IPersistence)!
- Exact implementation technique never exposed to application

- Also hide data formats
- Exact implementation technique, is a technical detail, not overly interesting

for us
- Interfaces is a crucial part of application design!

Usage of a Service

Model

Service

Control

Model

Service

Again: We don’t want to clutter the model!
- No service code in model
- Use a controller

- Get data from model and shuffle to service or ...
- Get data from service set in model

Exception Handling

Model

Service1

Service2

try {

}catch(){

}

View

Control

Exceptionhandling not well understood subject
- This is an advice

Exceptions may come from Model or Services
- Model or Services called from control …

- Model never call service directly (except eventbus)
- Handle exceptions in control …
- … propagate message to view to inform user

Possibly create high level exception classes if many layers in application
- Also exception tunneling (Java specific)

http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html

MP : Monopoly-0.4

Dɛʕʞ ˔ɸʕɛ

Download from course page, inspect and run!

Design Review

- Every class has well defined responsibility (represents one
concept)?

- Redundancy? Split or collapse classes? Introduce
generalization?

- Missing or unnecessary classes (convert to attribute)?
- Directions of associations
- No cyclic traversion of associations or dependencies (no

mutual)
- Model in one package (possibly organisational subpackages)?
- Interface(s) to model (model package) to use by others?
- Building the model (factories)?
- Aggregates and call chains?
- Parameterization of model (user options)?
- Absent values (avoiding null)
- Minimize state
- Canonical form
- Is everything located in one single place
- Is flow consequent (same flow for all of events (of same type))
- Testability

Regularly review design until stable.
- Refactoring!
- Use tools!

Circular Dependencies

a

b

c
!

Circular dependencies between packages
- Same problems as mutual dependencies between classes
- Must avoid, see tools … (upcoming)

https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Circular_dependency

Quality Tools

Use tools to increase design and code quality!
- Some built in to IDE’s
- See web!
- Possible to incorporate into pom.xml (Maven project)

Code generation
@EqualsAndHashCode(of = "name")
public class Player {

@Getter
private final String name; // Unique name for player
@Getter
private int balance;
private boolean inJail = false;
@Getter
private Space position; // The actual position

…
}

Have used in
Workshops!

Tiresome and boring to write “boilerplate” code
- We use Lombok for now.

- Add Maven dependency
- Add “Annotations” to generate setter/getter/ and more ….
- Easy to add to to project thanks to Maven

https://en.wikipedia.org/wiki/Boilerplate_code
https://projectlombok.org/
https://en.wikipedia.org/wiki/Java_annotation

Dependency Injection
import com.airhacks.afterburner.injection.Injector;
…
public class DashboardPresenter
 implements Initializable {

@FXML
Label message;
@FXML
Pane lightsBox;
@Inject
Tower tower;
@Inject
private String prefix;
@Inject
private String happyEnding;
@Inject
private LocalDate date;
...

Afterburner
for JavaFX!

Injection makes it possible to let the application supply instances as needed.
- We don’t need to explicitly create (and connect) objects.
- Not used for model: Model constructed in single location.

Structuring Complex JavaFX 8 Applications for Productivity

http://www.oracle.com/technetwork/articles/java/javafx-productivity-2345000.html
http://www.oracle.com/technetwork/articles/java/javafx-productivity-2345000.html

A Note On Databases

1 “pelle” 34

2 “fia” 56

3

1 “götaplat
sen

8000

2 “avenyn” 7000

3

OO modell Relational database

Mismatch!

OO-models and relational databases hard (unsolved) problem
- OO model is a web of objects
- Database is primitive data in tables
- Object relational impedance mismatch
- Possibly : Use some ORM framework

Avoid using databases, emulate (use an interface)!

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_mapping

SDD
1 Introduction
1.1 Definitions, acronyms and abbreviation

2 System architecture

3. Subsystem decomposition
3.1 “...First software to describe” …
 ...
3.n

4. Persistent data management

5. Access control and security

6. References

The system design documents (SDD) overall goal is to make the application
possible to understand (as quick as possible)

- The system design is recorded in the System Design Document (SDD). This
document completely describes the system at the architecture [high] level,
including subsystems and their services, hardware mapping, data
management, access control, global software control structure.

- Audience: The audience for the SDD includes the software architect and lead
members (liaisons) from each subsystem development team (i.e.
programmers).

- The SDD is a "live" document that should be incrementally expanded and
refined during/after iterations.

- This is about communication, no absolute rules how to write
- We prefer this top down explanation approach

- Start out high level (big picture)…
- Hardware setup, communication, applications involved (if

applicable)
- .. then refine in each step …

- Structure of (each) application
- Packages
- Possibly classes/Interfaces
- Design model

- … until close to code (when reaching this level the code and the tests
are the documentation)

Summary

Iteration 2, 3 and 4
- We got more UC’s up and running!
- We got a full MVC version of the first UC’s
- Implemented a Service
- Some exception handling

During the phases we continuously check design,
and quality (using quality tools).

Next: Continue until finished ….

