
Welcome to
OO Project Course 2016

Joachim von Hacht

Participants

Lecturer, Course responsible, Examiner
- Joachim von Hacht, hajo@chalmers.se, 772 10 03

Assistants
- Adam Waldenberg, adam.waldenberg@gmail.com
- Julie Jarmar, juliajarmar@gmail.com
- Christer Carlsson, carlsson@chalmers.se
- Sebastian Blomberg, sebblom@student.chalmers.se

… and of course …

mailto:hajo@chalmers.se
mailto:sebblom@student.chalmers.se

Students

Course has 2 major target audiences
- IT programme year 1
- GU/CS year 2
- Others, year ... ?

Will handle this as a year 1 course!
- GU/CS have heard some of this, possibly will find tempo a

bit slow

Must have passed TDA545/DIT011 or TDA550/DIT950.

If failed both preceding OO course, this is not a good course to take
- Take any programming (or other useful) course instead!
- IT-program has been informed

Course Position

Course is part of the OO-trail

OO
Programming

OO
Design and

Programming

OO
Analysis, Design

and Programming

TDA545/DIT012 TDA550/DIT952 TDA367/DIT212

In real life reversed
- First OOA ...
- then OOD...
- and finally OOP

Project Groups

Name

Name: CoolProject,... https://github.com/...
oo@student.chalmers.se,olle,ollesson,19970101-1111
ff@students.chalmers.se, fia, fiasson, 19970101-2222
pp@students.chalmers.se, pelle, pellesson, 19970101-3333
ll@students.chalmers.se, lena, lenasson, 19970101-4444

5

Start

hajo@chalmers.se

oo@student.chalmers.se

See Course and Project PM for details.
- Must be done NOW (to be able to schedule groups for Thursday)

The Project

You will not be able to finish (you don’t need to)
- We expect a prototype (but of course much functionality will impress)
- When is an application finished?

Selected project normally not crucial for the grade

- Almost any project can be "complexified"
- Discuss with assistant
- If in trouble simplify, emulate, … (should be possible to back to previous

version)

Expected application type is a standalone or mobile with a GUI
- Highest grade can be achieved by this

Of course you may create more technically advanced projects
- But it's not a prerequisite for highest grade

Course Organization

Work
shop
JUnit

week 12

2 lectures

Work
shop

Maven
Git

Supervised
Group

Meeting

week 15

Supervised
Group

Meeting

week 17-21

1 lecture

week 22

Supervised
Group

Meeting

Project
Presentations

Seminar

Detailed roadmap on course page (calendar weeks)

1 lecture

week 16

Supervised
Group

Meetings

1 lecture

Lectures
- The lectures will mostly be a real time demonstration of the software process

you are supposed to use
- Some readings to do at home before lecture
- Slides after lecture

Supervised meetings 1h/week. Mandatory!
- Group + Assistant.
- Role of assistant is to help on an overall level (process, design, extensions,

simplifications, ...)
- Not a bug fixer (assistants don't know all graphics libraries/physics engines...)
- You are supposed to push ... collect questions
- Any problems: Contact me

Workshops
- To get you going with some tools (Maven, JUnit, Git)
- Some scheduled lab session but should be self instructing
- Maven Git mandatory, must be presented.

Begin of study week 3 you will present a preliminary domain model for your
application, more to come…

- Short ca 10 min.
- What are we going to do…
- Overview of the analysis model (more to come)

Project presentation (during exam week)
- Presentation is a part of the learning (and the grading)

- Will give you perspective on your project.
- About 20 min
- See ProjectPM

Grading

“What we appreciate is a well
designed, smart application with
as much functionality as
possible. The look is second as
is overly technical solutions.”
 // ProjectPM

Step 1: The project
- The project will get an overall grade
- For criteria see Project PM (course page)

Step 2: Individual
- Each individual will get a grade
- Mostly project and individual grade will be the same but if we see big

differences they can vary
- If varying grades the project mean should hold (or be close to)

What we expect from each individual
- Actively contribute to the process, attending meetings etc.

- Ok, with different ambitions, group decide, speak out!
- About 800 SLOC

- If less add some documentation to explain (hard problems, advanced
techniques … etc.)

- You (and we) must be able to confirm your contributions!
- Use gitinspector to check?

Some advices
- Take turns when committing to code version handling system
- Annotate classes with @author and use "revised by..."
- Document in agendas: Who is responsible for …
- You must make it possible for us to trace your participation and activity.

http://code.google.com/p/gitinspector/

Basic Tools

Basic tools involved
- NOTE: All should set default file encodings to UTF-8
- Any IDE supporting Maven projects. Our standard IDE is: NetBeans 8.x.x. Many

tutorials on the Web.
- To start Netbeans in STUDAT (in terminal, Linux):

/chalmers/groups/ws-devel/netbeans-8.0.2/bin/netbeans
- Maven, a project management and comprehension tool. Mandatory (bundled

with NetBeans)
- Gradle, also a project management tool (optional)
- Git, a distributed version control systems (VCS). Mandatory

- Being able to handle Git may be critical to the project (disasters may
happen)

- JUnit, unit test framework. Mandatory (bundled with NetBeans)
- More optional tools later …

https://netbeans.org/
http://blogs.sourceallies.com/2011/06/maven-3-tutorial-project-setup/
http://gradle.org/
http://gradle.org/
http://git-scm.com/doc
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control#Distributed-Version-Control-Systems
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control#Distributed-Version-Control-Systems
http://git-scm.com/doc
http://junit.org/
http://junit.org/

Questions

