Model Design and

Implementation
Slide Series #4

General Principles

Extensibility Substitutability
* Inappropriate naming * Long method
+ Comments * Long parameter list
* Dead code * Switch statements
* Duplicated code « Speculative generality
* Primitive obsession * Oddball solution
s large class * Feature envy
* God class * Refused bequest
* Lazy class * Black sheep

Middle man Contrived complexity Amodule s a seH-con
Data clumps Divergent change hasavisil:dstinad int
Data class Shotgun Surgery

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle

Interface Segregation Principle
* Inherit members from parent class eree P

+ Abstraction Dependency Inversion Principle
* Define and execute abstract actions
+ Encapsulation
* Hide the internals of a class

¢ Polymorphism

* Access a class through its parent interface

There are quite a few design principles and best practices
- Even more important at application design upcomming.

Responsibilities in Models

The Pong Game

The Pong game has a Ball and Two paddles
- Which will check for collision?
- .. orwill (should) someone else check ..?

Summary: There are levels in the model ..
- ..some objects are at a higher level, handling objects at lower level!
- Paddle and Ball are at the “same” level, so something higher up should
handle collisions

How about MP? Anything similar?

MP : Design Model

Player Monopoly Board

1 2.8 1 1

1 1

1 1 40
Piece Dices Space
_ b

position Represent

pair of

dices

To adapt the domain model to be suitable to implement we modify the model
- Possibly add, divide or collapse classes, and more ..
- Thisis the design model

MP: Minor changes from domain model.
- Replaced Dice with class representing 2 dices

https://en.wikipedia.org/wiki/Software_design

Aggregates and Root

Monopoly call
! chains
calls ' Board

‘\\\\Q}ayer L

root \ Dices ‘ ’ \\ Space
E Piece

[

An aggregate is a cluster of classes (objects) treated as a unit
- All calls to the aggregate goes throught the aggregate root
- This will establish disciplined call chains in model
- Will help to keep objects in a valid state

MP: We'll treat the complete model as an aggregate
- All calls will go through Monopoly object
- Not an universally valid decision, there may be ways to group (in other
applications).

http://martinfowler.com/bliki/DDD_Aggregate.html

Dry Run a Use Case

objectl : ClassA object2 object3 ClassD
ClassA ClassB
Actor f

1.1 nper:‘t\nnAZ[paramete‘rl parameter?) : int
I

1: operationAl{)

1.2: staticOperation()

éf

1.3: operationB1(y

1.3.1: callBack(y

[y *
} »
ta
I
I
I
-
ik
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
T R S SO | S
I
I
I
|
o
o5
r BE
0o
N e

Dry run is last step before start implementing.
- Will must decide directions of associations (if not done before)
- Will reveal which methods in which classes!

For some use case(s) and the domain model
- Create an UML sequence diagram
- Diagram will describe involved objects and application flow for the use
case

If diagram gets very awkward/complex/messy possible have to modify domain
model

- Missing/bad association may be added/changed now

- Missing classes may show up

https://en.wikipedia.org/wiki/Dry_run_(testing)
https://en.wikipedia.org/wiki/Dry_run_(testing)
https://en.wikipedia.org/wiki/Sequence_diagram

MP : Dry Run UC Move

’ : Monopoly H actual: Player H dices : Dices H board : Board ‘
move() | | |

! getPosition() |
L L

.- oldPos _ _ __

roll()

'1 '1 getTotal()

e e L__total o ______|

5 getSpace(oldPos, tdtal)

: newPos
el ol el

setPosition(newF‘?os)
—_—

From this dry run it should be possible to implement use case move (just a simple
translation from diagram to code)!

- . butin practice, .. often most modify things ..

- Just some few considerations before coding .. (upcoming)

Thinking Ahead

User Actions

Selects a new
view if required
by user action

Controller updates
model as per user
actions

Model triggers
view update

ocus right
ow

View queries
model for State

Any application with a GUI will (should) use some sort of MVC architecture (pattern)
- Have to keep in mind.
- Should methods have returnvalues or should it be handled by
observer?
- Until now we have only worked with the model ...
- .. except the view (GUI) sketches

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Think High and Think Low

WRITE-UP
INFORM: 2" % b’ [S\ KEEP TRACK Of -
AN S REVIEW
COMPARE (AT S et LA, .
: \i -DECIDB S 2 Ss N 1E - LOOK INTO
PROPOSE 7+ 12 ¢ NN] ot
DISCUSS “— R AR 25 o ate
- pLAN

Low

public void move() {

Space oldPos = actual.getPosition();
dices.roll();

Space newPos = board.getSpace(oldPos,
dices.getTotal());
actual.setPosition(newPos);

During implementation we must be able to switch between high and low level
abstractions
- If stuck at high level (use cases, GUI ..), concretise by implement on low level
to clarify (i.e. code it)
- If stuck at low level (during coding) abstract at high level
- What is this about (how would GUI look from user perspective)?

Where to put the code?

Actor System Actor System

Model Model
I I
No interaction in use Interaction in use
case (besides case
starting it)

No user interaction in use case

- Complete use case may run within single method call to model (i.e. like
use case Move, normal flow)

Any GUI updates probably done using observer pattern (as part of
MVC model ..

- ..S0 possibly no need for return values.
If user interaction in use case
- More calls to model
- Later handled by control parts of MVC
- More likely with returnvalues ..

- ..control parts inspect returnvalues and act upon.

https://en.wikipedia.org/wiki/Observer_pattern

public class Board {

Implementation

BuyaProduct
private final List<Card> cards =

Customer browses through catalog and selects items to buy

Customer goes o check out

Customerllsinshippig nformetion adres; nex-day o 3y elvery)
System presents ful pricing information, including shipping private final int size;

1
2 new ArraylList<>();
1

4

5. Customer fill i eredit card information |

[

1

[

ek Person Address public Board(String[] names){
- J ‘Name. Street
System sends confrming email to cus Phone Number City . . .
[k i 01 Wesal 1 lshate this.size = (int) sgrt(names.length);
yi i Postal Code |
O Purchase Parking Pass Country . .
Atstep, i e int k = o;
Allow customer to re-enter creditcard inf Output As Label |
for (int row = @; row < size; row++
Alternative: Regule Custoner Student [Professor] f(N 1 2 1 i i {
a Syt dilys curent siping i oo Salary or (int col = @; col < size; col++) {
four dights of it cad informaton | Average Mark cards.add(new Card(names[k], row, col));
3b. Customer may accept or override th .
7 Is Eligible To Enroll k++’
R i Get Seminars Taken }
e o o ousrEary | [oderEnny }

o

a0

o
ey

e

+ Datue

Have all information we need!

- Write the code and run ... ehhhh, run how.. (upcoming)?

Testdriven Development

START HERE WRITE A TEST

Test Driven
Development
WRITE CODE
WORKABLE CODE .
REFACTOR E TO MAKE
TEST PASS
CODE PASSES TEST

Test driven development is a way to work with code inside the process
- During the implementation phase we use TDD

How to Run?

JUOOI'

How do we actually run the model???

Answer: By creating tests!

- We use test driven development!
- We know JUnit, use it!

Why is this a good idea???

We'll only produce the code we need!

- The code needed to pass the test (the use case)!
The code will have higher quality, because you will not implement “large’
untestable methods
Will always have something to run!
Keeping work focused on the logic of the model

- Great way to clarify the model logic

- We must solve the problems (can't program them away)

- Possibilities to discover model errors
Debugging tests are much easier (vs full application)
Being able to run a test suite against the model at any time if extremely
useful.

- In particular after refactoring
Tests are very good documentation.
Later: Being able to test certain techniques (snippets) also very useful

Tech talk

We always keep test code separated from the application
- In NetBeans: Test Packages

https://en.wikipedia.org/wiki/Code_refactoring

- The package structure for test should be the same as the structure for the
application, more to come ...

Using Frameworks

Framework

Model

If using any framework possibly parts of model is handled by framework
- Example:
- 2D Position (no x and y in model classes)
- Collision detection
- Movement/Physics/Rendering in 3D game frameworks
- Exclude from model parts handled by framework
- Ifso: Can't (don't need to) test those parts
- Test what's not handled by framework
- Possible have to mock (a lot)

NOTE: There should always be a model, using a framework doesn't mean you may
skip the model

NOTE: Model may not be dependent on framework, more later at application

design!
- Should be possible to switch framework

https://en.wikipedia.org/wiki/Mock_object

Important Object Characteristics

equals contract

an object must be equal to itself

Symmetry
two objects must agree whether or not they are equal

Transitivity
if one object is equal to a second, and the second to a third, the first must be equal to the third

Consistency
if two objects are equal they must remain equal for all time, unless one of them is changed

Mull returns false
all objects must be unequal to nulf

Any class used in any Collection should implement equals() and hashCode()
- MP: Spaces, Players .. (equals on name, hame unique)

http://www.artima.com/lejava/articles/equality.html

MP : Implement UC Move

TODO list:

- Implement classes: Monopoly, Player (equals),
Dices, Board, Space (equals), Piece
- If any class complex create a JUnit test
- Must know it works before participating in
use case
- Dices uses random (can't test, need fixed
result, .. mock!)
- Decide where and how to build model
- Constructors?
- Implement method move() in Monopoly
- Will run the use case (no user interaction)
- Create test calling move()

Finally ready to implement an use case!
- If some class participating in the UC is complex first test it ..
- ..senseless to try to implement a UC if not the “pieces” are working!

The development environment
- Will use a Maven project
- Will run it using JUnit
- Version Handling using Git
- IDE: Netbeans (you use any ..)

MP : Monopoly-0.1

IF IT HAD A USER
INTERFACE YOU
LWOULD SEE SOME-
THING HERE. ..
HERE. . .AND SOME-
TIMES HERE. .

THE TECHNOLOGY DEMO

THE SOFTWARE
ISNT 1002
COMPLETE.

e Syndicats, ino.

www.dilbart.com scotadamssol.com

fanles © 2000 unit

AND THEN YOUD
BE SAYING, "I
GOTTA GET ME
SOME OF THAT."

ANY
QUESTIONS?

Download from course page, inspect and run!

MP : lteration 1

Here we have done a full cycle, i.e. iteration 1
- Requirements
- Analysis
- Design (not much, just the model)
- Implementation of some high priority use case(s) ...
- ..as JUnit tests (integration test)
- Also test for complex classes (unit test)

Summary

Design and Implementation

- We got the first UC up and running!

- A small model (with some basic design)
- We only run as test for now

Next: Next iteration, more use cases (continue prototyping)
real GUI and MVC.

Code sample for iteration 1: monopoly-0.1 (course page)

