More Model and Application
Design

Slide Series #5

Starting out Iteration 2

: Coding

We'll run a complete cycle again (hot much of requirement)!
- Using MP as illustration

MP . Extending the design model

Space IOwnable
setOwner()
getOwner()
getRent()

Street IBuildable

———————— -

if (s instanceof IOwnable) {
IOwnable o = (IOwnable) s;
return o.getOwner() ...

} else {

}

Remember: Design model is an adaption of the domain model, more suitable to
implement.

Need some more classes to implement alternate flow for UCs Move
- Pay rent (landing on property owned by other)
- NOTE: This use case potentially will have a lot of user interaction (user
possibly must sell, broke, ..)
- Gotojail (landing on Go to Jail)
- Speeding (3 consecutive double-sixes, must go to jail)
- Update domain (Street) and design model (Street, IOwnable, IBuildable)

NOTE: Would like to have uniform handling of Spaces (Street, Chance, Community
Chest, etc)
- Easy to send List<Space> to GUI for rendering

Hmm. forgot: If in Jail when starting use case Move?
- Should show dialog, present possible actions .. or?
- ..go back and modify use case text!

MP: Update Use Case Move

1. Move

Summary: The game has started. Actual player moves piece on the
board, Player not in Jail (see use case “In Jail”)

Priority: High

Extends: DoTurn

Includes: RollDice

Participators: Player

Actor System

1 Click Roll button

2 Result for two dices shown
Piece removed from actual
position and put in new position
Roll button disabled

2.1 Passed Go If player passed go, player
balance flashes (updated) and a
“cash”-sound is played

We forgot so have to updated use case text!

MP : Dry Run Pay Rent

) ’ ¢ Ctrl ‘ ’ : Monopoly H . Player H . Space
JUnit act move()
as : :
controller icheckPayRent()
for now i———— > getPosition() :
| _Spaces | .4~ Conditionals
[s in$tanceof IOwnable] |
. GUI : i getOwner()
' ‘ I Player owner .
: o i [ttt ot -
‘ mooo-oood :
e m— e o [owner = NONE && owner != actual]

—’r payRent()
| getPosition()

‘ ! i getPosition) i
Must sell or : : | getOwner()
broke? i
owner.income(s.getRent)

actual.income(-s.getRent)

We continue to use JUnit tests
- This UC need user interaction
- We know we will have a control layer because we use MVC (not all
applications do it like this)
- Interaction handled by control layer
- Control for now is the JUnit test.

If getting complex .. !
- Simplify: Use notes, pseudo code, ..

MP : Monopoly-0.2

Download from course page, inspect and run!

Starting out Iteration 3

- Coding

This iteration will produce a complete application with GUI
- So for now will focus on system design (i.e. vs model design)

MP : Design Model v 0.3

R
Player Monopoly Board IOwnable
’7 2.8 1
1 1 !
1 1 40
Y - Space IBuildable
Piece Dices
f T
Street :

Design model at end of iteration 3.

- Later put in SDD see upcoming slides

Designing the full Application

System design

Resources
Services

Control

Design Model

Domain
Model

This is an abstract view how an OO-application/system should “look”
- Domain model is the core classes from the analysis
- Design model is the domain model adapted for implementation
- Extended with "technical’-support classes
- For MP: 10wnable, IBuildable (so far)
Control is a layer coordinating the flow between the model and services
- So far handled by JUnit tests
Services are everything supporting the model (no services so far)
- GUI
- Handling of resources
- Persistence (save to file, database)
- Communication (network, ..)
Resources
- Data for configuration, initialization, ...
- Images, sounds, ..
- 118n data

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization

Concrete Structure

edu.chl.hajo.monopoly ‘

Main

ctrl event

service core i ™ view

Application should be partitioned into packages.
- Will organize the overall structure of application.
- Each package should have a well defined purpose
NOTE: Arrows shows dependencies
- util and config used by many but uses NONE (only incoming arrows)
- Arrows for util and config not shown, would clutter up
NOTE: Model not dependent on services (used via ctrl)
Package structure should guarantee unique qualified class names
Use UML package diagram

Packages
- edu.chlhajo.monopoly: (nested) package(s) for full application. Using approx.
reversed internet domain
- Only class (for now) Main. Application start class (main method)
- util: non-application specific classes (possibly reusable)
- service: classes for file handling, etc.
- ctrl: control classes
- event event handling inside application (not Swing events) more to come
- view: GUI classes
- core: the model

https://vaughnvernon.co/?page_id=31
https://newcircle.com/bookshelf/java_fundamentals_tutorial/packaging
https://en.wikipedia.org/wiki/Package_diagram

Circular Dependencies

a
EAR

// \\

4 N b
S BN
/ o

c 1 3
”-
”-
-
-

Circular dependencies between packages
- Same problems as mutual dependencies between classes
- Must avoid, see tools .. (upcoming)

https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Circular_dependency

Observer Pattern

Indirectly

MVC Designh Review

View

\
\
\

GUI update
Model never
access view

View possibly \\ Possibly mytual
access model, . dependencies
model never RS

access view N

AY

(directly) __|Control

Control access
model. Model
never access
control

There are many opinions about MVC.

Implementing Observer

Observer

Observable
Observable

Observable

Observer

Observable

Observable

Observer

Ad hoc observer Observer using event bus

Observable

Implementation of observer better use an event based model with an event bus
- Bus globally accessible (Singleton)
- Observables publishes events
- Observers register as event handlers

- All event pass through the bus, possible to inspect/log events!

MP: Will use a simple event bus

Keep Model Clean

public class Dices {

private int first;
private int second;

private void setFirst(int first) {
this.first = first;
EventBus.
publish(new Event(Event.Tag. , first));
}

private void setSecond(int second) {
this.second = second;
EventBus.
publish(new Event(Event.Tag. , second));

Don't want to clutter model classes with event publishing all over
- Event publishing ONLY in setters (possibly private)
- Class must use setters, no bare assignments!
- Should make it easy to locate observables behaviour

The Need for a Control Layer

L gL T TL DW VDL bw
PlUlck] ow o o
5 arvg g
DL A

How should GUI and model interact in MVC?
- Should model be updated after each tile?

Use case Controllers

User Interaction User Interaction User Interaction

4 &

View View View

» Displays A4 Displays & Displays
y

\ \
|
Controller | Defined process steps

\ Manipulates “ l I/

Single Use Case control Model

for (a flow of views)

Control layer could also be comprised of “use case controllers” (classes)
- Each UC (possibly part of) handled by a specific controller class.
- Easyto locate use cases
- Class runs UC parts not present in model or mediated UC between
view and model ..
- .. or between model and services.
- Slide shows a use case with many views (must not be the case)

MP: Not used so far

Choosing GUI Technology

LbGLXX
Qt Jambi

JavaFx

S
—_—

Many choices ..

. search web!
MP: Will use Swing (JavazD)
Maven or Gradle should handle dependencies.

NOTE: Swing can be really annoying in between ..?

MP : Monopoly-0.3 (MVC)

‘a

é’@
Download from course page, inspect and run!

Framework MV Design

PROLESS UPDATE REMDER @
: IRPUT St
Data in\ /Data out

Model

If using a graphics framework normally no full MVC design
- Mostly using a pull design (render ask model for data)
- Observer is a push design!
- Control replaced by update game (method periodically called by framework)

Framework Render Model

N

Framework

data = getData(3—

Model

w = wrap(data)

render(w)

~_ “

If rendering handled by framework
- NO rendering data in model!
- Let framwork (if needed wrap and) consume the data
- Framework render consumed data
- Keep model clean!!!

Design Review

- Every class has well defined responsibility (represents one
concept)?

- Split or collapse classes? Introduce generalization?

- Missing or unnecessary classes (convert to attribute)?

- Directions of associations

- No cyclic traversion of associations or dependencies (no
mutual)

- Model in one package (possibly organisational subpackages)?

- Interface(s) to model (model package) to use by others?

- Building the model (factories)?

- Aggregates and call chains?

- Parameterization of model (user options)?

- Absent values (avoiding null)

- Minimize state

- Canonical form

- Is everything located in one single place

- Is flow consequent (same flow for all of events (of same type))

- Testability

Regularly review design until stable.
- Refactoring!

Quality Tools

JDe pend

P

DON'T SHOOT THE MESSENGER j&

Powered by

JACOCO FindBugs

Java Code Coverage

—

|-

(T /
Structure Analysis for Java

Use tools to increase design and code quality!
- See web!
- Possible to incorporate into pom.xml (if Maven project)

SDD

System design document for NNN

1 Introduction

1.1 Design goals

1.2 Definitions, acronyms and abbreviations
2 System design

2.1 Overview

2.2.1 General

2.2.2 Decomposition into subsystems
2.2.3 Layering

2.2.4 Dependency analysis

2.3 Concurrency issues

2.4 Persistent data management

2.5 Access control and security

2.6 Boundary conditions

The system design documents (SDD) overall goal is to make the application
possible to understand (as quick as possible)

- The system design is recorded in the System Design Document (SDD). This
document completely describes the system at the architecture [highl level,
including subsystems and their services, hardware mapping, data
management, access control, global software control structure, and
boundary conditions [start/stopl. A foundational guide for further
implementation details all the way to an executable solution.

- Audience: The audience for the SDD includes the software architect and lead
members (liaisons) from each subsystem development team (i.e.
programmers).

- The SDD is a ‘live" document that should be incrementally expanded and
refined during/after iterations.
- This is about communication, no absolute rules how to write
- We prefer this top down explanation approach
- Start out high level (big picture)..
- Hardware setup, communication applications involved (if more)
- . thenrefine in each step ..
- Structure of (each) application
- Packages
- Possibly classes/Interfaces
- Design model
- .. until close to code (when reaching this level the code and the tests
are the documentation)

- Another template

http://www.cs.fsu.edu/~lacher/courses/COP3331/sdd.html
http://www.cs.fsu.edu/~lacher/courses/COP3331/sdd.html

- SDD Sample
- And vet other sample

http://www.projectmanagementdocs.com/project-documents/system-design-document.html#axzz40JwBRiZr
http://www.projectmanagementdocs.com/project-documents/system-design-document.html#axzz40JwBRiZr
http://www.slideshare.net/RaviYasas/example-for-sds-document-in-software-engineering
http://www.slideshare.net/RaviYasas/example-for-sds-document-in-software-engineering

Summary

lteration 2 and 3
- We got more UC's up and running!
- We got a full MVC version of the first UC's

Next: Next iteration, a service, exceptions, ...

Code sample for iteration 1: monopoly-0.2/0.3
(course page)

