Workshop 1: Maven and Git

The workshop will introduce Maven and Git. After this workshop you will be able to set up your
project development environment.

If using your own computer this assumes you have Java 8 installed!

Introducing Maven

If using your own computer you may need to install Maven locally on your computer.

We will use Maven from the command line for now (a shell/terminal). Later on it's possible to do
this from inside any IDE.

Linux and Mac already have decent command lines. The Windows shell is very primitive, find
something useful ...

1. When Maven installed, try this (command “tree”, if present, is useful in
Linux/Mac-terminal).

2. Now download the project basicSwing from the course page. Do the following

a.
b.

Inspect the project in particular the pom.xml

Execute: mvn compile in same directory as pom.xml (libraries will be downloaded
from the central repository). Inspect project directories (output will show up in
terminal).

Try to run the project (the *.class files) from the command line. Should look like

(or similar ...):

f|3| ProjectTempla (-] (O] E]\

Press ... 0

Execute: mvn clean and inspect.

Execute: mvn package again and really inspect everything (also the
HTML-pages).

Previous step created an executable jar-file (i.e a program), try to run it from the
command line (max 10 min, if not working continue ...).

http://maven.apache.org/
http://git-scm.com/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://maven.apache.org/download.cgi
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.cs.trinity.edu/~bmassing/Misc/java-cmdline-howto/
https://docs.oracle.com/javase/tutorial/deployment/jar/run.html

Add a Dependency

The main reason for us to use Maven is the dependency handling capabilities. Always as a first
step try to find useful libraries (don’t reinvent the wheel).

1. Create another my-app project as in the first point above.

2. We'll create a class Monster (for some game) but we're bored with the boilerplate
coding. We decide to use Lombok (inspect features).

3. Add a dependency on the lombok library into the pom.xml.

4. Using your favorite IDE, code the Monster class and use the lombok annotations to
reduce the boilerplate code (use your imagination and as much as possible from
Lombok, setter/getter/equals/hashCode/constructor).

5. Use Maven (possibly from inside some IDE) to compile and package the program
(Lombok should be downloaded). Try to run the (useless) program to see if it works. If
using an IDE, the generated setters/getters will show up in code completion!

6. Inspect the generated jar file, is lombok packaged with it?

7. Inspect your local Maven repository, the .m2 directory. Locate Lombok in it.

Introducing Git

You need some reading before starting with this. Start here and give it a quick look. Try to grasp
the basic ideas (later go back for clarification).

http://en.wikipedia.org/wiki/Boilerplate_code
http://en.wikipedia.org/wiki/Boilerplate_code
http://projectlombok.org/
http://books.sonatype.com/mvnex-book/reference/customizing-sect-add-depend.html
http://git-scm.com/book/en/v2/Getting-Started-Git-Basics

A Git Workflow

Read a bit about Git branches, then read the below and finally exercise it (further down)

When using Git we need an ordered process, a workflow. Our workflow uses three branches:

The remote branch “master” (default name), also known as origin/master. Created when
remote repo is created. Always exists.

The local branch master. The local copy of the remote master. Created when project is
cloned from the remote repo. Could be up to date with origin/master or not. Always
exists.

A local branch named as “the task to be accomplished”. This branch is created from the
local master for each task. This branch is strictly private for the contributor. When task is
fulfilled the branch is merged into local master (the remote master is subsequently
updated with the changes in the local master). Finally the branch is deleted.

Workflow Steps
Assume we have a remote repo and have cloned it locally. We now start working with the local

clone.

e

© 0N O

git checkout master // You are probably already on local master

git pull /I (= git pull origin master) To update local master

git checkout -b myTask // Create and switch to branch myTask

Optional: Use git branch -a to show all branches and git status to see what branch you're
on.

Do some coding (some well defined (sub) task), after max 30 min. ... go to 6.

git commit -a -m “...a sensible message...” // Commit on branch myTask

Goto 5. until task finished (max 2 hours before next point)

Ok, assume task finished. Project should be executable, all test should pass.

Now we start to integrate our changes into the project (Tip: If new to this, zip current

code)
a. git checkout master
b. gitpull /l Update local master again
c. gitcheckout myTask // Back to our private branch
d. qit rebase master Il Integrate myTask on top of master
e. git checkout master
f. git merge myTask /I Fast forward
g. git push // (= git push origin master) Push to remote repo
h. git branch -d myTask // Delete branch

10. Now everybody should be able to see your contribution (i.e. git pull).
11. Continue with next task, go to 2.

http://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
http://jonrohan.me/guide/git/dead-simple-git-workflow-for-agile-teams/
http://git-scm.com/book/en/v2/Git-Branching-Rebasing

Exercising the Workflow

To exercise the workflow (locally) do the following

1. We need three Git directories. Select a top level directory to host them all (I call it “tmp”
from now)

2. We will simulate a remote repo on your local machine. Create a directory ooproj.git in
tmp.

3. Step into the created directory, execute
git --bare init

4. Go back to tmp. Clone the remote repo twice (will simulate two different users local
repos)

git clone ooproj.git ooprojA.src
git clone ooproj.git ooprojB.src

5. There should now be three directories in tmp: ooproj.git, ooprojA.src and ooprojB.src.

6. Create a Java-file with some simple code in ooprojA.src, then in same directory,

execute:
git status (just to check)
git add . (must add new files)

git status

git commit -a -m init
git status

git push

Let ooprojB.src execute: git pull. Both should now have the same code.
Use

gitk --all (for both A and B) // Or other graphical tool

(continued next page)

7. The clones represent two different users. Open one terminal for ooprojA.src and one for
ooprojB.src. Let users work on the code using the workflow. Use commit message to
identify the changes. Use gitk --all (or similar) for both users after each step in the
workflow.

All contributions should appear in a linear fashion when inspecting in gitk. If not, you
messed up. Remove everything and start from 1.

If getting a conflict, see and also below

Merge Conflicts

Now we’ll create a conflict and then resolve it. Continue with the Git-repos from above.
We assume both users have the same and latest versions of the code and uses the workflow.

1. Let user A modify a code row (note which one), commit and push it to origin (a full
workflow cycle).

2. Let user B modify same row and commit, later in workflow when ...
3. ... B does the rebase step, a message should show up:
CONFLICT (content): Merge conflict injava

Failed to merge in the changes.
Patch failed at 0001 ..

4. Open an editor in ooprojB and resolve the conflict (edit the code, there are markings like
<emmme- and more, decide what to keep) then execute git add . to mark as resolved.

5. Execute git rebase --continue in same directory. Conflict hopefully solved.

http://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Setup GitHub

We prefer GitHub as our remote repository for the project (if you own a server it's also possible
to host the remote repository on the server).

1. All group member must register on GitHub (note name and password!).

2. All should read and do step 1, Setup Git, on GitHub Bootcamp. To check use:
git config -1

Also to see how to cache password (don’t need to login for every push)

3. Select one group member as repository owner. Let owner create a repository, follow step
2 on Bootcamp (use a good name!). Choose to create an initial gitgnore file for Java and
a README-file. WARNING: gitignore should be adapted to your IDE (not pushing IDE
specific files to the repo). See Web.

4. When finished the repository owner should have a page similar to the one below:

O This repository Explore Gist Blog Help hajodotchl +~ O # P
hajodotchl / ooproject @unwatch~ 1 star o YFork o

Demo repository for course at Chalmers
<> Code
1 1 branc 0 1
ssues 0

ARN I branch: master~ | 0Oproject / +
I'l Pull Requests 0
Initial commit

hajodotchl test commit 7afc31e4f8
B .gitignore nitial commit

B README.md

README.md

ooproject

HTTPS

Demo repository for course at Chalmers

fou can clone w
0 ion. @

<p Download ZIP

5. Add collaborators for the repository (collaborators must be registered on GitHub).

https://help.github.com/articles/signing-up-for-a-new-github-account/
https://github.com/
https://help.github.com/articles/caching-your-github-password-in-git/
http://git-scm.com/docs/gitignore
https://help.github.com/articles/adding-collaborators-to-a-personal-repository/

Clone the Remote Repository

Let (remote) repository owner do the following:
1. Select a local directory where you would like to have your local repository.

2. Step into directory and execute (copy your URL from GitHub, last part is name of local
directory for the local repository):

git clone https://github.com/hajodotchl/ocoproject.git ooproject.src

3. Inspect directory for the local repo! Files from remote should be in the local repository.
There should be a hidden .git-directory and a .gitignore-file, check!

4. Execute: git remote -v to check that the remote is ok. Should list (like):

origin https://github.com/hajodotchl/ooproject (fetch)
origin https://github.com/hajodotchl/ooproject (push)

5. Copy the content of the Maven project template to the local repository directory.
Execute: git status. Should look like (delete directory “target” if present):

Untracked files:
(use "git add <file>..." to include in what will be committed)

findbugs-exclude.xml
pmd-rules.xml
pom.xml

src/

6. Rename the project content to your taste (name, artifactld ... in pom.xml, packages in
src, etc). Open project in your IDE and refactor/inspect (this is easily accomplished in
NetBeans). Make it really beautiful!

7. When satisfied, add and commit everything to the local repo, execute

$ git add . (yes, dot last)

$ git status (a list of “new” files should appear)
$ git commit -a -m initial

$ git status (...ahead of 'origin/master' by 1 commit)

$ git log

8. Now push the local repo content (project) to the remote repo, execute: git push and then
git status

9. Go to GitHub (possibly refresh page). Magic (hopefully)!
10. Check GitHub contributors (should be one and only one, the repo owner).

11. Let everyone clone the repo and start working using the workflow introduced earlier.

Pair programming
If working in pairs you have to share the commits, commit from different machines and/or use
the --author when committing.

If you don’t distribute commits evenly you will fail the course
because of too little contribution to the project!

Also use the @author annotation in Java classes to verify you work.
Short list of useful Git commands here (also other links on course page)

http://luke-watts.com/list-useful-git-commands/

