Requirement Elicitation
Slide Series #2

Problem Domain

The problem domain is the area of expertise that needs to be examined to solve the
problem
- Often, as computer engineers, we don't have expertise in that areal
- Must explore/learn/understand .. (@and consult domain experts, .. but
(probably) not in this course ...)
- Of course many levels of understanding ..
- .. Wwe need to abstract out the aspects that are relevant for the problem
the application is aimed to solve.

Picture: Sometimes the domain is very hard to understand?!?!!

https://en.wikipedia.org/wiki/Problem_domain

=
| o [150.00010 a‘
I [t

" Hal

| 198,992 m

)
B
=
=3
=
g
=

-

What is “the language" of the domain!
- Notes, positions, timeslots, distance, player, guest, ..?

Requirements

TLL NEED TO kMW
WOUR REQUIREMENTS
BEFORE T START TO
\WEIBN THE S0FTLUARE.

TLARR

ge%s

=

- =)
FIRST OF ALL. [b
L I™ TRYING TO
“’"T:LI'&":?‘ MAKE YOU DESIGM

| accomeL | MY SOFTLARE |

= |

Zog
“lgiz
385

&

i | f_'

N

TRY T GET THIS |

(1 LOONT KNI LHAT
| comcerT THAGUGH YouR

T CAN ACCOMPLISH
UNTIL ¥OU TELL ME

[A YOU DESIGH
IT TO TELL ¥ou
l L MY RECUTREMENTS?

TR, i \
L

1© Scoft Adams, Inc./Dist. by UFS, inc.

Software Requirements is a field within software engineering that deals with
establishing the needs of stakeholders that are to be solved by software ...

- ..iInsome problem domain

- Very hard area ..

https://en.wikipedia.org/wiki/Software_requirements
https://en.wikipedia.org/wiki/Software_requirements
http://asingh.com.np/blog/ieee-srs-recommendations/

Requirement Elicitation

é{‘é

1; ;@Stakeholders
s
Problem

domain

Analysts

Requirement elicitation (RE) is the process to gather the requirements

During RE we aim to get an understanding of the problem domain ..
..and to get a common vision of what to build!
If not

- .you'll end up building multiple (different) applications inside one

application
- ..orjustthe wrong application
- ..orjustfail

https://en.wikipedia.org/wiki/Requirements_elicitation
https://en.wikipedia.org/wiki/Requirements_elicitation

This is a course, we have to emulate ..

RE Techniques

Comparison of Data-Gathering Techniques'

Technique

Good for

Kind of data

Plus

Minus

Questionnaires

Answering specific
questions

Quantitative and
qualitative data

Can reach many
people with low
resource

The design is crucial
Response rate may be
low. Responses may
not be what you want

Interviews

Exploring issues

Some quantitative but
maostly qualitative data

Interviewer can guide
interviewee.
Encourages contact
between developers
and users

Time consuming
Artificial environment
may intimidate
interviewee

Focus groups and
workshops

Collecting multiple
viewpoints

Some quantitative but
maostly qualitative data

Highlights areas of
consensus and
conflict. Encourages
contact between
developers and users

Possibility of dominant
characters.

Naturalistic
observation

Understanding context
of user activity

Qualitative

Observing actual work
gives insight that other
techniques cannot give

Very time consuming.
Huge amounts of data

Studying
documentation

Leaming about
procedures,
regulations, and
standards

Quantitative

Mo time commitment
from users required

Day-to-day work will
differ from documented
procedures

[1] Preece. Rogers, and Sharp “Interaction Design: Beyond human-computer interaction”, p214

The group must act as stakeholders

For now, probably mostly informal methods to gather knowledge.

RAD

Requirements and Analysis Document for ...

1. Introduction
1.2 Definitions, acronyms and abbreviations

2. Requirements

2.1 User interface

2.2 Functional requirements

2.3 Non-functional requirements

3. Use cases
3.1 Use case listing

4. Domain model
5. References

Outcome of RE documented in sections 1-3 of the Requirements Analysis
Document (RAD)
- This documents targets the customer (i.e. non technical/non programmer
- This is about communication, no absolute rules how to write

Purpose RAD

- Describes the system in terms of models (GUI, Class diagram), functional and
nonfunctional requirements and serves as a contractual basis between the
customer and the developer. The RAD must be written in the_language of the
customer's domain of business/expertise. Under no circumstances should
any ‘computerese’ terminology creep into this document.

- Audience: The customer, the users, the project management, the system
analysts (i.e., the developers who participate in the requirements), and the
system designers (i.e., the developers who participate in the system design).

- It's ok to update the RAD during the process (you should), don't try to
write a final version for iteration 1

Monopoly Case (MP)

As a running "case" we'll implement a prototype of the board game Monopoly by
Parker Bros (with some twist).
- It's an application instance, there are other kind of applications/styles/ways...
- More to come
- Abbreviation: MP (on slides)

MP: Problem Domain (MP)

Problem domain known (?) but note...

There are quite a few rules!
There are different sets of rules!
There are possibly unspecified situations!
There are possibly contradicting rules!
There are possibly hidden/inconsistent/undefined rules
- Hard or impossible in physical world but very possible with
computers?

MP: lteration One

Here we start iteration one for monopoly case!
- lteration and explanations a bit entangled

MP: Defining

The project aims to create a computer based generic version of the well known
board game Monopoly by Parker brothers. Generic in the sense t'_~t it's should
be possible to adapt the game to different locations and more, ’0,77 o
below. '%40

Some general characteristics:

The application will be turn based. The actual player must explicitly end his
or her turn. The next player is chosen by the application from a preset
ordering. The ordering is generated randomly by the application at start of
the round.

There's no time constraints for a round.

The application will end according to the rules or possible be canceled.

If the game is canceled the player with most resources will be the winner.
The application will handle all of the bank's responsibilities.

The application will use a GUI very similar to the original game.

The application does not include a computer-player. It's impossible to play
the game alone (a person can of course choose to play against herself).
The application does not save interrupted games or collect any statistics
(high score or other).

Here we try to define the application.

User Interface

To create the use cases we need a preliminary graphical user interface
- GUI will participate in use case like: Customer clicks button, system show

dialog ..
- We'll sketch a simple initial GUI

Also GUI sketch let you
- Initially envision the system (important for customers).
- Enables you to explore the problem space with your stakeholders
- Enables you to explore the solution space of your system.
- Avehicle to communicate the possible Ul design(s) of your system
- A potential foundation from which to continue developing the system (finding

use cases, upcoming ..

MP : User Interface

L)

GO]

[Move [—Endfurn

_ A oie

[1]

En Gata|—_|
- o Fia
o [

\ 1000

Agare till 0

Some considerations
- Should look like a traditional Monopoly game
- Flat 2d look for now
- Popups? Switching views?
- Animations later?
- Anytwist .?

Functional requirements

The purpose that something is designed or expected to fulfil
- The range of operations that can be run on a computer or other system

Functional requirements = functionality

Use Case

To find and/or describe functionality we create use cases ..
- Ause cases is a short story telling the interaction between a user and the
application/system
- We use application and system informally and interchangeable
- Ause case describes a sequence of actions that provide a measurable value
to an actor (user or possibly another system)

- NOTE: The use case does not describe the inner working of the system, it's
from outside (the actor's view)

- Use GUI and domain language to describe the flow.

Known or apparent functionality we describe as use cases
- Start at either side

Who “invented” use cases?

https://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Ivar_Jacobson

Use Case Participants

- < > System

Actor User Interface

Participants
- Actor: An actor is a person, organization, or external system that plays a role
in one or more interactions with your system.
- The user interface, is the space where interactions between humans and
machine occur.
- We will use a graphical user interface (GUI)
- System: The application.

https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_interface

Record a Use Case

7S,
Cy, 0
1. Do My Use Case Urse Ve o
summary: ... page
Priority: (high, mid, low)
Extends: ..
Includes: ..

Participators: ..

Actor System

clicks on button

shows dialog

clicks ok in confirm dialog

Alw | N =

hides dialog

4

A use case is recorded as a text document
- A use case has a hame (and better an unique id)
- Name use cases using domain terminology
- Correct for MP: player, board, dice, ..
- Wrong for MP: array, randomGenerator, subclass .. (technical
details)
- Use case hames begin with a strong verb
- Normally two columns, one for user, one for system (incl. GUI)
- Numbered steps for the flow of actions/event (ho commonly accepted
numbering standard)

The quaUty of the UC's will have impact later
Let UC text be as focused (short) as possible but try to be precise (missing
facts may affect later stages)
- Corner cases!
- Make it a short play (one person emulating the system, playing really dumb),
does it work?

We always start out with normal flow (interaction works as simple and normal as
possible)
- Then we add alternate flows
- Often have alternative paths in the sequence of actions, alternate flows
- Depending on outcome of response, or other..
- Then we add exceptional flow
- How will the sequence of actions behave if we get an exception?

https://en.wikipedia.org/wiki/Corner_case
https://en.wikipedia.org/wiki/Corner_case

The use cases should be ordered by priority
- High, implemented in first iteration
- Mid, later iterations
- Low, optional, possibly never implemented

High priority characteristics
- Significant, central functionality
- Substantial coverage of the solution, stress or illustrate a specific point of the
solution (to be solved)

Writing effective use cases

http://www.gatherspace.com/static/use_case_example.html

MP: Use Case Move

1. Move

Summary: The game has started. Actual player is in turn
Priority: High

Extends: DoTurn

Includes: Roll Dices

Participators: Actual player

Actor System

1 Click Roll button

2 Result for two dices shown
Piece removed from actual
position and put in new position
Roll button disabled

2.1 Passed Go If player passed go, player
balance flashes (updated) and a
“cash”-sound is played

2.2 Landed on See Pay Rent
owned property

MP: Starting out with use case “Move" ..
- Focus on normal flow
- Alternate or exceptional flow as multilevel numbering starting from normal
flow step number

- If alternate flow “small” place here, else refer to other UC
- NOTE Alternate flow 2.1 doesn't need any action from Actor!

- Many more alternate flows missing in slides
- Same result for both dices?
- Lands on "Go to Jail’
- etc..

UML Use Case Diagrams

uc UseC aseg]
System Boundary
% éje_ﬁsﬂd > Order
Wine

confirt

der
Cook
Food
Chef
<<extend>: {if wine was ordered}

<<<extend
{if wine
was

Client 4
facilitate payment =™ i
<<extend>>
accept {if wine
payment was
Cashier consumed}

UML use case diagrams not overly useful, but gives an overview

Include and Extend Use Cases

/ | r » Order meal

f."l.":

rl \
customer «lnc\ude L7 includes 24 «mclude

(Y
l l \ sxemnd

Reglslered Customer

A
. «artifacts)
available to registered Pay.sequencediagram
customers after July 1
oy e
v]
Filter by dietary requirements Filter by cuisine

Use case granularity
- Too large, have to break down
- Too small, trivial, possibly part of another use case
Use case extends
- Inserting additional action sequences into the base use-case sequence
Use case includes
- Aninvocation of a use case by another one
Use case refactoring
- Must do! Else possibly end up with duplicate code

https://en.wikipedia.org/wiki/Duplicate_code

MP: Use Case Diagram
e der

Snaeey
«inclpfdex «lnE{ude» S

’ ~
2 \
SetPlayers
@ etGameOptions
=includes)
i «include» ~
F3 + N

AT RN T L &lnc,_‘ude»

. sl i \\ ‘\ «mgude»*\‘
«mcy.fde» Lo Selleperty
s | dlné{ude» ends»
|nclpcle>>l ‘\

.

:
«mcilu l wex nd;‘ﬂSXIEndS»

|

@ PayRent
R:)IIDices
Freamejall

Probably not all found or all needed.
- Anyway gives an overview

MP: Use Case Pay Rent

5. Pay rent

Summary: Player have moved piece and landed on property
owned by other player

Priority: High
Extends: Move 2.2
Includes:
Participators: Player
Actor System
1 Shows a dialog
2 Clicks Pay Rent button in
dialog
3 Dialog closes

Player and owner balances
updated (flashes),
“cash”-sound

3.1 No cash See Sell

3.2 Broke See Player Broke

Yet an use case text from Monopoly
- This use case needs interaction from actor
- NOTE: There should be a GUI sketch of dialog

MP: High Priority Use Cases?

Which UCs seems very central?

Non-functional Requirements

pol‘fdé,‘/fl’}/ ‘ Pe,-\so na/;s at"on
L Mondtorability foisss

ons behadiour

Performance

Mairidainabilidy

i

Aecthorisation

Localisation

Tueagieiey

Non-functional requirements

Usability, the ease of use and learnability of a human-made object
Reliability, probably not applicable (NA) to us

Performance, probably NA

Supportability

Testability (yes, implicitly mandatory in course more to come..)

- This means: The code we write should be possible to test!
Implementation (any restrictions? Yes, Java in this course)
Packaging and installation
Legal

Some non-functional examples from MP:
- Possible to select different location (Alingsas, Warszawa, Ouagadougou,...)
- Must be possible to change texts,
- Internationalization,..must use internal representation (keys) for all text
- Possibly small screen
- Will use popup for details, dialogs for messages
- And of course testability ..

http://en.wikipedia.org/wiki/Non-functional_requirement
http://en.wikipedia.org/wiki/Non-functional_requirement

RAD so far

1. Introduction

2. Requirements
2.1 GUI v
v

2.2 Functional Requirements
2.2 Non-functional Requirements

3. Use Cases v

3.1. Use case listing

X

Sections ticked off in slide should have a first preliminary version.
- Thisis of course for the first iteration, more to come ..

RE: Real world version

RE o

Have done RE in a linear fashion
- Inreality RE is more of a parallel iterative process
- Also: Later stages may affect previous

Prototyping

Py, ch
7
h/,sj g .
4 Iny
. \mat §J;W% o
Te *TUp@ké ew 1613)
YV {

/(@J, O/)y,ﬁ Jaj(e

private JPanel createCardsPangﬁ?h §§ eké o,
ey, beo Se Stu,

int size = board.size(); ,

cardButtons = new J?utton[s ie,Jf izg, pal‘e,fu’"es/r fg/M f’egeh
JPanel pnl = new JPanel(); S 9ot h s "
pnl.setLayout(new GrldLayout(51ze, sf?e}g ebk U@) pj nsﬁad
for (int row = 0; row < size; row++) { Ck, 2 € 73
for (int col = @; col < size; col++) { johM Joag Z g KRN
JButton b = new JButton(); Texs hiny, ’

b.setBackground(cardBacR);
b.addActionListener(this);)
b.setName(row + ":" + col); // Use this as Llookup Later,
see actionPerformed
b.setPreferredSize(new Dimension(WIDTH / size, HEIGHT /
size));
pnl.add(b); // Add to panel
cardButtons[row][col] = b; // Store so we can access Llater
}
}
return pnl;

}

During this phase you should start out technical prototyping
- Technical prototyping for now
- GUI
- Services (file handling, sound, graphics, Android, etc...)
- Hard code, mock anything you need.

https://en.wikipedia.org/wiki/Software_prototyping

Impact of RE

Cause of Errors Effort devoted to tasks

Summary RE

Requirement elicitation focus on

- Understanding the problem domain

- To create a shared vision of the project

- Finding a preliminary GUI

- Finding functional and nonfunctional requirements

RE documented in RAD

Next: From requirements to the domain model,
I.e. the analysis phase

