Desigh and Implementation

Slide Series #4

Design & Implementation

. Requirement RAD

- artifacts
: (from RE) ,
5 DOHEI Model

The last phasel(s) of our process
- Now we'll create a runnable version of our domain model, the design model
- Possibly some primitive GUI, some simplified MVC (more on MVC later)

Note: In slide there are different domains for the models, this should not be the
case.

Here | just try to show that the design model is more detailed.

Design Model

Not in problem domain!

AddessFaciory Address
<<Fadory (ass>> oy <<WSResource=>

eballd
e Added
ans technical
addConaDetEly) details

addDependants()
getContacDetals()

. " mniadDeials
0.= oontactinfo

iUng
verssonNurber : fioat]

ContactDetziz
Contactinio adirceslined
=<FesnurcePropetisss =<FgsourceProperisss adireesling?
— % aty

Name: addressType T DroMInCE

frName o ountry

lagName adiressTyoe

ageCroup adiressPreference

area(finierest

The design model is the domain model enhanced with technical classes/details,
constructors, etc
- To make domain model runnable!

NOTE: Design model must not be understandable for all stakeholders (customer).
- Must be traceable form domain model.

Levels in Model

The Pong Game

The Pong game has a Ball and Two paddles
- Which will check for collision?
- .. orwill (should) someone else check ..?

Answer: Probably none of!
- There are levels in the model ..
- ..some objects are at a higher level, handling objects at lower level!
- Paddle and Ball are at the “same” level, so something higher up should
handle collisions

How about MP? Anything similar?

Where to Place Methods?

1.Click your area.o 2.Click neighbor to attack.
Q1 @ @2 @2 Q2 9 P

Assume
- Map is built out of hexagons (hexes). All hexes have a (unique) position
- Each country is a collection of hexes (and possible more, .. an owner)
- So classes are: Hex, Map and Country
- Where to put a method to get all the neighbours of a hex (cases: hex
have references to all neighbours or not?)?
- If by value in Hex, will be parameterless method (ho parameters is best
possible)
- .. if by reference in Map (must supply hex as parameter)

Monopoly

calls

call
chains

Aggregates and Call chains

Board

root

‘\\\\Q}ayer

™~

[

Y
Dices ‘ ’ \\ Space

Piece

An aggregate is a cluster of classes (objects) treated as a unit
- All calls to the aggregate goes throught the aggregate root
- This will establish disciplined call chains in model
- Will help to keep objects in a valid state

If too many methods in root, add method to return sub-aggregate with new root.

MP: \WWe'll treat the complete model as an aggregate
- All calls will go through Monopoly object

- Not an universally valid decision, there may be other ways to group (in other

applications).

http://martinfowler.com/bliki/DDD_Aggregate.html

Returnvalues

User Actions

Selects a new
view if required
by user action

Controller updates
model as per user
actions

Model triggers
view update

Focus
for now

View queries
model for State

Any application with a GUI will (should) use some sort of MVC architecture (pattern)
- Have to keep in mind.
- Should methods have return values or should it be handled by
observer?
- Until now we have only worked with the model ...
- ..except the view (GUI) sketches
- NOTE: Methods with return values much easier to test!

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

UCs and Methods?

Need control layer

Actor Actor / \
Design Design
model \] Model
I w
No interaction in use Interaction in use
case (besides case

starting it)

No user interaction in use case (actor just starts off)
- Complete use case may run within single method call to model (i.e. like
use case Move, normal flow)

Any GUI updates probably done using observer pattern (as part of
MVC model ..

- ..S0 possibly no need for return values.
If user interaction in use case
- More calls to model
- Later handled by control parts of MVC
- More likely with returnvalues ..

- ..control parts inspect return values and act upon.

https://en.wikipedia.org/wiki/Observer_pattern

UML Sequence Diagram

[
o
i

Classa ClassE ClassC

1: dassACQperation()

2 : dassBOperation()

N ——
3 result

4: dassCOpai’ationO o)

ez e Srozsemam e U

5: resu

6 : result]) e

S] S R R S R RS
F 3

Possible to
dry run UCs

A sequence diagram is used to describe a (the) dynamic behaviour of interacting
objects

Dry run is last step before start implementing.
- Will must decide (reevaluate) directions of associations (if not done before)
- Will reveal which methods in which classes!

For some use case(s) and the domain model
- Create an UML sequence diagram

If diagram gets very awkward/complex/messy possibly have to modify domain
model

- Missing/bad association may be added/changed now

- Missing classes may show up

If diagram to big, decide on which abstraction level, factor out lower levels to
separate diagrams.

https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Dry_run_(testing)
https://en.wikipedia.org/wiki/Dry_run_(testing)

MP : Dry Run UC Move

’ : Monopoly H actual: Player H dices : Dices H board : Board ‘
move() | | | |

! getPosition() |
L L

.- oldPos _ ___

| roll() |

'1 | getTotal() :

e e L__total o ______|

i 5 getSpace(oldPos, tdtal)

: newPos
el ol el

From this dry run it should be possible to implement use case roll dices (just a
simple translation from diagram to code)!

- . butin practice, .. often most modify things ..

- Just some few considerations before coding .. (upcoming)

MP : Design Model

Monopoly Board
+ static final int BALANCE al List<Space> spaces
+ static final int BONUS + Space getSpace{Space, int]
- Player actual + Space getSpace(String)
+ boolean bothAreSix{d \3 -final Board board + Space getSpacelint)
+ int getTotal} - final Dices dices + Space getStart(
+ void rolld -final List<Player> players + String toString(
+ List<Player> getPlayersQ} + boolean passedGo{Space, Space)
+ Player getActual() + int sizeQ
Player + void movel
-Space position + void next{} STt
-final 5tring name Piece
-int balance Space o
+ Space getPosition() . T
+ Stpring getName() % DOG
+ boolean equals{Object) sty ?ustring() IRON
+ int getBalanced) j e lia s fopPwar |
+ int hashCode{} o q 4 static Piece valueOf{String}
+ void income(int) +.Int hashCodell + Static Piecell values()
+ void setPosition{Space]

OKto auto generate domain model (only)!

Data Representation

Spaces[] board = ...
Spaces[][] board = ...
List<Space> board = ...

Map<String, Space> board = ...

In general
- Arrays only for fixed positions, else Collections

Implementing Important Object
Characteristics

equals contract

an object must be equal to itself

Symmetry
two objects must agree whether or not they are equal

Transitivity
if one object is equal to a second, and the second to a third, the first must be equal to the third

Consistency
if two objects are equal they must remain equal for all time, unless one of them is changed

Mull returns false
all abjects must be unegual to null

Any class used in any Collection should implement equals() and hashCode()
- MP: Spaces, Players .. (equals on name, hame unique)

http://www.artima.com/lejava/articles/equality.html

Construct Model

public class Monopoly {
private final List<Player> players;
private final Dices dices;
private final Board board;

public Monopoly(List<Player> players,
Board board, Dices dices) {
this.dices = dices;
this.board = board; Use Constructors! Pass
this.players = players; in dependencies

private final List<P = new ArraylList<>();
new Dices();

private final Board board N\pew Board();

Build all objects needed to create model in single location
- No "new" spread out all over the application like ..
- .. Aconstructs B constructs constructs D ...

public class Board {

Implementation

BuyaProduct
private final List<Card> cards =

Customer browses through catalog and selects items to buy

Customer goes o check out

Customerllsinshippig nformetion adres; nex-day o 3y elvery)
System presents ful pricing information, including shipping private final int size;

1
2 new ArraylList<>();
1

4

5. Customer fill i eredit card information |

[

1

[

ek Person Address public Board(String[] names){
- J ‘Name. Street
System sends confrming email to cus Phone Number City . . .
[k i 01 Wesal 1 lshate this.size = (int) sgrt(names.length);
yi i Postal Code |
O Purchase Parking Pass Country . .
Atstep, i e int k = o;
Allow customer to re-enter creditcard inf Output As Label |
for (int row = @; row < size; row++
Alternative: Regule Custoner Student [Professor] f(N 1 2 1 i i {
a Syt dilys curent siping i oo Salary or (int col = @; col < size; col++) {
four dights of it cad informaton | Average Mark cards.add(new Card(names[k], row, col));
3b. Customer may accept or override th .
7 Is Eligible To Enroll k++’
R i Get Seminars Taken }
e o o ousrEary | [oderEnny }

o

a0

o
ey

e

+ Datue

Have all information we need!

- Write the code and run ... ehhhh, run how.. (upcoming)?

Testdriven Development

START HERE WRITE A TEST

Test Driven
Development
WRITE CODE
WORKABLE CODE .
REFACTOR E TO MAKE
TEST PASS
CODE PASSES TEST

Test driven development is a way to work with code inside the process
- During the implementation phase we try to use TDD

How to Run?

JUOOI'

How do we actually run the model???
- Answer: By creating tests!

- We use test driven development!
- We know JUnit, use it!

Why is this a good idea???
- We'll only produce the code we need!
- The code needed to pass the test (the use case)!
- The code will have higher quality, because you will not implement “large’
untestable methods
- Will always have something to run!
- Keeping work focused on the logic of the model
- Great way to clarify the model logic
- We must solve the problems (can't program them away)
- Possibilities to discover model errors
- Debugging tests are much easier (vs full application)
- Being able to run a test suite against the model at any time if extremely
useful.
- In particular after refactoring
- Later: Being able to test certain techniques (snippets) also very useful

Tech talk
- We always keep test code separated from the application
- Folder: test in Maven
- The package structure for test should be the same as the structure for the

https://en.wikipedia.org/wiki/Code_refactoring

- application, more to come ...

Test as Documentation

@Test
public void testMoveAndPassGo() {
MockDices md = new MockDices(35);

Monopoly m = new Monopoly(ps, b, md);

assertTrue(m.getActual().getBalance()
== Monopoly.BALANCE + Monopoly.BONUS);

Tests are very good documentation.
- Use long explaining names for tests

MP : Implement UC Move

TODO list:

- Implement classes: Monopoly, Player (equals),
Dices, Board, Space (equals), Piece
- If any class complex create a JUnit test
- Must know it works before participating in
use case
- Dices uses random (can't test, need fixed
result, .. mock!)
- Decide where and how to build model
- Constructors?
- Implement method move() in Monopoly
- Will run the use case (no user interaction)
- Create test calling move()

Finally ready to implement an use case!
- If some class participating in the UC is complex first test it ..
- ..senseless to try to implement a UC if not the “pieces” are working!

The development environment
- Will use a Maven project
- Will run it using JUnit
- Version Handling using Git
- IDE: Netbeans (you use any ..)

THE TECHNOLOGY DEMO

THE SOFTWARE
ISNT 1002
COMPLETE.

www.dilbart.com _sconadams ol com

IF IT HAD A USER
INTERFACE YOU
LWOULD SEE SOME-
THING HERE. ..
HERE. . .AND SOME-
TIMES HERE.

MP : Monopoly-0.1

e Syndicats, ino.

fanlee © 2000 United Foate

AND THEN YOUD
BE SAYING, "I
GOTTA GET ME
SOME OF THAT."

ANY
QUESTIONS?

MP : lteration 1

Here we have done a full cycle, i.e. iteration 1
- Requirements
- Analysis
- Design (not much, just the model)
- Implementation of some high priority use case(s) ...
- ..as JUnit tests (integration test)
- Also test for complex classes (unit test)

Using Frameworks

Framework

Model

If using any framework possibly parts of model is handled by framework
- Example:
- 2D Position (no x and y in model classes)
- Collision detection
- Movement/Physics/Rendering in 3D game frameworks
- Exclude from model parts handled by framework
- Ifso: Can't (don't need to) test those parts
- Test what's not handled by framework
- Possible have to mock (a lot)

NOTE: There should always be a model, using a framework doesn't mean you may
skip the model

NOTE: Model may not be dependent on framework, more later at application

design!
- Should be possible to switch framework

https://en.wikipedia.org/wiki/Mock_object

Think High and Think Low

WRITE-UP
INFORM: 2" % b’ [S\ KEEP TRACK Of -
AN S REVIEW
COMPARE (AT S et LA, .
: \i -DECIDB S 2 Ss N 1E - LOOK INTO
PROPOSE 7+ 12 ¢ NN] ot
DISCUSS “— R AR 25 o ate
- pLAN

Low

public void move() {

Space oldPos = actual.getPosition();
dices.roll();

Space newPos = board.getSpace(oldPos,
dices.getTotal());
actual.setPosition(newPos);

During implementation we must be able to switch between high and low level
abstractions
- If stuck at high level (use cases, GUI ..), concretise by implement on low level
to clarify (i.e. code it)
- If stuck at low level (during coding) abstract at high level
- What is this about (how would GUI look from user perspective)?

Summary

We have a running model

- We got the first UC up and running!

- A small model (with some basic design)
- We only run as tests for now

Next: Next iteration, more use cases (continue prototyping)
design, real GUl and MVC.

Code sample for iteration 1: monopoly-0.1 (course page)

