Software Technology

Magnus Myreen

(Using material from previous years, including material by David Sands)

N AL MIC AR THIN

~ “...malfunction that caused
the vehicle to accelerate
on its own.”

EKCLUSI?E
+indeson | TOYOTA INVEST'GAT'ON

Coopoer 360/

Engineering memo suggests electronic problem in prototype car L@ % A

By Rory Devine, Mari Payton and R. Stickney | Tuesday, Sep 1, 2009

Mo i) Bl | B hSAN DIEGO

Source: http://mww.nbcsandiego.com/news/local/CHP-Of ficer-Family-Killed-in-Crash-566294 72 html

o ¥
-

) “Saylor”
~ 28 Aug 09

2010

Over 6000 complaints of unintended
acceleration

US Congress instigates NASA investigation

CarnegieMellon

NASA Conclusions
v NASA didn't find a *smoking gun’

o Tight timeline & limited information' Bookout 2013-10-14a1 3916409
+ Did notexonerate system

Proof for the hypothests that the ETCS-1 caused the large throttle opening UAS as described in
submitted VOQs could not be found with the hardware and software testing performed.

Because proof that the ETCS-1 caused the reported UAs was not found does not mean 1t could
ot occur, However, the testing and analysis described in this report did not find that TMC
ETCS- electronics are a likely cause of large throttle openings as described in the VOQ.

[NASA UA Report. Executive Summaty|

+ But, U.S. Transportation Secretary Ray LaHood said,
‘We enlisted the best and brightest engineers to study Toyota's
electronics systems, and the verdict is in. There is

no electronic-based cause for unintended high-speed
acceleration in Toyotas."

Electrcal & Computer hitp:/www.nhtsa.gov/PR/DOT-16-11
O EXGREERNG :

© Copynght 2014, Philp Koopman. GG Afnibution 4.0 Infernational fcense.

AUTOMOTIVE

News & Analysis

Toyota Case: Single Bit Flip That

Killed
Junko Yoshida see

14 saves
10/25/2013 03:35 PM EDT LOGIN TO RATE

104 comments

During the trial, embedded systems experts who reviewed Toyota's
electronic throttle source code testified that they found Toyota's
source code defective, and that it contains bugs -- including bugs
that can cause unintended acceleration.

"We've demonstrated how as little as a single bit flip can cause the
driver to lose control of the engine speed in real cars due to
software malfunction that is not reliably detected by any fail-safe,"
Michael Barr, CTO and co-founder of Barr Group, told us in an
exclusive interview. Barr served as an expert witness in this case.

Stack overflow and software bugs led to memory corruption, he
said. And it turns out that the crux of the issue was these memory
corruptions, which acted "like ricocheting bullets.”

Bugs per line of code?

SOFTWARE SIZE (MILLION LINES OF CODE)

Source: NASA, IEEE, Wired, Boeing, Microsoft, Linux Foundation, Ohich

Modern High-end car

Facebook
Windows Vista [
Large Hadron Collider “
Boeing 787 | NN
Android |G

Google Chrome [}
Linux Kernel 2.6.0 ||}

Mars Curiosity Rover [}
dubble Space Telescope .
F-22 Raptor [

Space Shuttle |
0 10 20 30 40 50 60 70

Concurrent Programming

Natural programming model in
e embedded systems

e operating systems

e GUIs

But it is easy to get wrong!

Sequential program

int counter = 6;

for(int i=0; i<1000000;i++) {
counter++;
}

Concurrent Program

int counter = 0;

for(int 1=0; 1<1000000;i++) { for(int 1i=0; 1<1000000;i++) {
counter++,; counter++,

} }

Demo

class Race implements Runnable {
int counter = 0;

public void run() {
for(int i=0; i<10000009;i++) { counter++; }
}

public static void main(String[] args) {
try {

Race r = new Race();
Thread A = new Thread(r);
Fhread B = new Thread(r);
A.start(); B.start(); // Start both threads
A.join(); B.join(); // Wait for them to finish
System.out.println("Final counter: " + r.counter);

}
} catch (Exception e) { }

Thread A

Thread B

Integer

17

read

17

Data Race

[- increment -*

17+1 = 18
I—increment-*
17 17+1 = 18
A
read write
| v
18

Time

write

18

Learn Morel

Concurrent Programming
TDA384/DIT391 LP1, LP3

Testing, Debugging, and Verification
TDA567/DIT082, LP2

Bugs might make
things go wrong

will
Bugs might make
things go wrong

= ———

\ SECURITY WILL

| RETURN IN
' 5 MINUTES

FAIL

No bugs = Secure?

No bugs = Secure?

Does the software treat our sensitive data in an
appropriate way?

What Information Flow Controls do
we want?

e Confidentiality, Privacy

— Information about sensitive data cannot be
deduced by observing public channels

e Integrity

— Untrusted data should not influence the
values sent on trusted channels

e Erasure
— Information is no longer available after use

if (input != “attack at dawn”)
{ output(“BANG!”); }

Our Chief Weapon

e
I
¥
3
"
§

https://www.youtube.com/watch?v=Nf Y4MbUCLY&t=15

https://www.youtube.com/watch?v=Nf_Y4MbUCLY&t=15

Our Chief Weapon

Our Chief Weapon

Our Chief Weapons

Transformation

Our Chief Weapons

Our Chief Weapons

Libraries

Our Chief Weapons

5

New Programming
Languages

Transformation
Static Analysis
Monitoring

I PROGRAMMER:

Login Register Edit Profile Chane
Home => News >> Languages >>

Main Menu

Home

Book Reviews

Book Watch

News

Projects

The Core

Babbage's Bag

History

Swift's Spreadsheets
The Stone Tapes
Professional Programmer
eBooks

Programmer Puzzles
Bargain Computer Books
CodeBin

| Programmer Weekly

Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers obtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you're writing your app

" Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

o= A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers obtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you’re writing your app

r -

.~ 4

The alternative, developed by Niklas Broberg at the University
of Gothenburg is called Paragon, and the techniques used by

the programming language are shown in his thesis "Practical,

Flexible Programming with Information Flow Control".

“The main strength of Paragon is its ability to automatically
identify potential information leaks while the program is being
developed,”

says Niklas Broberg.

——

New programming language to
plug information leaks in
software

NEWS: NOV

The curreni
individuals
have acces:
the code m
Broberg of
programmi
informatior

Paragon identifies potential information leaks while the program
is being written

As a solution to these problems, Niklas Broberg
has developed the programming language
Paragon. The methodology is presented in his
thesis "Practical, Flexible Programming with
Information Flow Control" which was written in
August 2011.

“The main strength of Paragon is its ability to
automatically identify potential information
leaks while the program is being developed,”
says Niklas Broberg. "Paragon is an extension
of the commonly-used programming language
Java and has been designed to be easy to use. A programmer will easily be
able to add my specifications to his or her Java program, thus benefiting
from the strong security guarantees that the language provides.”

What do we need to achieve this?

Deep understanding of programming language
design and implementation

Where to start?

Programming Language Technology
LP2 DAT151/DIT230

More to come (MSc)

e Compiler Construction TDA283/DIT300, LP4

e Language-based Security TDA602/DIT103, LP3

Courses

Concurrent programming

Testing, Debugging,
& Verification

Batchelor’s level

Language-Based Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level

... an error in java.util

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)

... an error in java.util

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort. java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)

Proving that Android’s, Java’'s and
Python’s sorting algorithm is broken (and
showing how to fix it)

® February 24,2015 @ Envisage Written by Stijn de Gouw. a $s

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-
broken-and-how-to-fix-it/

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

The KeY project

e KeY lets you specify the
desired behaviour of your
program in the well-known
specification language JML,
and helps you prove that your
programs conforms to its
specification. That way, you
did not only show that your
program behaves as expected
for some set of test values -
you proved that it works
correctly for all possible
values!

e Wolfgang Ahrendt (Chalmers)
and others

A brief demo of KeY

https://www.key-project.org/

v

Establishing Compiler Correctness
Maybe it is worth the cost!

Cost reduction?

Alternatives 1

‘Proving the correctness of a compiler is prohibitively expensive
(however, see the CompCert project)

3Testing is the only viable option
/\
(... but with testing you never know you caught all bugs!

All (unverified) compilers have bugs

“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input. ”

PLDI'1

Finding and Understanding Bugs in C Compilers

XugunYang YangChen Eric Eide John Regehr

“[The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code

errors.This is not for lack of trying: we have devoted
about six CPU-years to the task.”

: -” ting study. Qur Tirst oA rn‘no oy i

ga:gd mmitggomﬂler teding. U1I|kepre.4m$tods_§|}s1}¢e

gener arrsthatwveralargewbeetofCMleaq ngl_ | e
erates prod _mmfadmﬂdsmmﬂdd@'wﬂsd}ﬁy_ o o ar Z?xii’tes-fz_z.s?

P o e 2 e = a ™

Wes hesily pcTeD, T B WS

Scaling up...

o

Project lead: Magnus
Myreen
(now at Chalmers)

~

CakeML: verified | mp\ementat\on of ML
Ramana Kumar - 1 MagnusO- \\l\y\r%\r’l’r 1 Michad Norrigh? Scatt owens®
1 Computer Laboratory. University of Cambridge UK
2 Ganberra R Lab, NICTA, Augralia’
3 gchool of Computing, University of Kent,
Absract 1. \ntr odudtion
Wehavedede\op and mechanically verified @ ML system called Thelast decade has asr erest in grified compilation:
CakeML, which ports @ qubgtantia aibsat of gtandard ML. d there have been sigrﬂﬁcant hi g‘n-proﬁ\e many ba
akeML 18 imp\emaﬂted as an interactive reﬁd—eJd—prmt \oop the Com Cert compl for 14,16, Th‘nsinterest is
REPL)INX ine code. OUr correctness theorem engures easy tojusfify: 10 the cont t of program verification, a1 unverifi
that this REPFL \mp\ementation prints only those results permi tted compiler forms alargea@n pl part of the rrusted computing
by semantics § CokeML- Our yerification offort touches on pase. owever, to o \edge none of the exising work on
a breadth f topmsinc\udmg |exing, parsng, type checking, 1M~ veified compilers for 9 —purpose\a"\guageshasaddrwd all
emental and dynamic compilation: garbage collection, i - ¢ 2 compiler @ o dimengons: one, the compilation
precision ithmetic, and compiléer bodtstrappi ng. aram from a gource stnng toalist of
Our contributions W T FI rst b ccntion of that
ing a system @ s end-to-end verified, damonstrating ootstrappi
= g veification fort can in practice be C fOrm ” PP' ng of a
A=+ ~one of thepiecesrdymany d y Veriﬁed
o ~ L nove ap- precuo— Compiler S
O maceM L, ana 1t " = 0 |
I | JocCam By o
e A code along-

AN an

o Ahine

... In @ connected world:

... In a connected world:

T—
d il

& #; Dave Sands
P 12 hours ago with [Raul Pardo|at[Chalmers Pub]- @

Having some beers at the pub

Like - Comment - Share

g’ Devdatt and 20 people like this.

Gerardo Schneider Huh? Raul is supposed to be working on tomorrow's
presentation at FMPriv

Like - Reply - g 15 - 5 mins

Write a comment ...

JERE'S A 70 (3%

FACER <72V

PR]VAr ”l,, “
|

N=9M PRIVACY POLICIES

£' Raul Pardo

e - A

My supervisor cannot see my posts from
20:00 to 8:00

£ 24 people like this.

Gerardo Schneider Nice picture! s the paper ready for tomorrow's
) deadiine?
Like - Reply - g5 1452

Where to start?

TDA294 / DIT271

Formal Methods for Software Development

(DAT060 / DIT201 Logic in computer science)
(DAT140 / DIT232 Types for Programs and Proofs)

All problems are not solved:

SPECTRE

Information leakage due to speculation in hardware implementation.

2018: https://meltdownattack.com/

	Software Technology
	Slide Number 2
	Slide Number 3
	Slide Number 4
	2010
	Slide Number 6
	2013 Civil
	Bugs per line of code?
	Concurrent Programming
	Sequential program
	Concurrent Program
	Demo	
	Data Race
	Learn More!
	Bugs might make things go wrong�
	Bugs might make things go wrong�
	Slide Number 17
	No bugs = Secure?
	No bugs = Secure?
	What Information Flow Controls do we want?
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Our Chief Weapon
	Our Chief Weapon
	Our Chief Weapon
	Our Chief Weapons
	Our Chief Weapons
	Our Chief Weapons
	Our Chief Weapons
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	What do we need to achieve this?
	Where to start?
	More to come (MSc)
	Courses
	… an error in java.util
	… an error in java.util
	The KeY project
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
			 PRIVACY POLICIES
	Where to start?
	All problems are not solved:

