
PM - Workshop 2

Testing, Debugging and GUI building

Emil Djupfeldt
Project Course IT (TDA366/DIT211)
Chalmers Tekniska Högskola
Mars 2010

Introduction

The purpose of this workshop is to give an introduction to some of the tools available in the Eclipse
IDE. Unit testing, dependency checking, debugging and using the gui builder will be covered.

Initial setup

Before you get started you will need to create an empty project in Eclipse. However, since we will
be writing tests later as well as ordinary code the project should contain an additional source folder
called test.

You can do this by selecting Java Project from the File -> New menu. On the first page that shows
up fill in an appropriate project name (i.e. tda366-debug) and press next.

On the second page you will be given an option to create additional folders. It's a good idea to keep
test code separate from the rest of the source. On the Source tab click Create new source folder and
give it the name test.

You should now have a folder named src and a folder named test. Press Finish to create the project.

Now create a class called MathModel in your project. On the page that shows up when creating a
new class make sure it will be placed in the src folder in your project, and not the test folder.

Once you have created the class enter the following code:

public class MathModel {
public int multiply(int a, int b) {

return a / b; // Incorrect on purpose
}

}

This is a simple program with an glaringly obvious bug. The bug will be dealt with later so keep it
around for now.

JUnit tests

To assure that a method or class behaves in the intended manner it is often beneficial to write some
code to test it. JUnit tests provide a standardised framework for this purpose.

Right click on your MathModel class in the package explorer and create a new JUnit Test Case.
Make sure JUnit 4 test is selected instead of JUnit 3, and change the source folder to the test folder
you created before. On the second page you will get a choice of which methods you want to test.
Select multiply(int, int) from MathModel and press Finish.

If this is the first unit test you create in your project you might get a dialog asking if you want to
add JUnit 4 to your build path. Make sure the option to do so is selected and press OK.

Eclipse has now created a class MathModelTest for you and a method testMultiply() in it. Currently
the test will always fail. Change it to look like this:

@Test
public void testMultiply() {

MathModel m = new MathModel();

assertTrue(m.multiply(2, 5) == 10);
}

The @Test attribute identifies this method as a test case. There are a few more attributes that can be
used in a unit test, some of which will be covered later.

The assertTrue() method is what makes the test case work. It takes one boolean as argument. If the
value is false the the test case fails and if it is true it succeeds. There are many more assert methods
but in this case assertTrue() is sufficient.

If you feel that just one check is not enough to guarantee that the multiply() method works as
intended you can add another assertTrue() with a different condition after the current one.

Now your test is ready to be used. Run it by right clicking on the class in the package explorer and
selecting Run As -> JUnit Test. When the test has finished running you should get a report of the
test cases. As you have only one test and the multitply(int, int) method is flawed all tests should fail.

Fix the bug in MathModel and then run the unit test again. Now all tests should report ok.

Sometimes several tests operate on the same or similar objects. In this case a fixture can be created
to simplify the test cases. Change MathModelTest to look like the code on the next page.

The method identified by @Before will be run before any test case is executed and the method
identified by @After will be run after the test cases. Since having a fixture for only one test case is a
bit superflous you should expand the MathModel class with more methods and create test cases for
each of them.

import static org.junit.Assert.*;

import org.junit.Test;
import org.junit.Before;
import org.junit.After;

public class MathModelTest {
private MathModel m;

@Before
public void init() {

m = new MathModel();
}

@After
public void uninit() {

m = null;
}

@Test
public void testMultiply() {

assertTrue(m.multiply(2, 5) == 10);
}

}

Jigloo GUI builder

Now that you have a working (although simple) math class it is time to create a GUI for it. Select
Other from the File -> New menu. In the window that appears browse to GUI Forms -> Swing ->
JFrame and press next. Enter MathWindow as name, make sure that Add main method is checked
and press Finish.

Since this is a simple math program you will need a way to input values and a way to display the
results. An easy way to do this is to add two text fields and a label. However, before this can be
done you will need to set the layout of the frame so the components in it will be displayed correctly.

From the top of the gui editor select the Layout tab. Then press the GroupLayout button in the
toolbar that appeared and finish by clicking somewhere inside the frame below. This will set the
current layout for the frame to a GroupLayout.

If you get a question to add the layout library to your project the press Yes since you will need this
to run your project.

Next step is to add the text fields. Select the Components tab and press the JTextField button. If you
move the mouse around inside the frame you will notice that one or more red dotted lines show up
sometimes. These are guides to help place the components at equal distances. Place the text field
inside the frame by clicking where you want it to be. In the dialog that shows up you can enter a
name and default value for the text field. Since the first argument to the multiply() method was
called a you can call the text field txtA. An appropriate default value could be 0.

Since multiply() takes to arguments, create another text field called txtB.

For the result you should create a label. Locate the JLabel button in the toolbar and place one
somewhere in the frame. You can call it lblResult.

Now you have a way to input values and display the results. However, the program also needs to
know when to update the result. For this you need a button. Locate the JButton button in the toolbar
and place one in the frame.

To connect the button to the code you will need an AbstractAction. It can be found in the More
Components tab. Press the AbstractAction and then click outside the frame to add it as a non-visual
component. Find the AbstractAction in the Outline pane and drag it to the button you added before.
This will connect the action to the button.

Now switch over to the source view. You can see the autogenerated code for the frame. The
interesting parts are the the constructor and the actionPerformed() method.

Create a private instance variable called model to contain the MathModel and update the constructor
to take it in as an argument. Then update the main method to create the MathModel and pass it
along to the constructor.

Then locate the actionPerformed() method inside the AbstractAction close to the bottom and change
it to look like this:

public void actionPerformed(ActionEvent evt) {
int a = Integer.parseInt(txtA.getText());
int b = Integer.parseInt(txtB.getText());

int result = model.multiply(a, b);

lblResult.setText("" + result);
}

Now you should be able to run your frame. Enter a few values and try calculating the results. Since
the program only multiplies the values it's not very useful. Go back to the gui editor and add a
method to select the other operations you added to MathModel. Try using a list, a combobox or

radio buttons. Then go back and make the corresponding changes to the code.

Debugging

A very useful method to find out why something is not working as intended in a program is to
debug it. One possible method is to singlestep through every line in the program but this can get
tedious for everything but the smallest code bases. To avoid this it is possible to add breakpoints to
the program. A breakpoint is a condition that when fulfilled pauses the execution of the program
and transfers control to the debugger. A common condition is to break on a certain line in a source
file.

To add a break point to your program, right click on the thick gray edge to the left of the source on
the first line in the actionPerformed() method in the MathWindow class and choose Toggle
Breakpoint from the menu. Then start the debugger either by pressing the buglike button next to the
run button in the toolbar or by choosing Debug from the Run menu.

The program will start as usual but once you press the button to calculate the result the breakpoint
will trigger and Eclipse will enter the debug perspective. Here you will get an overview of the
variables available at the current location in the code and their values, a list of the threads in the
program and the call stack for each of them, and of course the current piece of code.

You can step through the code using F5 to step into functions and expressions, F6 to step to the next
line and F8 to resume the program. You can also change values of variables. Try stepping with F6
until you get to the line where it calls a method from the model and then step with F5 to enter it.
Once in the model code you can continue stepping with either F5 or F6 and it will go back to
actionPerformed() once the method returns.

Once back in actionPerformed() step to the line where the label text is set. Before executing this
line, find the variable containing the result in the Variables pane and change its value by clicking on
it and entering something else. Then step past the text update line and then press F8 to resume the
program. Notice how the result does not match up with the input.

Another thing to take notice of is the this variable in the Variables pane. Since actionPerformed() is
located inside an inner class this points to the inner class and not MathWindow. However, if you
expand the this variable you will find a member variable called this$0. This one refers to the outer
class and contains all its instance variables.

JDepend

JDepend is a tool to check dependencies between packages in java. Combined with unit tests it can
also be used to enforce those dependencies.

Before you begin you will need to download and add the JDepend library to your project. It can be
found at http://www.clarkware.com/software/jdepend-2.9.zip

To add the library, go to the Project -> Properties menu, navigate to Java Build Path and choose the
Libraries tab. From there, click Add external JARs... and locate jdepend-2.9.jar.

Before a unit test that checks the dependencies of the project can be constructed JDepend needs
some setup. More specific, it needs to know where the compiled project code is located and what
packages to ignore when checking dependencies. Normally you only want to ignore the default java
api packages.

After setting everything up you have to decide which other packages the packages in your code are
allowed to depend on.

The only package in this workshop is the default package, and the packages used so far are org.junit
and org.jdesktop.layout.

None of the imported packages depend on anything but the java api, but the default package in the
project depends on all the others.

With all this in mind, change MathModelTest to look like the code on the next page. Remember to
change the path to the project. Then run the unit test again.

If everything went well both the unit tests should report success. However, the dependency will fail.
This is because when introducing the JDepend framework a dependency for the jdepend.framework
package was added.

Change the code to include this dependency as well.

http://www.clarkware.com/software/jdepend-2.9.zip

import static org.junit.Assert.*;

import java.io.IOException;

import jdepend.framework.*;

import org.junit.Test;
import org.junit.Before;
import org.junit.After;

public class MathModelTest {
private MathModel m;
private JDepend dep;

@Before
public void init() throws IOException {

m = new MathModel();

PackageFilter filter = new PackageFilter();
filter.addPackage("java.*");
filter.addPackage("javax.*");

dep = new JDepend(filter);
dep.addDirectory("/Users/egladil/src/tda366-debug/bin");

}

@After
public void uninit() {

m = null;
dep = null;

}

@Test
public void testMultiply() {

assertTrue(m.multiply(2, 5) == 10);
}

@Test
public void testDependencies() {

DependencyConstraint constraint = new DependencyConstraint();

JavaPackage junit = constraint.addPackage("org.junit");
JavaPackage jdesktop = constraint.addPackage("org.jdesktop.layout");
JavaPackage def = constraint.addPackage("Default");

def.dependsUpon(junit);
def.dependsUpon(jdesktop);

dep.analyze();

assertTrue("Dependency mismatch", dep.dependencyMatch(constraint));
}

}

Further reading

If you want additional information on testing and a great example of how something simingly trivial
can require a quite extensive test suite you should read this post about the “triangle example”:

http://blog.chilly.ca/?p=194

Information about Jigloo can be found at their web page. There you can also find information on
how to install it in case your copy of Eclipse did not include it by default.

http://www.cloudgarden.com/jigloo/

JDepend can be used in several more ways in addition to the one explained here. There is for
example a way to list dependencies and also a GUI to view them.

http://clarkware.com/software/JDepend.html

There is another useful tool that is not covered in this workshop. Namely statical code analysis. It
can be used to find bugs in software before they show up in testing or at runtime. FindBugs is such
a tool that can be used together with Eclipse. It is strongly recommended to use this for the project
in this course.

http://findbugs.sourceforge.net/manual/eclipse.html

http://findbugs.sourceforge.net/manual/eclipse.html
http://clarkware.com/software/JDepend.html
http://www.cloudgarden.com/jigloo/
http://blog.chilly.ca/?p=194

	PM - Workshop 2
	Testing, Debugging and GUI building
	Introduction
	Initial setup
	JUnit tests
	Jigloo GUI builder
	Debugging
	JDepend
	Further reading

