
Iteration 2 [All phases]

Slide Series 6

Iteration 2 Input

From iteration 1 we have
- Requirements and analysis model (RAD)
- Some prototype experiences (possibly technical)
- The design model v 0.1
- A few running use cases
- No real GUI, possibly a very simple one (or a command line)

Iteration 2 Goals

Iteration 2 should add more use cases …
- … but we also need to review the model ...
- … and check new/changed requirements?
- During iteration 2 we also start with a more well-reasoned

design (which we begin to document in the SDD)
- More serious testing and code coverage
- Adding (more of) a GUI

Iteration 2: Requirement Elicitation

Hmmm... possibly have missed something?
● An important or misunderstood use case?
● Missing functionality?
● New or changed requirements for GUI?
● If so update RE sections of RAD

(I skip this for MP, ... you do for your project)

Iteration 2: Analysis

If changes to RE probably changes to analysis parts
● If so update analysis sections of RAD (in particular the analysis

model)

(I skip this for MP, ... you do for your project)

More UCs for MP

We start out with adding two more UCs
- Buy and Sell
- Have Property class, introduce some more spaces: Street, Tax
- Interesting (new) class: Debt
- Still testing out model using the command line
- Demo: Design model 0.2

And now for some testing (see Test slides,

… then we return to here)

There’s a README file in all

MP version. Do
read it!

Design

Design is a multi dimensional activity. Many different
aspects
- Modularity
- Efficiency
- Communication
- Testability
- Reuse

Design is a multi (abstraction) level activity
- Overall application (system) design
- Module design
- Class design
- Method design

Design Goals

Overall design goals
- Create an identifiable structure
- Enforce localization of responsibilities
- Minimize dependencies (i.e modularity)
- Control (minimize) state
- Clear and robust inter-application communication

Thereby making it possible to create a modifiable,
extendable and testable program (with possibly
reusable parts)

The Impact of Design
Application size Pain

Good design

Bad design

Design is important …!

Design Considerations

Some considerations
● Information expert
● Single responsibility principle
● Open closed principle
● Programming to interface
● Low coupling/high cohesion
● Information hiding
● Law of Demeter
● Invariants
● Mutability
● Minimize State
● Canonical form for objects (equals, clone...)
● Threading?
● MVC (must use, some kind of)

 Design patterns … if needed!

During our work we
must keep an eye on
this, if violating,
refactor!

Mutual Associations

Mutual associations are bad
● Must keep two object in synch (reference each other)
● Domino effects (change one, affect other)
● Classes not understood in separation

Resolve by
● Ignore one Direction
● Lookup one direction
● Association class

Mutual: Ignore one Direction

Do the application need to traverse in both
directions?
public class Order {
 ...
 private Customer customer;
 ...
}

public class Customer {
 ...
 private List<Order> orders;
 ...
}

Do Order need to call methods on Customer? Why?
// Alternative, but...
// ...given an order have to
search
// all customers
public class Customer {
 ...
 private List<Order> orders;
 ...
}

// Alternative
public class Order {
}

Mutual: Lookup One Direction

Lookup Customer given Order (Orders unique)

public class Customer {
 ...
 private List<Order> orders;
 ...
}

public class Order {
 ...
}

// Lookup class
public class OrderBook {

Map<Order, Customer> orderCustomer = new HashMap<>();

public Customer getCustomerFor(Order o){
return orderCustomer.get(o);

}

}

Association Class

Mutual dependencies are bad, mutual many to many
even worse
● Resolved using "extra" association class

Aggregates and Call Chains

Application should establish call chains
- Some classes acts as aggregate-roots (entry to a cluster of

classes)
- All calls pass through root

 UserInterface
a.doIt()

 A
b.doIt()

 B
c.doIt()

A is
aggregate
root

BAAD!

 C
Alter state and/or

call services

Aggregate
(part of
model)

Note: This is different from Law of Demeter

http://en.wikipedia.org/wiki/Law_of_Demeter

Design Review of Model

- Every class has well defined responsibility (represents one
concept)?
- Split or collapse classes? Introduce generalization?
- Missing or unnecessary classes (convert to attribute)?
- Directions of associations (was it awkward to implement the UCs)
- No cyclic traversion of associations or dependencies (no mutual)
- Model in one package (possibly organisational subpackages)?
- Interface(s) to model (model package) to use by others?
- Building the model (factories)?
- Aggregates and call chains?
- Parameterization of model (user options)?
- Absent values (avoiding null)
- Canonical form

MP: Design Review of Model

Pass .. (?)

Building of model, OK (have factory)!
Parametrization, OK (have Options class)!
Model in one package, OK!
Cyclic associations or dependencies OK!
Aggregates and call chains , OK (?) it seems …
Classes … (?) OK for now …
Absent values: Player.NONE (alternative to null for missing street
owner) OK!
Canonical form, at least equals()/hashCode() for Player, … more
needed?

MP: Design Review of Model, cont

Known issue
- Heterogenous collections for Spaces. Many kind of spaces
handled in single list (easy to handle).
But also need to distinguish spaces (can’t buy/sell Chance or Tax).
Should avoid instanceof (generally bad, better with polymorphism)
- Very many rules: Would like to be able to “plug-in” rules (if we find
a missing one). For now hard coded. Ideas?...

MP Solving Design Issues

Handling heterogeneous collection of spaces
- Solution: Visitor Pattern
- Pluggable rules: Not solved, possibly let other part of application

handle (i.e. not in model)

Demo: Design model MP 0.3 (still using command
line)
- And also more of testing

MVC Architecture

Application should use an MVC architecture

View

Model

Control

Services

View

Model

Control

1. By abstraction
layer. Layering

2. By parts
(arrows =
possible
calls) .
Partitioning

Layered View

View

Model

Control

Services

Conversion

Conversion

Interfaces

Interfaces

Often conversion
String(s)/ Objects

Interfaces
separating
abstraction layers
(DIP)

Often conversion
Objects/Primitive
types (Strings)

In more detail

Partitioned View

View

Model Control

Possibly mutual
dependencies

Control access
model Model
never access
control

Indirectly
GUI update
Model never
access view

View possibly
access model,
model never access
view (directly)Observer

Pattern

In more detail

The Need for a Control Layer

How should GUI and model interact
- Should model be updated after each tile?

Use Case Controllers

Control layer could also be comprised of “use case
controllers”
- Each UC handled by a controller class. Class runs UC parts not

present in model or mediated UC between view and model (as
shown in prev. slide) or between model and services.

- Could this solve the “pluggable rule problem”????

GUI
UCController

UCController
UCController

UCController
UCController

UCController
UCController

Model

Standard Implementation Observer

Observables must get references to observers.
- This is i push design.

Observable
addObserver(IObserver): void

List<IObserver> observers =

<<Interface>>
IObserver

notify(stateData) : void

A

B

C
Observable call notify on observers
in list at state change in model, i.e.
pushing info to observers

A, B and C have to register
(somewhere) to be put into
the observer list (a
dependency)

Event Based Observer

Better use a messaging mechanism, an EventBus
- No direct connection between observer and observable
- Easy to (un)register

Observable

EventBus.publish(stateChange)

<<Interface>>
EventHandler

onEvent(Event e): void

A

B

<<Singleton>>
EventBus

Somewhere: EventBus.
register(A) and EventBus.
register(B)

Event
object

The Model in Event Based Design

How to keep model clean (from messaging code)
- At least 2 different ways (OPC)

Model
class

Event
Wrapper

Alt 1: Event code in
EventWrapper core functionality
in Model (Wrapper delegates)

Call

Return

Model
class

Alt 2: Event code in subclass
core functionality in Model

Event
Subclass

Call

Interface

Return

View

During this iteration we start implementing a real GUI
● Have a mockup from RE
● Identify input/output elements from mockup
● Will change in response to the design and implementation of

the model, so avoid too many details
● Plan for techniques/tools to use

If using a different GUI-style (animated, 3d) you need
to start "technical" prototyping right now!
● More later

GUI Tools

GUI-drawing tool often generate horrible code
● Possible many times as much code...
● Checkout before using in full scale (clean up generated code)

NetBeans have built in (unpopular?) GUI-builder

Using XML to define the GUI
● SwiXML
● BerylXML
● Links from course page
● Others...???

Project
suggestion:
Make it possible
to use CSS ...

Swing Technical

Some Swing Issues
● The GUI shouldn't be monolithic (i.e one huge JFrame)
● GUI is composed of many panels (custom components also

good)
● Separate construction code (JButton b = new JButton()) and

event code (listeners)
○ Use factories

● No model logic whatever in GUI
○ Don't use GUI for logical behaviour i.e. disable a button to prevent. Button

disabled because of model state!

● GUI can use non-visible classes: Options, Preferences, etc.
(holding "look"-data (non-model data, data not part of the
domain problem))

Swing Issues

If using Swing...??!
● Force repainting using; validate(), repaint() or possible both
● Use setSize() or pack()
● Some components fire events when data changed! Possibly

have to disable when updating component models
● All drawing in Swing thread, possible have to hand over form

other thread (SwignUtilites.invokeLater)
● Time consuming operations use SwingWorker

MVC Design Overview (Swing)

<<Singleton>>
EventBus

<<GUI>>
Observer

Model Class

EventWrapper
Messaging code here

<<Interface>>
IModel

<<Interface>>
IEventHandler

+onEvent():void

Control

Events from
model
propagate to
GUI

GUI events trigger calls to
control and model

<<Interface>>
ActionListener

All classes connect to
the bus (globally
accessible)

Alternative MVC style

If non-Swing, using other libraries/frameworks
- Main rule: No framework code in model
- Often have to design a MVC pull model.

// Framework MVC style
while(true){ // Game loop

input = framework.getInput()
model.update(input) // State change in model
framework.render(model.getState()) // Pull model

}

Tower Defence Design

GUI/MVC choices
- Swing 2d?
- .. other?

We chose other: LibGDX
- LibGDX (have built in game loop)
- We have a very quick look ...

NOTE: There’s an Maven archetype to create LibGDX projects

http://libgdx.badlogicgames.com/
https://github.com/libgdx/libgdx/wiki/Maven-integration

Services

Model need services to run, some typical
● Persistence (store/retrieve)
● Printing
● Rule systems (business/game rules), filters, …
● Engines, simulation engine
● Processors (text formatter, spell checker)
● Security, authorization module
● Mappers, mapping between formats
● Event buses
● ...

http://codeblock.engio.net/37/
http://codeblock.engio.net/37/

Services Defined by Interfaces

Any service has a coherent interface
- The interface it what's matter (what do you need, think hard!)
- Rest of application uses interface
- Prefer stateless services!

Implementation/technique is secondary (at least for
now)
- Persistence (saving) could be done using any of, flat files, XML,
database, …
- Keep open mind
- Create mock object emulating service, implementing interface

Services: In House or ?

"In house" = we implement system
● ... possibly many man-month needed for complex services!

Typically you don't implement subsystems for
● Graphics, sound, physics engines, databases, XML, ...networking,

...

Find it (use Maven)! Look for high level abstractions

In-house Service Design

When designing a service often beneficial to split
services into steps
● Step 1: Basic low level often working with primitive type, Strings

(possible reusable)
● Step 2: Conversion step; using step 1, convert from/to objects

(application specific)

Implementing Service, cont

Services implemented using Facade pattern
● I.e. an interface used by model (or other) and a Factory to get

some implementation

<<Static Factory>>
ServiceFactory

+ getService(): IService

<<Interface>>
IService

<<Hidden>>
ServiceImpl

HelperClass

MyService

Application
dependency (this
is what rest of
application can
see)

If problems with dependencies use
layering inside service
Use of generics may remove
dependencies

Model and Services Interaction

Would like to avoid service code in model (as before
with messaging)
- Put interaction between model - service in control layer

Control

Model Service

Get/Set data Do the service using data

Resources

Application need resources
● Config files, icons, sprites, images, localization, i18n, ...

Resource handling
● java.util.ResourceBundle, File automatically read and converted

to Java "map-like" object, for texts in GUI
● For images use ClassLoader class

getResource(s), findResource(), ...

● Implement as service

● Frameworks normally has their own ways

MP Services

Will use external XML API, XStream, for saving games
- Wrapped in Persistence package
- No special conversion step (for now at least)
- Interaction service <-> model as pointed out (using class
SaveAsCtrl)
- See MP v 0.4

http://xstream.codehaus.org/

MP: Inspection of first GUI version

To note:
- Separate packages for GUI and EventBus
- Non-monolithic GUI
- When application starts only MainFrame created
- Remaining parts of GUI constructed in MainFrame (so no GUI
Factory for now)
- All GUI parts register as EventHandlers and implement
ActionListeners (if applicable)
- Messaging code in MonopolyEventWrapper
- Construction of model in NewGameCtrl

Demo: MP 0.4

Controlling Quality

Having implemented a larger part of the application
need to control general quality
- No mutual or circular dependencies
- Dependencies between packages
- Use STAN

- … other quality tools: PMD plugin to NetBeans
Findbugs (in project pom.xml), see MP v 0.4 for usage)

http://stan4j.com/dependencies/dependency-analysis.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/

 Exception Handling

If possible to recover, do so at any location in
application

If not, ... handle in view or control layer
- Close to GUI, possible to show dialogs etc.
- Avoid checked exceptions (possibly by tunneling = wrap

checked exception in runtime exception, rethrow)
- NEVER empty catch (exception swallowing)!

Possibly central exception handler?

Package Diagrams

Design uses package diagrams (preferable with
dependencies)
● Can't have all in same class diagram
● Need a "higher level" view of application

Top level
package
missing

Package

Dependency

Documenting the Design

Design documented in Software Design Document
(SDD)
● Design model (using package diagram(s))
● One class diagram/"interesting package" (i.e. not GUI, class

diagrams with arrows)
● At least 2 sequence diagrams (in appendix)

○ Sequence diagrams very time consuming, 2 will do

○ Note: Sequence diagrams also expanded when GUI added (also later when full
MVC model) . Possible have to partition into more diagrams.

● Any kind of other high level information easing the
understanding of the application; layering, MVC-style, service,
use of design patterns, data formats, interfaces ...

 SDD, updated after each iteration

MP : SDD

SDD on course page, inspect
- Not in sync with code, just a general example
- The usual problem …

Documenting the Implementation

No documentation of implementation in SDD
● Code it the ultimate low level documentation
● Tests also counts as documentation
● During implementation put comments in code when it’s hard to

understand/technically advanced/unusual ...

//Worst comment ever
x = x + 1; // Increment x with 1

● NO Javadoc needed.

if (this == null) {
 return 0;
}

Why on earth
????????????
?????

Summary

We started with a running version of model
Relaying on design principles, best practices, refactoring, tools,
testing we
● Expanded the model
● Implement a full MVC application with the model as the core
● Added a service
● Todo: More UC, more GUI, more services, exceptions, resource handling, …

Should, from here, be able to quickly
(and controlled) expand the
application until finished criteria
from RAD fulfilled

Hmm...

