Project Course I'T
TDA367/DIT211
Workshop: Plugins & Dependency Injection

Adam Waldenberg

adam.waldenberg@gmail.com

April 3, 2011

1 Introduction

In this workshop you will construct a 1984 calendar application (that only shows information
for that year) using a custom Swing component and Google Guice [I]. We choose to support
one specific year in order to keep the complexity down. Furthermore, you will learn to construct
custom Java annotations and be taught how to create a personalized plugin system to use in
your project. The constructed plugin system will load your plugins from a specified location,
thus extending the functionality of the program. It’s presumed that you have a basic handle on
how Swing, annotations, instanceof and generics work.

This workshop is the last one of the course. It briefly touches each topic discussed but still
requires more effort (and time) than previous workshops, meaning you might not complete it
during the hours alloted.

1.1 Google Guice

Thanks to Google Guice the need to dynamically allocate objects in your code diminishes as
you can instead choose to let Google Guice inject resources into objects. The Guice framework
keeps track of allocations and can aid you in the creation of mock objects whenever you need
to unit test a class or method that needs an external (allocated and injected) resource. Aiding
libraries such as Guice are commonly known as dependency injection frameworks.

We will not put much focus on Guice in the assignments, but the framework is explained
nevertheless. Only the last assignment in this workshop concerns Google Guice.

1.1.1 Motivation

So, why is using Google Guice a good idea? Firstly, your code becomes dynamic and less bound
to it’s dependencies. With Guice you build injection rules. These injection rules can be changed
throughout the execution of the application, giving you the possibility to modify dependencies
on-the-fly. Secondly, it makes unit testing easier, as dependencies that normally would mean
that a certain class can’t be unit tested, can be removed with an injected mock object[6].

1.1.2 Using Google Guice

Google Guice is a tool that gives the programmer control over many of aspects concerning the
dependencies between classes. Google Guice also supports something called Aspect-oriented

mailto:adam.waldenberg@gmail.com

programming [5], something we will not cover in this workshop. As we focus on the mere
minimum, it is recommended that you glance at the official API [2] in order to get a broader
view.

Imagine we are writing our calendar application and need to be able to get event data for
specific days from the Internet (using a http server). To abstract this properly we could imagine
something simple such as this:

public CalendarApplication {
public static void main(Stringl[] args) {
Calendar calendar = new Calendar ();
calendar.print ();

}

public class Calendar {
private CalendarSource source = new CalendarSourcelInternet ();

void print () {

}
}

public class CalendarDay {

}

public interface CalendarSource {
CalendarDay getCalendarDay(int day);
by

public class CalendarSourcelnternet implements CalendarSource {
public CalendarDay getCalendarDay(int day) {

Notice how we mix the interface definition and class call inside the Calendar class in order to get
a generic implementation. This is the normal way to do it in Java. Often you have a SomeName
interface and a SomeNamelmpl class that is based on that interface. Imagine that we would
want to add a unit test to test the CalendarDay returned (to check so that the returned data
is valid). We would do something like this:

public class CalendarDayTest {

Q@Test
public void testDayValidity () {

CalendarSource source = new CalendarSourcelnternet ();
}

Now consider; what is wrong with this code? What constitutes a good unit test? The ba-
sic answer is that it should work under all conditions, unless you are testing something that
fundamentally requires a certain state. As CalendarSourcelnternet requires a working Internet
connection it could potentially fail whenever the test of the CalendarDay class is executed. This
is not acceptable. It would be acceptable if the test was intended for the CalendarSourceln-
ternet class, but this is not the case. As mentioned previously, Guice can help us remedy this
problem. Let’s start by guicing up the simple example above, one class at a time:

@ImplementedBy (CalendarSourcelnternet.class)

public interface CalendarSource {
CalendarDay getCalendarDay (int day);

I

The @ImplementedBy annotation will tell Google Guice that CalendarSourcelnternet is the
default implementation for CalendarSource, getting rid of the mixing of interfaces and classes
everywhere in the code. Next, we need to use this interface inside our code:

public class Calendar {
@Inject
private CalendarSource source;

void print () {

}

Whenever the Calendar class is instantiated by Google Guice, CalendarSourcelnternet will be
injected into source. This happens because we previously defined that CalendarSourcelnternet
is the default implementation. In order for this to happen, we also need to make one additional
change:

public class CalendarApplication {
public static void main(String[] args) {
Injector injector = Guice.createlInjector ();
Calendar calendar = injector.getInstance(Calendar.class);
calendar.print ();

This creates an instance of Calendar and injects it into a local variable. Guice also initializes
the instance and injects everything we asked for.

We can now rewrite the unit test to use a mock object that we define. To be able to use
our own mock object and overwrite the injection rule defined with @ImplementedBy, we need
to use something called Guice Modules, or Linked Bindings [3]:

public class MockModule extends AbstractModule {
@0verride
protected void configure () {
bind(CalendarSource.class).to(CalendarMockSource.class);

}

public class CalendarMockSource implements CalendarSource {
public CalendarDay getCalendarDay(int day) {

3

public class CalendarDayTest {
private Calendar calendar;

@Before

public void setup () {
Injector injector = Guice.createInjector (new MockModule());
calendar = injector.getInstance(Calendar.class);

}

QTest

public void testDayValidity () {

}

The MockModule class is a Guice plugin that defines to what interfaces different classes are
bound to. This time when we create the injector, we pass a Module definition into it. This
constructor actually takes a list of Modules, so you can pass as many as you want into it.
With this code, the unit test is now correct and should consistently be able to properly test
our code.
Of course, in order for any of this to make sense at all, CalendarMockSource has to use some
common code for creating a CalendarDay. This will in truth be the code that is tested.

1.2 Annotations

Annotations are a powerful feature of Java and were introduced into the language back in JDK
1.5. They let us add configuration options to pretty much any part of our code. Most Java
programmers use them, but what many of them never do is to actually implement their own

annotation classes, something that is also possible. Using annotations, we can add custom meta
data to our classes and methods. By using Java reflection [7] we can fetch this meta data during
run-time in our code.

1.2.1 A crash course in writing your own annotations

We want to build a plugin system for our project. Using annotations, we can control how this
plugin system handles our written plugins and how it loads them. Imagine the simplest form
of a plugin, where the programmer can only specify the priority of the plugin (when or where
in the load chain the plugin gets loaded):

QRetention(RetentionPolicy.RUNTIME)

public @interface SimplePlugin {
String value() default "No description';
int priority() default O;

What happens above is that we define the annotation @SimplePlugin with optional description
and priority parameters. If the default keyword is not specified, the parameter is mandatory
and has to be specified whenever the annotation is used. To complement a normal annotation
declaration such as the one above there are also certain annotations that you can put above
the definition in order to control the behaviour. This is what @Retention does in the above
example. This requires a thorough explanation, because a lot can be accomplished with this
functionality:

e @Retention(policy) controls when an annotation will be available. Where policy is one of
the following:

— RetentionPolicy.CLASS - Means the declared annotation will be available during
compilation. Used by compilation tools such as Ant. NOTE: This is the default
behaviour for a declared annotation that does not set the retention policy.

— RetentionPolicy. RUNTIME - Means the declared annotation will be available during
run-time (this is exactly what we want for plugins).

— RetentionPolicy.SOURCE - Means the declared annotation will be available only
at source level and will be discarded by the compiler. Used by Java development
environments.

e Q@Target(type[; type...]) controls where in the source code an annotation can be used.
The type arguments have to be one of the following:

— ElementType. TYPE - Means the annotation can be used on top of declared classes,
interfaces, enums and other types. This is what we are interested in.

— ElementType.FIELD - Means the annotation can be used on top of instance variables.
— ElementType. METHOD

— ElementType. PARAMETER

— ElementType. CONSTRUCTOR

— ElementType. LOCAL_VARIABLE

— ElementType., ANNOTATION_TYPE - Means that the annotation can be used on
top of another annotation.

— ElementType. PACKAGE

When @Target is omitted (such as in our declaration above), the declared annotation may be
used on any program element.

The programmer can now use the defined annotation in his or her project by specifying the
@SimplePlugin annotation in the code like this:

@SimplePlugin
public class LowPriorityPlugin {

3

@SimplePlugin(priority = 500)
public class NormalPriorityPlugin {

¥

@SimplePlugin(value = "High priority plugin", priority = 1000)
public class HighPriorityPlugin {

Once everything is defined, it is up to the programmer to scan plugins and check the parameters
of the annotations using Java reflection.

1.3 Java Reflection API

Reflection is a term used to describe the act of applications that can structuraly modify and ob-
serve themselves during run-time. In Java this means scanning classes, initiating new instances
of classes, fetching method references and pretty much anything you can imagine. For further
information of what is possible, refer to the Java Reflection API [7]. We will use reflection to
dynamically load plugins and scan them for annotations. In the process you will learn a small
part of the reflection API, which should get you started if you want to implement something
similar in your own applications.

1.3.1 Using Java to load classes as plugins

Usually, loading classes dynamically is easy and can be done like this:

public class ClassLoadingExample {
public static void main(String[] args) {

ClassLoader loader = ClassLoadingExample.class.getClassLoader ();
try {
Class<?> class = loader.loadClass("edu.itproj." +

"plugins.SimplePlugin");
} catch (ClassNotFoundException e) {
e.printStackTrace ();
}

The classloader will check if the class is already loaded and only reload it if required. Easy,
right? If it only was that simple...

If we would decide to load our plugins in the above manner, we would have no control over
where the binaries were fetched from. This would mean that we would be forced to put the
plugins inside the applications main class hierarchy or in the classpath. What if we want to
load the plugins from a web server or some other service? The solution to this problem is to
either use the URLCloassLoader class (which has problems under certain operating systems) or
extend the ClassLoader class with our own implementation, like so:

class BetterClassLoader extends ClassLoader {
private final String location = "file:/home/user/someplugindir/";

@0verride
public Class<?> findClass(String name) {
byte[]l] data = loadClassData(name);
return defineClass(name, data, O, data.length);

3

private byte[] loadClassData(String name) {

As you can see, the location string is hard coded in. A better alternative is to specify the plugin
directory using an XML configuration file. However, this is outside the scope of this workshop.

When we use the BetterClassLoader class in our project, findClass(name) is invoked by
loadClass(name) if the default classloader fails. Which it should, as our class should be nowhere
to be found. Inside loadClassData(...) you have endless posibilities. You can load files from a
local location or from the Internet. Some people even implement special plugin packages that
they load with their custom class loaders. Another common practice is to search for plugins
in many different locations. It is up to you. Though, during the rest of this workshop we will
focus on loading locally stored files from a single location.

The next step is to use the BetterClassLoader class:

public class ClassLoadingExample {
public static void main(Stringl[] args) {

try {
BetterClassLoader loader = new BetterClassLoader ();
Object plugin = loader.loadClass("SimplePlugin").

newlnstance () ;

} catch (ClassNotFoundException e) {
e.printStackTrace ();

3

That’s all there is to it. The above code loads and creates a new instance of a class located
at file:/home/user/someplugindir/SimplePlugin.class” (if BetterClassLoader.loadClassData()
was correctly implemented).

1.3.2 Using reflection magic to scan plugins for annotations

Next, we need to be able to scan the plugins for meta data. Consider the following piece of
code where we implement an annotation scanner that scans for SimplePlugin annotations:

public class AnnotationScanner {
public static SimplePlugin
getSimplePluginAnnotation(Class<?> c) {
return c.getAnnotation(SimplePlugin.class);

}

public static Annotation[] getAllAnnotations(Class<?> c) {
Annotation[] annotations = c.getAnnotations();

for (Annotation a : annotations) {
if (SimplePlugin.class.isAssignableFrom(a.getClass ())) {
SimplePlugin sp = (SimplePlugin) a;

System.out.println("Found @SimplePlugin");

System.out.println("Value: " + sp.value());
System.out.println("Priority: " + sp.priority());
} else {

System.out.println("Found some other annotation");

}

return annotations;

Above we have one method that just fetches a @SimplePlugin annotation and another method
that fetches all annotations on a class and prints some information about @SimplePlugin anno-
tations that were found. That’s it. With this small piece of code you should be able to easily
scan run-time classes for defined annotation.

1.4 More on Google Guice

Often when using Google Guice you’ll want to inject objects that are defined outside the main
application context, inside an external resource such as a jar file with classes. You can of course
not use annotations to define injection rules in these cases. To accomplish injection with the
outside world, you can use Guice Modules and define linkage in the same manner as we did in
the previous example. Many times when you need an injected object you also need to do some
kind of initialisation on the object, either before or after you instantiate it. To accomplish this
you can use the @Provides annotation inside a defined Guice module. With this, you can define
methods that provide different kind of objects to Guice (for you injection rules).

When using Guice, you will normally never have to write custom Singletons. This is because
Guice can handle scoping [4] on different objects and has the ability to define Singleton objects
using the @Singleton annotation. This is actually covered briefly in the last assignment of this
workshop.

Again, this workshop only covers the mere basics as we do not have space or time to cover
all parts of Guice, but it is definitely something you should look into for your project.

2 Starting a new project

It is time to implement our Calendar application. To simplify everything, there is a code
skeleton that you can start from.

Download the code skeleton for this workshop from the course website and study the code
and code comments. You should import this skeleton as a project into Eclipse. Most of the
work in is already done for you. Your job is to fill in the blanks.

When you run the application now, all you should get is an empty window. Let’s get to
work and make some magic happen.

Each time you open a file with assignments, every TODO inside the file will be numbered
according to the order that each TODO should be done in. The first assignment will be
numbered A1, A2, A3..., the second B1, B2, BS... and so on. Use the Tasks tab in Eclipse to
locate everything that needs to be done for each assignment.

If you run into problems during the assignments, there is a troubleshooting section at the
end of this document with some common issues that can arise.

2.1 The layout of the calendar application
The application is structured in the following way:
e calendarapp - Main package group.
e calendarapp.ctrl - Controller classes.
e calendarapp.gui - Classes associated with the user-interface.
e calendarapp.plugins - Annotations, classes and interfaces concerning plugins.
e calendarapp.plugins.exported - Plugins classes that will be exported (The actual plugins).
e calendarapp.utils - Utility classes and definitions; classes and definitions that are general
and could be used outside the scope of this application.

2.2 Assignment A: Creating the calendar view

First, open the file calendarapp.qgui.CalendarMonth and inspect the source code. The Calen-
darMonth class is used by the class calendarapp.gui. Calendar when making a view of all the
months in the year 1984. Open the file under calendarapp.qgui. Calendar and inspect the source
code. Most of the class is already coded for you. Do every TODO note for this assignment and
see what happens. Your job is to create a grid of widgets for displaying calendar days. If you
get it right, you should see a calendar view next time you start the application.

z
o
H
A

£
E
Kijw &
£
E

e
E
B w
£
3

w (% [][][]
w[r][][=]-]e

g
E
&
BllE| =
B
&
a

5
B8
5

Figure 1: This is how the application should look after implementing the calendar view (As-
signment A).

2.3 Assignment B: Creating annotations for our plugin types

We will need two different plugins for the project. Calendar plugins and GUI plugins. The
calendar plugins define different holidays and events in the calendar view. The idea is to give
days some special text and colour whenever they are associated with a certain plugin. The GUI
plugins should instead have the ability to add Swing elements into the main calendar window.

As our project supports two types of plugins it also needs two different plugin annotations:

e CalendarPlugin - This annotation should define a description parameter describing the
type of day or event defined inside a certain plugin. Alternatively, you can use the normal
value parameter for this, just like the example annotations. The annotation should also
define a priority parameter. This can later be used to prioritize in what order calendar
definitions are applied. For example, if we define a plugin that specifies Sundays as red
days while also defining another plugin that specifies Easter, it is important that the
Easter holiday takes precedence (Pdaskdagen in Sweden). The prioritization is taken care
of for you, using two Comparator classes that are already defined inside the calendar
application.

e GUIPlugin - This annotation should define the same parameters as the annotation dis-
cussed previously. In addition, this annotation should also take an area parameter which
should be defined as an enumeration that defines the two areas GUIPLUGIN_.NORTH
and GUIPLUGIN_SOUTH. The main GUI will have two Swing containers where plugins
will be appended, this is how we specify into which one the plugin should be loaded.

The files calendarapp.plugins. CalendarPlugin and calendarapp.plugins. GUIPlugin are already
created for you. What you need to do now is to define them properly. You will also have to
modify the enum definition in calendarapp.plugins. PluginArea.

Once you have defined PluginArea, open the classes calendarapp.qgui. Main Window and cal-
endarapp.gui. PluginPanel. You are supposed to implement the usage of PluginArea in these
two classes. Refer to the TODO comments for further information. Take care to only do the
comments related to this assignment.

10

2.4 Assignment C: Creating a general plugin interface and some plugins

Next, we will start on the plugin handling. The interface calendarapp.plugins. Pluggable should
describe a general plugin. This plugin interface will later be implemented in the application
and annotated with the annotations you previously defined. The idea is to use generics in
calendarapp.plugins. Pluggable. Classes implementing this interface can then specify what kind
of type they want to return back from their method(s). This way we don’t need to return or
handle general Object classes in our plugins. Open calendarapp.plugins. Pluggable and complete
it.

Once you complete the Pluggable interface, open calendarapp.plugins.exported. Easter Plugin
and do the TODO’s inside. When completed, you should have a correctly defined plugin. If
you look inside FasterPlugin, you can also see that it implements the Coloured interface as
well. Using interfaces in this manner, you can patch together different kinds of plugins. When
the plugin is loaded you can check which interfaces it implements. With this technique, you
will be able to know how to handle plugins with different interfaces patched on. It’s a good
complement to the annotations.

Once that is done, there are two other CalendarPlugins that you need to complete, namely
calendarapp. plugins. exported. SundayPlugin and calendarapp.plugins.exported. BigBrotherPlugin.
Take care of the priority with SundayPlugin, as this plugin will overlap with FasterPlugin.

Before we can start on the next step, you also need to create a GUIPlugin. If you look at
the calendar, it looks very dull. We need to add some flare to it! Your next plugin should add a
JLabel with big, centered text to the upper plugin area (as you might remember, our interface
has two areas for externally added widgets). This time you will have to write more of the plugin
on your own. Open calendarapp.plugins. exported. TitlePlugin and follow the instructions in the
TODO comments.

2.5 Assignment D: Preparing a simple plugin environment

It’s time to use what you have learned and eventually construct classes that dynamically load
the plugins we created. We will load the plugins from a plugin directory instead of the the
normal application hierarchy or classpath. Locate the location of your home directory. On
Linux you can check the location of your home directory in a terminal:

e Open a fresh terminal.

e Usually, your current working directory should initially be your home directory, but we
can write ’cd ~7 and press ENTER just to make sure we are in the right place.

o Write ’pwd’ and press ENTER. The terminal should output the full path to your home
directory. Save this string. You will need it when writing the plugin loader.

Using the command ’‘In’, we can create soft links in this directory that point to any class file
that we want to put there. This way, we won’t have to copy the ’.class’ files to the plugins
directory whenever we recompile. Next, if you are under Linux, do the following:

e Create a plugins directory in your home directory.
e Open a terminal and cd into the created plugins directory.

e Create a link to FasterPlugin.class by writing ‘In -s <full absolute or relative path to the
compiled EasterPlugin.class>"’

e Create similar links for SundayPlugin.class, TitlePlugin.class and BigBrotherPlugin.class.

11

e Now, make sure that the links are valid by writing for example ’javap TitlePlugin’ in
the terminal. Do the same check for FasterPlugin, SundayPlugin and BigBrotherPlugin.
Notice that javap takes the class name with ’.class’ omitted.

Under Windows you can just copy the class-files/plugins to some location by hand. Just make
sure that you copy them again each time you recompile modified plugins. Alternatively, if you
are using Vista or Windows 7, you can use the mklink command to create similar symbolic
links. Note that you also need administrative rights to be able to create symbolic links with
the given command.

2.6 Assignment E: Creating the classes needed for loading plugins

Now that we have everything in place, it’s time to actually implement the plugin loading.
The class calendarapp.plugins. PluginLoader is the first file we will edit. When completed,
PluginLoader will load the plugins from the location specified by the static variable Plugin-
Loader.pluginPath. The class has two exposed methods for loading plugins; loadCalendarPlu-
gins() and loadGUIPlugins(), which return a List<Pluggable< ?>> of loaded plugins. These
methods are called by calendarapp.gui. Calendar and calendarapp.gui. CalendarMonth. So, when-
ever these classes call those two methods, they scan the returned plugins and handle them
differently depending on different criteria.

Inspect the source code for calendarapp.plugins. PluginLoader thoroughly. Parts of the pri-
vate methods getPluginClasses() and getPluginsFromPluginClasses are missing. Fill in the
blanks.

Next up is calendarapp.plugins. PluginClassLoader. This class should look very familiar, as it
is based on the previous example of BetterClassLoader. The method findClass(name) receives
an actual class name from the application, that is; a name without the .class suffix. If you look
at the static variable exportedPackage, you can see that it is used to prepend the class name
with the package in which the plugin was compiled. This is needed in order for Java to be able
to create a valid definition of the class when ClassLoader.defineClass(...) is called.

Your objective in this class is to implement the missing part in loadClassData(), which is
supposed to read the class as binary data and return a byte array.

2.7 Assignment F: Loading the GUI plugins

Now we have come so far that we can start loading GUI plugins into the plugin panels. As the
plugin panels are the widgets that will hold the plugins, they are the logical destination for the
plugin handling code as well. Open calendarapp.gui. PluginPanel and complete the code.

Take care so that you properly check that the loaded plugin actually belongs to the area
definition defined by the plugin panel. If you fail to do so, the widget might be added twice,
because there are two plugin panels in the view.

Depending on how you defined Calendar.getConstraints(), you might have to edit the con-
straints again in order to get the plugged in widgets on top of the calendar. TIP: Using
‘constraints.gridy = 17 in getConstraints() might work.

If everything went according to plan, you should now have a window with a label at the top.

12

2 JiE 0B TCaleTd oW B OTWe I W ONG 72 CE)
1984 - Big Brother can see you
jan feb mar apr
Mo Tu We Th Fr Ss Su||Mo Tu We Th B Sa Su||Mo Tu We Th F Sa Su| Mo Tu We Th Fr Sa Su
(] a2 =]le = 1]z]][e (2]
2 3 4 = & ? 2 6 7 8 9 || n| 2 5 3 7 8 9 |10 || 11 2 2 4 s s ’ 2
W njj1z)13]j14)35 13|14 15| 16 | 17 || 18 | 18 12 |13 |14 15 | 16| 17 || 18 v njrjuajuMjis
1’| jjejj1aj2e)2)22 20 | 21| 22| 23| 24| 35| 26 19|20 | 21| 22|23 20|25 | [R R
(=[] == =][=]2 [w] P [e v o ey (2] 2]][[z [m][
B 30
maj jun jul aug
Mo Tu We Th Fr Sa Su| | Mo Tu We Th Fr Sa s Mo Tu We Th Fr Sa Su||Me Tu We Th Fr Sa Su
123 a]s]s 1| 2] = | 2] 1]2][s]a]s
7 3 92 1011|1213 a 5 6 7 8 9 || 1 2 3 4 s € 7 ® 6 7 8 92 |10 1| 12
14| 15| 16 || 17 || 18 | 19 | 20 1|12 13| 14 15| 16| 17 o njrjujujis 13| 1415 1% 17 18 |19
21| 22 || 23| 2a| 25 | 26 | 27 18 || 19 | 20| 21| 22| 23 || 24 16| 7|28 2|20 2222 20 || 21| 22| 23 24 25 |26
28| 29 || 30 || 3 25|26 | 27 22 29 || 30 2|24l f2ej228]2 27| 28| 29 | 30 3:1
30 3]
sep okt nov dec
" Tu We Th Fr s Su Mo Tu We Th Fr s Su Mo Tu wWe Th Fr Sa Su M T We Th Fr ii
Cale] et]ie e 12]a][e [2][2]
3 a s € 7 8 5 8 5 |11 12|13 14 5 3 7 & s |10 || 11 3 a s & 7 8 2
10| 1112 |13 | 14|15 |16 15|16 | 17| 18| 19 | 20 | 21 1z || 13 |14 | 15 | 16 | 17 || 18 el e el el el S
17 | 18 |19 || 20 | 21| 22 | 23 22| 23 | 24| 25 | 26 || 27 | 28 19 || 20 | 20| 22 |23 | 24| 25 T|unjajajziz
2425][26 [27 [28| 20 |30 || [20 |[30][;2 2 |27][22][20 [20 |2a 26|26 27|28 20) 30
a

Figure 2: This is how the application should look once the plugin panels handle GUI plugins
correctly (Assignment F).

2.8 Assignment G: Loading the Calendar plugins

The last step in the plugin handling is to load the plugins annotated with the
@CalendarPlugin annotation. The buttons for calendar days are added in the pri-
vate method calendarapp.gui. CalendarMonth.addDay() by creating instances of calen-
darapp.gui. CalendarDayButton. In addition to the button string, the constructor of Calen-
darDayButton takes a list of loaded plugins and reads the configuration of each button using
the plugins. So the actual plugin handling is supposed to be located inside CalendarDayButton.

Open CalendarDayButton and get working.

When you completed the assignment, start the application and click on the coloured buttons.
You should get a window with annotation texts. If you got it right, you should see the description
annotations from both days when clicking on the button representing Easter.

2 57 EXLOBTICRIEN BT =YW 3510 TWel W ONG 73 ()E)0x)

1984 - Big Brother can see you

jan feb mar apr
Mo Tu We Th Fr Sa Su| | Mo Tu We Th Fr Sa Su| | Mo Tu We Th Fr Sa su| Mo Tu We Th Fr Sa
=] ARG AR =
2 3 a s & ’ 2 6 7 8 9 ||| n| 2 5 3 7 8 9 |10 || 11 2 3 4 s s 7 2
10|12z 23)4 jas 13| 14 15| 16| 17 || 18 || 19 12|13 |14 15 | 16| 17 || 18 Ljnjjuaj e
d6| 27 j| 28]| 1o) 20) 2 |22 20 | 21| 22| 23| 24| 25| 26 19 |20 | 21| 22 |23 2a||25 80| 17 |28 | 1)| 20 || 22 |[Fe2
25 [2a | 25 | 26 | 22][2 [=50| [on e [25 2ol 2 1 on [25 [3e [32 2 2425 | 26 |27 2|2
[30][3] [30]
maj jun jul aug
Mo Tu We Th F E Su Mo Tu We Th Fi Sa S Mo Ty We Th Fr s i Me T we Th Fr s Su
2 [z)=]e]l=]E 1] 2] [z] 12]le][E
7 2 5 || 11||12| 13 a 5 3 7 2 s || 10 2 3 4 5 s 7 8 € 7 8 5 |10 || 1|12
14| 15 | 16 || 17 || 18 | 19 | 20 11|12 | 13| 14| 15| 16 || 17 9 L2118 13| 14|15 | 16 17| 13 |19
21| 22 || 23 || 24| 25 | 26 | 27 18 | 19 | 20| 21| 22| 23 | 24 28| 27 j| 28 | 29 | 20 || 22 [[fz2 20 || 21 || 22| 23 24 25 |26
28| 29 || 30 | 3 25| 26 | 27 22 29 || 30 23| 24|28 || 26| 27 || 28 |29 27 || 28| 29 | 30 31
EY
sep okt nov dec
Mo Ta We Th Fr S Su|| Mo Tu We Th F Sa Su||Me Tu We Th F Sa Su | |Me Tu We Th Fr Sa Sa
[2 Bz) s e s]l s [F7 1 [z [a [1][=]
2 a s € 7 2 9 8 9 | |n| 2|13 1 5 3 7 e 9 |10 || 11 3 4 s & 7 8 3
10 | 1112 |13 | 14|15 |16 15|16 | 17| 18| 19| 20 | 21 1z |13 |14 | 15 | 16 | 17 || 18 njrjnvjujsjie
17 |18 | 18 || 20 || 21| 22 | 23 22| 23| 24| 25| 26| 27 | 23 18 || 20 || 21| 22 |23 24|35 | e (|12) 20 (| 22)| 22 ||
24 [25][26 |[27 [28][29 |[30]| [[28][30][;2 26 |27][22][29 [30 et 2s |26] 27 [| 22 || 20 |30
n

Figure 3: This is how the application should look if you annotated your plugins right and added
a correct implementation into CalendarDayButton (Assignment G). Notice how the colour of
the 22’nd of April is orange. This is because Easter takes precedence over the normal Sunday
plugin.

13

2.9 Assignment H: A quick example of using Google Guice

Before you start, you need to download the archive guice-3.0.zip from the Guice website [I].
Inside the archive you’ll find guice-3.0.jar, which you can add to your project.

You might have noticed that the calendar application has a factory for returning controller
singletons. There is only one controller defined in this application, but the idea is that one
should be able to call the factory and return any controller defined, whenever needed.

Delete calendarapp.ctrl. ControllerFactory from the project. We will replace the factory
with Guice injection. Open calendarapp.ctrl. CalendarDayButtonAction and add a @Singleton
annotation to the class.

The singletons created by Guice are handled per injector. This means that if you create a
new injector you will get a new instance of the singleton also. There are several ways to solve
this problem; something you’ll have to figure out yourself.

You can check that the singleton works properly by doing a System.out.println()) inside the
constructor of CalendarDayButtonAction. If you only get one printout, everything is correct.

3 Conclusion

Many parts of the source code provided to you in this workshop are far from perfect. They
work fine in this small example but will probably have to be restructured for a bigger project.

As you have seen, using a dependency injection framework such as Google Guice can reduce
code complexity in your projects. It also adds improved flexibility to your code. The use
of annotations in this workshop is just one example of how you can take advantage of the
power that annotations give you. The custom class loading you have implemented can be made
dynamic to react to changes in the filesystem. That is, if someone was to copy an updated
version of an already loaded plugin into the plugin directory, it’s possible to listen to changes
and reload it.

Now, go forth and use what you have learned here within your project.

4 Troubleshooting

Question: Whenever 1 try to set the GridBagConstraints inside calen-
darapp.plugins. PluginClassLoader.getConstraints() the component is still not expanding.
What am I doing wrong.

Answer: Usually this means that you forgot to set a weight. In a toolkit such as Swing (and
many other), a weight specifies how hungry a widget is for space.

Question: What do I do if I get the runtime exception NoClassFound (wrong name)?
Answer: This means that java can’t define the class you are loading. This is often because the
package name or class name does not match the package or class name of the compiled class.
Refer to calendarapp.plugins. PluginClassLoader.exportedPackage and make sure it points to the
same package as the compiled class.

Question: I get a 'bad magic number’ exception. Now what?

Answer: In Java classes there is a 0xCAFEBABE magic number. This is used to verify that
the class is actually a valid Java class. If you get this error you probably didn’t implement
calendarapp.plugins. PluginClassLoader.loadClassData() correctly.

14

References

[1] Google Inc., Google Guice,
http://code.google.com/p/google-guice

[2] Google Inc., Google Guice 3.0 Core API,
http://google-guice.googlecode.com/svn/trunk/javadoc/index.html

[3] Google Inc., Google Guice, Linked Bindings,
http://code.google.com/p/google-guice/wiki/LinkedBindings

[4] Google Inc., Google Guice, Scopes,
http://code.google.com/p/google-guice/wiki/Scopes

[] Wikipedia, Aspect-oriented programming,
http://en.wikipedia.org/wiki/Aspect-oriented_programming

[6] Wikipedia, Mock Object,
http://en.wikipedia.org/wiki/Mock_object

[7] Oracle, Trail: The Reflection API,
http://download.oracle.com/javase/tutorial/reflect

15

http://code.google.com/p/google-guice
http://google-guice.googlecode.com/svn/trunk/javadoc/index.html
http://code.google.com/p/google-guice/wiki/LinkedBindings
http://code.google.com/p/google-guice/wiki/Scopes
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Mock_object
http://download.oracle.com/javase/tutorial/reflect

	Introduction
	Google Guice
	Motivation
	Using Google Guice

	Annotations
	A crash course in writing your own annotations

	Java Reflection API
	Using Java to load classes as plugins
	Using reflection magic to scan plugins for annotations

	More on Google Guice

	Starting a new project
	The layout of the calendar application
	Assignment A: Creating the calendar view
	Assignment B: Creating annotations for our plugin types
	Assignment C: Creating a general plugin interface and some plugins
	Assignment D: Preparing a simple plugin environment
	Assignment E: Creating the classes needed for loading plugins
	Assignment F: Loading the GUI plugins
	Assignment G: Loading the Calendar plugins
	Assignment H: A quick example of using Google Guice

	Conclusion
	Troubleshooting

