
Iteration 2 [All phases]

Slide Series 6

Process Recap

 1.Requirement Elicitation
-What are we going to build?

2. Analysis
Build a model for the problem

3. Design
Adapt (parts of) model so it can be
implemented

4. Implementation
Implement (parts of) model

We’ll focus
on this

Iteration 2: Requirement Elicitation

Hmmm... possible have missed something?
● An important or misunderstood use case?
● Missing functionality?
● New or changed requirements for GUI?
● If so update RE sections of RAD

Iteration 2: Analysis

If changes to RE probably changes to analysis parts
● If so update analysis sections of RAD (in particular the analysis

model)

Iteration 2: Design and Implementation

So far ...
● Have a basic design model (design model = runnable version of

analysis model)
● Have a pair of UCs running (see MP 0.1 on course page)

Design implementation objectives iteration 2
- Implement a few more more use cases
- Design review of model
- Testing and Coverage
- Overall design
- Adding a GUI
- Possible some service

MP: More Use Cases

We’ll implement UC’s; Buy and Sell
- Have to start distinguish different Spaces. Will subclass Space
- More detailed analysis (update RAD) and design models
- Try to identify an interface to model ...

Inspecting MP 0.2 (on course page)

Design Review of Model

- Every class has well defined responsibility (represents one
concept)?
- Possible: Split or collapse classes, introduce generalization
- Possible missing or unnecessary classes (convert to attribute)
- Directions of associations (was it awkward to implement the UCs?)
- It should not be possible to form a cycle traversing the
associations (no mutual associations). Introduce classes to break
cycles (if A depends on many Bs and B on many As introduce
association class)
- Model in one package, interfaces in model classes mostly for
technical reasons (no info hiding)
- Interface(s) to model (model package) to use by others. Facade
pattern

MP: Design Review of Model

Known issue
- Heterogenous collections for Spaces. Many kind of spaces
handled in single list (easy for GUI to render)
- But also need to distinguish spaces (can’t buy/sell Chance or Tax)
- Will avoid instanceof (generally bad, better with polymorphism)

Solution
- Visitor pattern
- See MP 0.3

Parameterization of the Model

The model normally has quit a few parameters
● In MP; number of players, how much money for each player,

number of spaces of board,...)

Possible to have model parameters in class parameter
belongs to but…
- Parameters possible set from GUI
- Parameters spread out all over

MP Design decision (as presented earlier)
- Use dedicated options class

Testing the Model

When model starts stabilizing we start constructing tests for non-
trivial classes
- Unit testing (single class), possible some integration testing (more classes)
- We use JUnit

Methods to test
- We test public methods (if need to test private possible a design flaw)

- If void method must have (introduce) get method to inspect state

To make it possible to test we must design for testability
● Minimize dependencies
● Avoid inline use of static classes, Singletons or any global dependency
● No inline use of new
● All dependencies passed in via constructor (later possible to mock)

http://en.wikipedia.org/wiki/Software_testability

A Few Notes on Test

Naming of tests

The A-A-A pattern

A-TRIP

Stack overflow: What make a good test?

http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
http://www.arrangeactassert.com/why-and-what-is-arrange-act-assert/
http://www.arrangeactassert.com/why-and-what-is-arrange-act-assert/
http://www.arrangeactassert.com/why-and-what-is-arrange-act-assert/
http://www.cavdar.net/2008/10/25/properties-of-good-tests-a-trip/
http://www.cavdar.net/2008/10/25/properties-of-good-tests-a-trip/
http://stackoverflow.com/questions/61400/what-makes-a-good-unit-test
http://stackoverflow.com/questions/61400/what-makes-a-good-unit-test
http://stackoverflow.com/questions/61400/what-makes-a-good-unit-test

Code Coverage

Testing using code coverage will give much higher
quality
- During testrun, let some utility record all methods and statements
executed
- Code not run in test is not tested, … have to write tests that cover
high percentage of code. Review tests!
- Plugin to Netbeans, Jacoco (need modification of pom.xml, see
web)

After previous steps the model should be in
a good state, nice design and tested. So
leave it for now and start design of full
application!

http://www.eclemma.org/jacoco/

Design Goals for Application

Over all design goals
- Create an identifiable program structure
- Enforce localization of responsibilities (core functionality in model)
- Minimize dependencies
- Control (minimize) state

Thereby making it possible to create a modifiable,
extendable and testable program (with possible
reusable parts)
- Testability on previous slide

The Impact of Design
Application size Pain

Good design

Bad design

On which curve are we..?

Design Principles and More

Some considerations
● Information expert
● Single responsibility principle
● Open closed principle
● Programming to interface
● Low coupling/high cohesion
● Information hiding
● Law of Demeter
● Invariants
● Mutability
● Minimize State
● Canonical form for objects (equals, clone...)
● Threading? Remember Swing is single threaded!
● MVC (must use, some kind of)

 Design patterns possible can help ...

During our work we
must keep an eye on
this, if violating,
refactor (and test)! Run
tools!

Design Pieces

Model

GUI
Service

Service

Service

Control
Conversion

Construction

How to get a good overall design out
of this?

Construction

As noted we separate out construction
- Normally using factories or Factory method
- Also Builder pattern

Construction in MP
- Have already introduced Factory for model
- Possible Factory to build GUI, …?

Model and GUI

GUI requirements
- As noted: The GUI should be composed (not one single class)
- Possible a Factory to construct the GUI
- Listeners should do as little as possible i.e. call model or control.
Possible do some updates of GUI (a local update just involving this
class)
- No GUI code in model
- No model logic in GUI. Components enabled/disabled because of
model state, not as a means for the GUI to control the state

Must use some kind of MVC - model
- GUI is a view of the model
- GUI is input to model

Implementing MVC

MVC not uniquely defined (this is one approach)

- Many classes in GUI need to access model (or some controller)
- Model need references to observers
- Messy to connect (Where in code? Threading references …)
- … a event based design far simpler. Let all connect to a common
eventbus (as senders or receivers)
- Will decouple model and GUI even more

More on Control later …

Connect Model in Event Based Design

Should adhere to Open Closed Principle (code closed
for modification open for extension)
- So shouldn't modify code in model, should add …
- To possibilities to extend model with events

Model
class

Event
Wrapper

Alt 1: Event code in
EventWrapper core functionality
in Model (Wrapper delegates)

Call

Return

Model
class

Alt 2: Event code in subclass
core functionality in Model
(Wrapper delegates)

Event
Subclass

Call

Interface

Return

Event Based Design of MVC

<<Singleton>>
EventBus

<<GUI>>
Observer

Model Class

EventWrapper
Messaging code here

<<Interface>>
IModel

<<Interface>>
IEventHandler

+onEvent():void

Control

Call flow
(direction
clockwise)

or

<<Interface>>
ActionListener

All classes connect to
the bus (globally
accessible)

MP: Inspection of first GUI version

See MP 0.4

To note:
- Separate packages for GUI and EventBus
- Non-monolithic GUI
- When application starts only MainFrame created
- Remaining parts of GUI constructed in MainFrame (so no GUI
Factory for now)
- All GUI parts register as EventHandlers and implement
ActionListeners (if applicable)
- Messaging code in MonopolyEventWrapper
- Construction of model in NewGameCtrl

Aside: Swing Issues

Swing is a complicated creature, sometimes it just
doesn't work ...??!
● Force repainting using; validate(), repaint() or possible both
● Use setSize() or pack()
● Some components fire events when data changed! Possible

have to disable when updating component models
● All drawing in Swing thread, possible have to hand over form

other thread (SwignUtilites.invokeLater)
● Time consuming operations use SwingWorker

Controlling Dependencies

Having implemented a larger part of the application
need to control dependencies
- Now we focus on dependencies between packages
- No mutual or circular dependencies
- Use tools to check
- STAN
- … other quality tools: PMD plugin to NetBeans (= standalone
application Findbugs)

http://stan4j.com/dependencies/dependency-analysis.html
http://findbugs.sourceforge.net/

Services

Model need services to run, some typical
● Persistence (store/retrieve)
● Printing
● Rule systems (business/game rules), filters, …
● Engines, simulation engine
● Processors (text formatter, spell checker)
● Security, authorization module
● Mappers, mapping between formats
● Communication, Network, ...
● ...

Services Defined by Interfaces

Any service has a coherent interface
- The interface it what's matter (what do you need, think hard!)
- Rest of application uses interface
- Interface segregation principle!

Implementation/technique is secondary (at least for
now)
- Persistence (saving) could be done using any of, flat files, XML,
database, …
- Keep open mind
- Create mock object emulating service, implementing interface

Services: In House or ?

"In house" = we implement system
● ... possible many man-month needed for complex services!

Typically you don't implement subsystems for
● Graphics and sound, physics engines, .databases, data handling,

XML, ...networking, ...

... find it somewhere! Look for high level abstractions
● Databases to Objects, very hard, use JPA, Hibernate, ...
● Network

○ Bad: Sockets, too low level.

○ Better: XML-RPC, KryoNet, RMI, ... other, ... much better (have protocol in place)

In-house Service Design

When design a service often beneficial to split
services into steps
● Step 1: Basic low level often working with primitive type, Strings

(possible reusable)
● Step 2: Conversion step; using step 1, convert from/to objects

(application specific)

Implementing Service, cont

Services implemented using Facade pattern
● I.e. an interface used by model (or other) and a Factory to get

some implementation

<<Static Factory>>
ServiceFactory

+ getService(): IService

<<Interface>>
IService

<<Hidden>>
ServiceImpl

HelperClass

MyService

Application
dependency (this
is what rest of
application can
see)

Services and Testing

Of course we write tests for the service
● Must know service is working before integrate into application
● Services are well suited for TDD, should have few dependencies

on model, possible parameters/return values Should be
possible to test in (close to) isolation

● If problems with dependencies use layering inside service
● Possible use of generics can remove dependencies

Model and Services Interaction

Would like to avoid service code in model (as before
with GUI)
- Put interaction model - service in control layer

Control

Model Service

Get/Set data Do the service using data

MP Services and Control

Will use external XML API, XStream, for saving games
- Wrapped in Persistence package
- No special conversion step (for now at least)
- Interaction service - model as pointed out (using class SaveAsCtrl)
- See MP 0.5

http://xstream.codehaus.org/

More on Control

Use of control layer
- As seen: Interaction with Services
- Any more complex interaction GUI - Model (Wizards)
- Possible temporarily storage, going from GUI to model (collect
data before updating model, so we don’t need to restore model if
some data wrong)

 Exception Handling

If possible to recover, do so at any location in
application

If not, ... handle in view or control layer
● Close to GUI, possible to show dialogs etc.
● Avoid checked exceptions (possible by tunneling = wrap

checked exception in runtime exception, rethrow)

Possible central exception handler?

Resources

Application need resources
● Config files, icons, sprites, images, localization, i18n, ...

Resource handling
● java.util.ResourceBundle, File automatically read and converted

to Java "map-like" object, for texts in GUI
● For images use ClassLoader class

getResource(s), findResource(), ...

● Implement as service

Interfacing with Other Paradigms

All the way we have been using the OO paradigm

All software is not OO...!
● 3d graphics is built on an rendering pipeline (have to adapt MVC model)
● Relational databases are not OO they are sets!
● The web is not OO it's just strings (don’t use any web in this course)

If using any above have to incorporate different paradigms in one
application
● ...hard... (often have to put adapting layers (interfaces) in between)
● Not covered in course

Documenting the Design

Design documented in Software Design Document
(SDD)
● Design model (using package diagram(s), following slide)
● One class diagram/"interesting package" (i.e. not GUI, class

diagrams with arrows)
● At least 2 sequence diagrams (in appendix)

○ Sequence diagrams very time consuming, 2 will do

○ Note: Sequence diagrams also expanded when GUI added (also later when full
MVC model) . Possible have to partition into more diagrams.

● Any kind of other high level information easing the
understanding of the application; layering, MVC-style, service,
use of design patterns, data formats, interfaces ...

 SDD, updated after each iteration

Package Diagrams

Design uses package diagrams (preferable with
dependencies)
● Can't have all in same class diagram
● Need a "higher level" view of application

Top level
package
missing

Package

Dependency

MP : SDD

SDD on course page, inspect
- Not in sync with code, just a general example
- The common problem...

Documenting Implementation

No documentation of implementation in SDD
● Code it the ultimate low level documentation
● Tests also counts as documentation
● During implementation put comments in code when it’s hard to

understand/technically advanced/unusual ...

//Worst comment ever
x = x + 1; // Increment x with 1

● NO Javadoc needed.

if (this == null) {
 return 0;
}

Why on earth
????????????
?????

A Note on Benefits of OOA/D/P: Tracing

It should now be possible to trace the development
● Running objects (classe) should be able to trace backwards,

possible all the way to the UC's
● Because we use the domain language, names should be the

same all the way, classes, attributes should be evident, they
have a meaning in the real problem (domain)

Summary

We started with a running version of model

Relaying on design principles, best practices, refactoring, tools, TDD
we
● Expanded the model
● Implement a full MVC application with the model as the core
● Added a service
● Todo: More services, Exceptions, resource handling, …

Should, from here, be able to quickly (and controlled) expand the
application until finished criteria from RAD fulfilled

Done…!

Hmm...

