
Analysis
Slide Series #3

Analysis

Analysis is the second phase in the process
- During analysis we try to create a model of the problem domain as a

collection of interacting objects
- Picture: Not much to say … bit absurd

Domain Model

Requirement
artifacts
(from RE)

Avoid too many details.
Focus on classes and
associations

Domain Model

The Domain model
- Is the core of our application (domain modelling)
- The model is an abstraction of some problem

- What do we mean to abstract? Are you good at abstracting (this is
optional)?

Using input form RE, have to find...
- Objects and how they are related (associations)
- Classes for the objects
- To a lesser degree; attributes, behavior (methods)
- Avoid too many details (inheritance, …)

http://www.scaledagileframework.com/domain-modeling/
http://www.foundalis.com/res/bps/bpidx.htm

Technobabble

Remember: Use domain language
- … not technobabble (like in picture)!!!

https://en.wikipedia.org/wiki/Technobabble

Anemic Class
public class MyClass {

 private … data;
private … moreData;
private … yetMoreData;

public … setData { ...}

public … getData { ...}

public … setMoreData { ...}

public … getMoreData { ...}

public … setYetMoreData { ...}

public … getYetMoreData { ...}

}

No
behaviour!

Anemic class
- No behaviour
- Anemic is ok for some data heavy classes (entity classes), …
- ... but if all classes are like this, no domain driven design..

Fat Class
public class Board {
 private final List<Card> cards;

 public List<Card> unSelectPair() {
 List<Card> s = new ArrayList<>(selected);
 selected.clear();
 return s;
 }

 public List<Card> removeSelected() {
 List<Card> s = new ArrayList<>(selected);
 cards.removeAll(selected);
 selected.clear();
 return s;
 }

 public boolean hasMatchingPair() {
 return selected.size() == 2 &&
 selected.get(0).equalsByName(selected.get(1));
 }

Data and
behaviour!

Class holds data and have behaviour.

Domain Driven Design

During this phase we adhere to domain driven design
- Using the language of the domain
- Placing primary focus on the core domain and domain logic,
- Solutions to the problem is in a domain model (implies fat classes)
- Design application on model of the domain.

For short: "Focus on the model" (more later)

https://en.wikipedia.org/wiki/Domain-driven_design

DoMyUseCase
Summary: ...

Extracting Classes

Actor System

1

2

Nouns (and Verbs)

MyClass

int i
void myMethod()

OtherClass

int i
void myMethod()YetOtherClass

int i
void myMethod()

UML ClassesUse case text

Have the use cases from RAD, simple method:
- Underline nouns in use cases, will become classes
- Underline verbs in use cases will become methods

- Sometimes hard to know which method belongs to which class …
- … for now put them in any that seems sensible, more later …
- … or leave out for now, will show up later!

- Include as much as possible.
- Easy to skip later, …

MP : Extracting Classes

- Monopoly
- Dice
- Piece
- Board
- Space (Street, Electricity, etc. …)
- Jail
- Card
- Rent
- Player
- Balance
- Building
- Bank
- Deed (Lagfart)

Not all of this will end up as classes
- Some will be (atomic) values

MP : Class Responsibilities

- Monopoly, represent over all game

- Space
- Represent location on board
- Visited by players
- Some may be bought and sold

- Jail
- Keep track of collection of player in Jail …
- ...or just attribute of player?

- Board
- Container for spaces (and cards?)

- Balance, … not a class!

Try to formulate!
- If hard, class possible not a class, or not needed … or..
- Atomic values not classes (except for technical reasons like Integer)

Associations

MyClass

int i

MyOtherClass

String s

0..n 0..n

0..n

?

Mutual (Bidirectional)

0..n

0..n 0..n

Have found many classes from nouns. Possibly some methods from verbs.
- Must find associations to create a class diagram
- We don’t distinguish between association, composition and aggregation.

How to find the associations?
- Examine use cases: has, owns, knows, is a, has a, ...
- Visualize the real (physical) situation
- Possibly: Skip (or add a few) directions for now, just note the association

https://en.wikipedia.org/wiki/Association_(object-oriented_programming)

UML Class Diagram

Model represented as an UML class diagram
- Possibly have to break down

- Also see Package diagrams later
- A static view
- NOTE: Associations and multiplicity is between objects

The diagram has a meaning.
- Symbols, notations etc should end up as runnable code!
- Exercise: Transform diagram to Java!

https://en.wikipedia.org/wiki/Class_diagram

Mutual Associations

Player Property

1 0..n

1

Mutual!

1

owner

properties

Which association is more important?

Mutual (bidirectional) associations are bad (or at least we avoid)
- Must keep two object in synch (reference each other) i.e. if new owner have

to change 2 references
- Domino effects (change one, affect other)
- Classes not understood in separation

Select association that seems to be used most, remove other.

https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Acyclic_dependencies_principle

Multiplicity and Direction

Player Property

1 n

Player Property

1 n

Player

Property

Property

Property

Player

Property

Property

PropertyObjects

Same multiplicity

Player has
Collection
of
Properties

Each
Properties
has
reference
to same
player

Associations Class

Consult Project

0..m 0..n

Consult Project

1 1

Allocation

Set<Allocation>
somewhere in
program

m n

M:N
bidirectional

If mutual and many to many association.
- Create an association class (Allocation)

MP : Associations

Some considerations
- Player has (shared) dices or …
- … is it Monopoly that has dices?
- Board has spaces or does a space reference the board?
- Player has position (a Space) or a space has visitors (Players)?
- Player owns spaces or space has an owner?

Which directions seems most natural/useful?
- What questions do we need to answer?

2..8

40
1

MP : Domain Model

Player

Dice

Monopoly Board

SpacePiece

1 1

1
2

1
1

1

1

position

1

The first domain model (iteration 1)
- Targeting the highest priority use cases: Move and End Turn
- I.e. here are the (minimal number of) classes we need to be able to run the

use cases (hopefully?)
- Remainder: This is a model of the domain NOT the full software

Other Domain Model

Dictionary
Calculator

PlayerWhat is this?

HolderTilebagBonus

Board

Position Tile

1
1

1
n

1 2

1
1

1
n

1 1

1

8

1

n

1

1
1

What is this?
- The model should be able to communicate something!

Yet Another Domain Model

Database

PlayerMonster Router

What is
this?

Sound

HighscoreLevel

Socket

3D Engine

GUI

1
1

1
1

1
n

n
1

1 n

1 1

1 1

n
1

1 1

1
1

What is this?
- This is NOT a model of some problem domain …
- … it’s a mess of technical details and domain concepts

Email Domain Model (!?)

Found on the Web
- “The UML diagram for the model created in this tutorial is:...”
- What’s you opinion …?
- My opinion: Strange (bad)?!?

- Where is sender, receiver, inbox, outbox, what is LinkMap … in domain
language?

Efficient modelling

Optimal is to first draw on whiteboard!
- Very fast drawing
- Very fast communication, everyone can participate
- Use phone/camera to document

Later, Tools to draw UML
- When model getting more stable
- UMLet plugin to Eclipse, fastest possible
- Linux : Dia
- Mac/Win? ...

Important Object Characteristics

- Unique identity?
- Equality?
- Immutable?
- Persistence?

- Will any objects survive the execution of the
program?

- Lifecycle.
- When is object created?
- How long does it exist?
- When destroyed?

- ... other ...

Some valuable characteristics to note for the model objects (if applicable)
- Use stereotypes to annotate (example <<Persistent>> for surviving objects)

MP Characteristics
- Player names must be unique!
- Space names must be unique!
- No objects will survive ... (for now)
- All objects (model) created at start of game, exists until end.

- How does this affect the players?
- More .. ?!?

http://en.wikipedia.org/wiki/Stereotype_%28UML%29

Finishing RAD
4. Domain Model
4.1 Class responsibilities

From previous phase we have recorded requirement elicitation in the RAD
- Analysis (i.e domain model) is also documented in RAD!

Analysis: Real world version

Analysis

Same as for RE!
- It’s not linear!

Summary
Analysis focus on building a domain model
- We used the requirements from RAD (use cases) to

extract the domain model
- We expressed the model as an UML-class diagram
- We documented model in RAD

Next: From domain model to first implementation

