
Iteration 2 [All phases]

Slide Series 6

Iteration 2: Requirement Elicitation

Hmmm... possible have missed something?
● If so update RE sections of RAD

Iteration 2: Analysis

If changes to RE probably changes to analysis parts
● If so update analysis sections of RAD

Iteration 2: Design and Implementation

Still much to do...
● Model should be "initially" stable from previous iteration (at least

parts of)

Goal is to get an "as stable as possible" design (the
final infrastructure)
● Remainder: If design not stable we will fall back... (if model not

stable, disaster...)

The Impact of Design
Application size Pain

Good design

Bad design

On which curve are we..?

Design Principles and More

Some considerations
● Information expert
● Single responsibility principle
● Open closed principle
● Programming to interface
● Low coupling/high cohesion
● Information hiding
● Law of Demeter
● Invariants
● Mutability
● Minimize State
● Canonical form for objects (equals, clone...)
● Threading? Remember Swing is single threaded!

 Design patterns possible can help ...

During our work we
must keep an eye on
this, if violating,
refactor (and test)! Run
tools!

Partitioning and Layering

Have partitioned application into packages (modules)

Should also order by abstraction level, layering
● Note: Thickness of layers

GUI

Control

Model

Services

High

Low

Abstraction Level
Interfaces
between
abstraction
levels STAN will

help with
this!

Conversions

Conversions

Objects from/to
Strings

Objects from/to
primitive types

Fat model

So far we have put a lot of logic in the model, the
model is fat
● Everything that doesn't need user interaction can be done inside

the model
● If need interaction with user some logic will be in the thin

"control"-part of MVC

There's also "anemic" models, no logic in model all logic in control
parts (we don't use). Violates OO!

MVC: Simple Interaction

:Component :Control :Model

Updated GUI Update GU (Method call)*

execute()
execute()

Update GUI (Observer)

Click or other

Updated GUI

Possible return value

Model classes

Update GUI*Updated GUI

Interface to modelButton or something

*) Possible alternate updates of GUI

MVC: Complex Interaction, alt1

:Component :Control :Model

show()

execute()

execute()

UC Move starts

Updated GUI
Model classes

:Dialog

Click or other hide()

UC's handled by one control

Interleaving UC (could be
PayRent in Monopoly)

Click or other move()

new model state

MVC: Complex Interaction, alt2

:Component :Control :Model

execute()

execute()

Click or other

:Dialog

More controls (diagram simplified)

:Control

show()
Click or other

Starting out UC 1,
switching to ...
(this could be UC
PickCard in MP)

...UC 2 and back.
(this could be UC
GoToJail in MP)

Services

Model need services to run, some typical
● Persistence (store/retrieve)
● Printing
● Rule systems (business/game rules)
● Engines, simulation engine
● Graphics 2D, 3D...
● Processors (text formatter, spell checker)
● Security, authorization module
● Mappers, mapping between formats
● Communication, Network, ...
● ...

Remainder: Emulate

It's not the technique you need, you need the service!
● Create interface to service
● Emulate technique with something you can handle (if time,

replace with "real thing" later)

Services: In House or ?

"In house" = we implement system
● ... possible many man-month needed for complex services!

Typically you don't implement subsystems for
● Graphics and sound, physics engines, .databases, data handling,

XML, ...networking, ...

... find it somewhere! Look for high level abstractions
● Databases to Objects, very hard, use JPA, Hibernate, ...
● Network

○ Bad: Sockets, too low level.

○ Better: XML-RPC, RMI, ... other, ... much better (have protocol in place)

Implementing a Service

Often beneficial to split services into steps
● Basic step get/put primitive type, String (possible reusable)
● Conversion step; convert from/to objects (application specific)

Implementing a Service, cont

Complex services implemented using Facade pattern
● I.e. an interface used by model (or other) and a Factory to get

some implementation

<<Static Factory>>
ServiceFactory

+ getService(): IService

<<Interface>>
IService

<<Hidden>>
ServiceImpl

HelperClass

MyService

Application
dependency (this
is what rest of
application can
use)

Services: TDD

Of course we write tests for the service
● Must know service is working before integrate into application
● Services are well suited for TDD, should have few dependencies

on model, possible parameters/return values Should be
possible to test in (close to) isolation

● If problems with dependencies use layering inside service
● Possible use of generics can remove dependencies

Parameterization of the Model

The model normally has quit a few parameters
● In MP; number of players, how much money for each player,

number of spaces of board,...)
● Hardcoded for now

Don't want parameters spread all over the model
● Use dedicated class to keep all parameters (possible to change

from GUI), "Options" class or similar (put in default values for
everything)

Resources

Application need resources
● Config files, icons, sprites, images, localization, i18n, ...

Resource handling
● java.util.ResourceBundle, File automatically read and converted

to Java "map-like" object, for texts in GUI
● For images use ClassLoader class

getResource(s), findResource(), ...
● XML, use XStream or similar

 Exception Handling

If possible to recover, do so at any location in
application

If not, ... handle in control layer
● Close to GUI, possible to show dialogs etc.
● Avoid checked exceptions (possible by tunneling = wrap

checked exception in runtime exception, rethrow)

Aside: Swing Issues

Swing is a complicated creature, sometimes it just
doesn't work ...??!
● Force repainting using; validate(), repaint() or possible both
● Use setSize() or pack()
● Some components fire events when data changed! Possible

have to disable when updating component models
● All drawing in Swing thread, possible have to hand over form

other thread (SwignUtilites.invokeLater)

Iteration 2: MP

We don't do any RE or Analysis, focus on design and
implementation
● Refactoring to full MVC
● Layering
● Adding a service (file handling) in-house (it's a simple service)
● Possible Rule-engine as a service (not implemented)
● No interfacing with different paradigms
● Resource handling, yes a lot... (not implemented)

Refactoring MP to Full MVC

Observer pattern, using an event based solution
(EventBus)
● An in-house solution
● There are others, Google Guice, Java Context and

dependency Injection, ...

Using an EventAdapter between GUI and model (keep
model clean, no event handling in model)
● Anemic control objects (most work in model) most updating of

GUI using observer

Separating construction (even more), more factories

MP: MVC

<<Singleton>>
EventBus

<<GUI>>
Observer

Model

EventAdapter

<<Interface>>
IModel

<<Interface>>
IEventHandler

<<GUI>>
Observer

<<GUI>>
Observer

Control

Call flow

Sample code for this in Monopoly 0.4 demo (on
course page)

MP: Control Objects

Control objects are fuzzy
● Previously one control/use case (use case controllers)
● Also possible: Technical controllers, MenuControl

MP: Services

File handling for Spaces data

Basic step in MP
● Simple class to read rows (strings) from plain text file
● Later a Generic reader

Conversion step
● Using converter classes
● Later a Generic converter

The rule system
● ..tricky not implemented ...

Demo and Walkthrough for MP 0.4

Application has grown, not possible to grasp whole

Design Model for MP 0.4

After iteration 2, full MVC and a service

Interfacing with Other Paradigms

All the way we have been using the OO paradigm

All software is not OO...!
● 3d graphics is built on an rendering pipeline (have to adapt MVC

model)
● Relational databases are not OO they are sets!
● The web is not OO it's just strings

If using any above have to incorporate different
paradigms in one application
● ...hard... (often have to put adapting layers (interfaces) in

between)
● Not covered in course

Documenting Iteration 2

Design model has changed a lot, need to update
SDD

Check the code
● Self-documenting?
● Comments

Summary

We started with a running version of model with a
basic GUI

Relaying on design principles, best practices,
refactoring, tools, TDD we
● Implement a full MVC model
● Expand model with helper classes
● Added a service

Should, from here, be able to quickly (and controlled)
expand the application until criteria from RAD fulfilled

Hmm...

