
Requirement Elicitation
Slide Series #2

Problem Domain

The problem domain is the area of expertise that needs to be examined to solve the
problem

- Often, as computer engineers, we don't have expertise in that area!
- Must explore/learn/understand … (and consult domain experts, … but

(probably) not in this course ...)
- Of course many levels of understanding …
- ... we need to abstract out the aspects that are relevant for the problem

the application is aimed to solve.

Picture: Sometimes the domain is very hard to understand?!?!!

https://en.wikipedia.org/wiki/Problem_domain

Domain Language

1
2 3

4

5

6

What is “the language” of the domain!
- Notes, positions, timeslots, distance, player, guest, …?

Requirements

Software Requirements is a field within software engineering that deals with
establishing the needs of stakeholders that are to be solved by software ...

- … in some problem domain
- Very hard area …

https://en.wikipedia.org/wiki/Software_requirements
https://en.wikipedia.org/wiki/Software_requirements
http://asingh.com.np/blog/ieee-srs-recommendations/

Requirement Elicitation

Requirement elicitation (RE) is the process to gather the requirements
- During RE we aim to get an understanding of the problem domain …
- ...and to get a common vision of what to build!
- If not

- … you'll end up building multiple (different) applications inside one
application

- … or just the wrong application
- … or just fail

https://en.wikipedia.org/wiki/Requirements_elicitation
https://en.wikipedia.org/wiki/Requirements_elicitation

RE Techniques

This is a course, we have to emulate …
- The group must act as stakeholders
- For now, probably mostly informal methods to gather knowledge.

RAD

Requirements and Analysis Document for ...

1. Introduction
1.2 Definitions, acronyms and abbreviations

2. Requirements
2.1 User interface
2.2 Functional requirements
2.3 Non-functional requirements

3. Use cases
3.1 Use case listing

4. Domain model
5. References

Outcome of RE documented in sections 1-3 of the Requirements Analysis
Document (RAD)

- This documents targets the customer (i.e. non technical/non programmer)
- This is about communication, no absolute rules how to write

Purpose RAD
- Describes the system in terms of models (GUI, Class diagram), functional and

nonfunctional requirements and serves as a contractual basis between the
customer and the developer. The RAD must be written in the language of the
customer's domain of business/expertise. Under no circumstances should
any "computerese" terminology creep into this document.

- Audience: The customer, the users, the project management, the system
analysts (i.e., the developers who participate in the requirements), and the
system designers (i.e., the developers who participate in the system design).

- It's ok to update the RAD during the process (you should), don't try to
write a final version for iteration 1

Monopoly Case (MP)

As a running "case" we'll implement a prototype of the board game Monopoly by
Parker Bros (with some twist).

- It's an application instance, there are other kind of applications/styles/ways...
- More to come

- Abbreviation: MP (on slides)

MP: Problem Domain (MP)

Problem domain known (?) but note...
- There are quite a few rules!
- There are different sets of rules!
- There are possibly unspecified situations!
- There are possibly contradicting rules!
- There are possibly hidden/inconsistent/undefined rules

- Hard or impossible in physical world but very possible with
computers?

MP: Iteration One

S˔ȵˀ˔
!

Here we start iteration one for monopoly case!
- Iteration and explanations a bit entangled

MP: Defining

The project aims to create a computer based generic version of the well known
board game Monopoly by Parker brothers. Generic in the sense that it's should
be possible to adapt the game to different locations and more, see further
below.
...
Some general characteristics:

- The application will be turn based. The actual player must explicitly end his
or her turn. The next player is chosen by the application from a preset
ordering. The ordering is generated randomly by the application at start of
the round.

- There's no time constraints for a round.
- The application will end according to the rules or possible be canceled.
- If the game is canceled the player with most resources will be the winner.
- The application will handle all of the bank's responsibilities.
- The application will use a GUI very similar to the original game.
- The application does not include a computer-player. It's impossible to play

the game alone (a person can of course choose to play against herself).
- The application does not save interrupted games or collect any statistics

(high score or other).
- ...

From RAD

Here we try to define the application.

User Interface

To create the use cases we need a preliminary graphical user interface
- GUI will participate in use case like: Customer clicks button, system show

dialog …
- We’ll sketch a simple initial GUI

Also GUI sketch let you
- Initially envision the system (important for customers).
- Enables you to explore the problem space with your stakeholders
- Enables you to explore the solution space of your system.
- A vehicle to communicate the possible UI design(s) of your system
- A potential foundation from which to continue developing the system (finding

use cases, upcoming ...)

MP : User Interface

Some considerations
- Should look like a traditional Monopoly game
- Flat 2d look for now
- Popups? Switching views?
- Animations later?
- Any twist …?

Functional requirements

The purpose that something is designed or expected to fulfil
- The range of operations that can be run on a computer or other system

Functional requirements = functionality

Use Case

Use case Functionality

Discover

Describe

To find and/or describe functionality we create use cases …
- A use cases is a short story telling the interaction between a user and the

application/system
- We use application and system informally and interchangeable

- A use case describes a sequence of actions that provide a measurable value
to an actor (user or possibly another system)

- NOTE: The use case does not describe the inner working of the system, it’s
from outside (the actor's view)

- Use GUI and domain language to describe the flow.

Known or apparent functionality we describe as use cases
- Start at either side

Who “invented” use cases?

https://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Ivar_Jacobson

Use Case Participants

Actor

System

User Interface

Participants
- Actor: An actor is a person, organization, or external system that plays a role

in one or more interactions with your system.
- The user interface, is the space where interactions between humans and

machine occur.
- We will use a graphical user interface (GUI)

- System: The application.

https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_interface

Record a Use Case

Actor System

1 clicks on button

2 shows dialog

3 clicks ok in confirm dialog

4 hides dialog

1. Do My Use Case
Summary: ….
Priority: (high, mid, low)
Extends: …
Includes: …
Participators: …

Template on
Course Page

A use case is recorded as a text document
- A use case has a name (and better an unique id)

- Name use cases using domain terminology
- Correct for MP: player, board, dice, …
- Wrong for MP: array, randomGenerator, subclass … (technical

details)
- Use case names begin with a strong verb

- Normally two columns, one for user, one for system (incl. GUI)
- Numbered steps for the flow of actions/event (no commonly accepted

numbering standard)

The quality of the UC's will have impact later
- Let UC text be as focused (short) as possible but try to be precise (missing

facts may affect later stages)
- Corner cases!
- Make it a short play (one person emulating the system, playing really dumb),

does it work?

We always start out with normal flow (interaction works as simple and normal as
possible)

- Then we add alternate flows
- Often have alternative paths in the sequence of actions, alternate flows

- Depending on outcome of response, or other…
- Then we add exceptional flow

- How will the sequence of actions behave if we get an exception?

https://en.wikipedia.org/wiki/Corner_case
https://en.wikipedia.org/wiki/Corner_case

The use cases should be ordered by priority
- High, implemented in first iteration
- Mid, later iterations
- Low, optional, possibly never implemented

High priority characteristics
- Significant, central functionality
- Substantial coverage of the solution, stress or illustrate a specific point of the

solution (to be solved)

Writing effective use cases

http://www.gatherspace.com/static/use_case_example.html

MP: Use Case Move

Actor System

1 Click Roll button

2 Result for two dices shown
Piece removed from actual
position and put in new position
Roll button disabled

2.1 Passed Go If player passed go, player
balance flashes (updated) and a
“cash”-sound is played

2.2 Landed on
owned property

See Pay Rent

1. Move
Summary: The game has started. Actual player is in turn
Priority: High
Extends: DoTurn
Includes: Roll Dices
Participators: Actual player

MP: Starting out with use case “Move” …
- Focus on normal flow
- Alternate or exceptional flow as multilevel numbering starting from normal

flow step number
- If alternate flow “small” place here, else refer to other UC
- NOTE Alternate flow 2.1 doesn’t need any action from Actor!

- Many more alternate flows missing in slides
- Same result for both dices?
- Lands on “Go to Jail”
- etc….

UML Use Case Diagrams

UML use case diagrams not overly useful, but gives an overview

Include and Extend Use Cases

Use case granularity
- Too large, have to break down
- Too small, trivial, possibly part of another use case

Use case extends
- Inserting additional action sequences into the base use-case sequence

Use case includes
- An invocation of a use case by another one

Use case refactoring
- Must do! Else possibly end up with duplicate code

https://en.wikipedia.org/wiki/Duplicate_code

MP: Use Case Diagram

Probably not all found or all needed.
- Anyway gives an overview

MP: Use Case Pay Rent

Actor System

1 Shows a dialog

2 Clicks Pay Rent button in
dialog

3 Dialog closes
Player and owner balances
updated (flashes),
“cash”-sound

3.1 No cash See Sell

3.2 Broke See Player Broke

5. Pay rent
Summary: Player have moved piece and landed on property
owned by other player
Priority: High
Extends: Move 2.2
Includes:
Participators: Player

Yet an use case text from Monopoly
- This use case needs interaction from actor
- NOTE: There should be a GUI sketch of dialog

MP: High Priority Use Cases?

Which UCs seems very central?

Non-functional Requirements

Tɛˆ˔ȵɐɸʎɸ˔˵

Non-functional requirements
- Usability, the ease of use and learnability of a human-made object
- Reliability, probably not applicable (NA) to us
- Performance, probably NA
- Supportability
- Testability (yes, implicitly mandatory in course more to come...)

- This means: The code we write should be possible to test!
- Implementation (any restrictions? Yes, Java in this course)
- Packaging and installation
- Legal

Some non-functional examples from MP:

- Possible to select different location (Alingsås, Warszawa, Ouagadougou,...)
- Must be possible to change texts,
- Internationalization,...must use internal representation (keys) for all text

- Possibly small screen
- Will use popup for details, dialogs for messages

- And of course testability …

http://en.wikipedia.org/wiki/Non-functional_requirement
http://en.wikipedia.org/wiki/Non-functional_requirement

RAD so far
1. Introduction

2. Requirements
2.1 GUI
2.2 Functional Requirements
2.2 Non-functional Requirements

3. Use Cases
3.1. Use case listing

4. Domain model X

Sections ticked off in slide should have a first preliminary version.
- This is of course for the first iteration, more to come …

RE: Real world version

RE

Have done RE in a linear fashion
- In reality RE is more of a parallel iterative process
- Also: Later stages may affect previous

private JPanel createCardsPanel() {
 int size = board.size();
 cardButtons = new JButton[size][size];
 JPanel pnl = new JPanel();
 pnl.setLayout(new GridLayout(size, size));
 for (int row = 0; row < size; row++) {
 for (int col = 0; col < size; col++) {
 JButton b = new JButton();
 b.setBackground(cardBack);
 b.addActionListener(this);
 b.setName(row + ":" + col); // Use this as lookup later,
see actionPerformed
 b.setPreferredSize(new Dimension(WIDTH / size, HEIGHT /
size));
 pnl.add(b); // Add to panel
 cardButtons[row][col] = b; // Store so we can access later
 }
 }
 return pnl;
}

Prototyping
public void initMaterials() {

wall_mat = new Material(assetManager,

"Common/MatDefs/Misc/Unshaded.j3md");

TextureKey key = new

TextureKey("Textures/Terrain/BrickWall/BrickWall.jpg");

key.setGenerateMips(true);

Texture tex = assetManager.loadTexture(key);

wall_mat.setTexture("ColorMap", tex);

…
}

During this phase you should start out technical prototyping
- Technical prototyping for now

- GUI
- Services (file handling, sound, graphics, Android, etc.…)
- Hard code, mock anything you need.

https://en.wikipedia.org/wiki/Software_prototyping

Impact of RE

Summary RE
Requirement elicitation focus on
- Understanding the problem domain
- To create a shared vision of the project
- Finding a preliminary GUI
- Finding functional and nonfunctional requirements

RE documented in RAD

Next: From requirements to the domain model,
 i.e. the analysis phase

