
D&IT

Joachim von Hacht

Adam Waldenberg

Workshop 2 : JUnit testing & TDD

In this exercise, we will cover the functionality of the testing framework JUnit and how

basic unit tests are written for the framework. We will also brie�y evaluate TDD (Test-

Driven Development)1 and discuss the advantages of this paradigm. To truly understand

the advantages of TDD, the exercise needs to be done in a group.

The JUnit framework is fully supported by NetBeans and will work without the need

of installing a plugin.

1 Preparation

We will work with a prede�ned class, which we will test, error correct and extend in

small iterative steps.

1. Download the NetBeans project �test.zip� from the course home page and import

it into NetBeans.

2. Inspect and read the code comments. Take special note of the toString() method

inside the Node class. This is a good method to use during debugging and devel-

opment.

If you look closely in the project view, you can see that the test code and source

code are clearly separated in their own directories.

2 Testing of the List class

Now that the project is prepared and imported into NetBeans, we can begin to write

some JUnit tests. The �rst unit test we create will test the add() method of the List

class.

1. Create the class �ListTest� that will hold the unit tests for the List class. You

can create this �le via a template in NetBeans by right-clicking on the project and

selecting; New > Other... > Unit Tests > Test for Existing Class.

a) Select the List class under �Class to Test�. If you look closely; the default be-

haviour is to place the test class in the same package as the class you selected.

Any classes part of the same package as the test class, will be automatically

reachable from the tests without the need of an import. Using this structure

also gives us the ability to test package-private classes.

b) Disable the check boxes under �Generated Comments� and the check box

�Default Method Bodies�.

c) Press �Finish� to create the test class.

1Wikipedia, Test-driven development: http://en.wikipedia.org/wiki/Test-driven_development

1



D&IT

Joachim von Hacht

Adam Waldenberg

2. Inspect the newly generated test class. If you look at the signatures of the generated

methods, you can see that there is a testAdd() method. This is the method we

want to use when testing the add() method of the List class.

3. Run the unit tests by going to the top menu and executing; Run > Test Project.

As the unit tests inside the test class are empty, NetBeans should report that the

tests pass.

4. Edit the testAdd() method to look like the following piece of code:

@Test

public void testAdd() {

List l = new List();

l.add(1);

assertTrue(l.getLength() == 1); // The logical check

}

The last row in the method is called an assertion. If the assertion holds true, it

means that the unit test was successful. If, on the other hand, the assertion fails

(and does not hold true), an error is reported.

NOTE! This is how all unit tests work. The tests either fail or succeed. Manual

reporting (using for example System.out.println()) should never be needed2.

5. Run the tests of the project again. The tests should pass this time as well. If any

tests fail, they are shown in the test report at the bottom of the NetBeans window.

If you want to test this, you can induce a failure by modifying the assertion inside

the testAdd() method to something that should fail.

NOTE! The testAdd() method is actually testing a void method. This means that

there is no return value that can be fetched from the method. Consequently,

there needs to be some other way to check if the method operates properly (in

this case using getLength()). There isn't always a public method available for

this. In those speci�c cases, a method can be added to the class in order for

it to be testable. If that isn't an option, Java re�ection can instead be used

to access private �elds and methods of the class being tested.

6. Next, let's write the test for the remove() method of the List class. The method

removes the �rst node in the List and returns the content (or value) of that node.

Make use of the return value when you write the test. You should be able to create

a test that fails. When you succeed in getting a failure, you should modify the List

class accordingly in order to get the test to pass.

7. You should now write a test for the get() method. You should do the following

operations in the test:

2An exception is during development and under heavy testing when writing the unit test. However,
the printout should always be removed once the test is completed.

2



D&IT

Joachim von Hacht

Adam Waldenberg

a) Add �ve values to the list.

b) Return (and check) the value for index 2 in the list.

Something is wrong with the get() method and it does not work correctly. We

assume that we do not know why and use the debugger in order to try to �nd out

what's wrong:

a) Set a break point on the following row inside the get() method of the List

class:

Node<Integer> pos = head

Do this by clicking in the left margin of the editor window. This should display

a red square right beside the row. The square shows that there is a break point

set for this row.

b) In order for the break point to work, we need to run the tests in debug mode.

This can be accomplished by selecting �Debug > Debug Test File� in the main

menu of NetBeans.

The execution should stop at the break point you speci�ed. You can now

use the debugger in order to �gure out where the get() method fails. The top

toolbar o�ers a variety of ways to control the execution during debugging. You

can also use the mouse to inspect current values of variables just by hovering

over them in the editor window. The bottom (Variables) view also let's you

browse instances declared in the current scope.

c) Experiment with the debugger until you �nd the bug in the get() method.

Correct the error and make sure the unit test passes.

8. It is also important that we test that methods behave correctly (and report an

error) when they get invalid data. The get() method of the List class actually has

such an error check. To test it, we can create the following test:

@Test(expected=IllegalArgumentException.class)

public void testGetBadIndex() {

// Get a list then ...

list.get(-1); // Exception!!!

}

The test checks that the expected exception occurs when we request an index that

doesn't exist.

9. Create the method copy() inside the List class. This method should create and

return a deep copy of the list.

10. Create a unit test for the copy() method.

3



D&IT

Joachim von Hacht

Adam Waldenberg

3 Fixtures

Many tests need some kind of initialization before they can run. In certain cases, a test

method might also need to run some shut down code in order to free up resources that

were needed during the test. Operations such as these can be done inside special methods

that are executed by JUnit in preparation of each test. These are called �xtures.

1. To try out this feature, add the code below to the ListTest class. Note that the

printouts below were added just for demonstration purposes and should never be

part of a JUnit test class under normal conditions.

@BeforeClass

public static void beforeClass(){ //First of all

System.out.println(�Before class�);

}

@AfterClass

public static void afterClass(){ //Last of all

System.out.println(�After class�);

}

@Before

public void before(){ //Before each test method

System.out.println(�Before�);

}

@After

public void after(){ //After each test method

System.out.println(�After�);

}

4 A quick introduction of TDD

Test-Driven Development aims to drive the development of the code, instead of the

other way around (something which is usually the case). Consequently, tests are created

and formulated before any implementation (the actual code being tested) of the class

is written. The test then becomes the template that describes how the implementation

is intended to function. This is usually done in small iterations, with the developers

switching between writing the tests of the class and developing the actual code being

tested3.

The main intention with this work�ow is to avoid that important parts of the implemen-

tation are overlooked while also minimizing the risk of new bugs during the development

of the project.

3Wikipedia, Test-driven development cycle: http://en.wikipedia.org/wiki/Test-
driven_development#Test-driven_development_cycle

4



D&IT

Joachim von Hacht

Adam Waldenberg

1. A popular method used when learning the basics of TDD is to divide the work

between two parties. One party writes the test, while the other party writes the

implementation. We will use this work�ow in the following exercise. Each assign-

ment below is marked for the party that it is intended for.

2. [Party 1] Create the class PrimerTest together with the test method isPrimeTest().
This method is intended to test a method with the signature boolean isPrime(int
number).

a) Write the test and check that isPrime() returns true or false depending on if

the supplied value is a prime number.

b) Create the Primer class (the implementation). You should only create an

empty skeleton class with an empty isPrime() method; enough to make the

code compile. At this stage, the test should not succeed. Make sure that the

test class and implementation class are part of the same package.

3. [Party 2] Implement the Primer.isPrime() method and try to make the PrimerTest

suceed.

4. [Party 2] Write the test method PrimerTest.getPrimeTest(). This method is in-

tended to test a method with the signature int getPrime(int sequenceIndex). Again,
we only create an empty method inside the Primer class. The method should later

return the prime number sequenceIndex within the sequence of prime numbers.

The following should hold true:

a) getPrime(0) == 2

b) getPrime(9) == 29

c) getPrime(< 0) should through a IllegalArgumentException

5. [Party 1] Implement the Primer.getPrime() method and try to make the PrimerTest
succeed. Try to implement the method as trivialy as possible.

NOTE! A very simple (albeit not very optimal) way to implement the getPrime()

method is to simply call the isPrime() method in a loop.

6. If possible, optimize and re-factorize the Primer class. This can now be done

without the risk of new bugs being introduced. Run the unit tests continually

while modifying the implementation code.

5 Test coverage

Unit tests are intended to be a tool for preventing that new bugs creep into classes when

new code is added. They should also work as a description over how the implementation

being tested is intended to function. The only way to satisfy these requirements is to

strive for full test coverage. Consequently, this means that the implementation needs to

be tested and traversed as thoroughly as possible.

5



D&IT

Joachim von Hacht

Adam Waldenberg

Achieving full test coverage, can obviously be extremely di�cult, considering all the

conditions and nooks that a method or class can contain. Luckily, there are great test

coverage tools available for Java that can help us in this regard. Two such tools in-

clude Cobertura4 and JaCoCo5. Tools such as these o�er invaluable help during the

development of your project.

4Cobertura: http://cobertura.sourceforge.net/
5JaCoCo Java Code Coverage Library: http://www.eclemma.org/jacoco/

6


