
PM – Workshop 1

Development environment setup

…and how to wield the SVN sword

Daniel Wetterbro
Project Course IT (TDA366/DIT211)
Chalmers Tekniska Högskola
Mars 2010

Introduction

This workshop introduces a typical development environment by letting you install and extend a toy
application that calculates the number of days to next vacation. The application is divided into
different archives and typical SVN work flows are experienced while integrating them. I give thanks
to Joachim von Hacht for providing the overall structure of the application.

You are required to use some parts of the environment presented here during this course (hosting your
project at Google Code with SVN as source code management software). Others are optional, like
using Eclipse as IDE. However, we require you to use what's presented here during this workshop.
Now, let's enter the free world!

Project site creation
– Becoming friends with Google

First, go to http://code.google.com/hosting/ and click Create a new project.

Fill out the form, but observe:
• Project name (of your real project!): From course PM: ”The name should start exactly with

'tda366-' followed by a chosen suffix for example tda366-duckrace or tda366-drawpad”. YOU
CAN'T CHANGE THE NAME LATER.

• Version control system: YOU MUST CHOOSE Subversion.
• Source code license: This is up to you, but still an important choice! All of the licenses are

open source, i.e. your code will be available for anyone to download. Two typical categories
of open source licenses are ”copyleft” and ”permissive”1. In short words:
◦ A ”copyleft license” requires the author of a derivative work (someone extending your

code) to provide access to that code, i.e. everything derived from your work will continue
to be open source. Perhaps the most well-known license in this category is the ”GNU
Public License”.

◦ A ”permissive license” is just that, permissive. It doesn't put many demands on someone
using your code, for example, it's free for people to modify and redistribute your code as
part of a commercial application. So what does a ”permissive license” contain? It usually
ensures that you won't be held liable for any damage your software might cause a user,
and sometimes also claims that an attribution to you shall be included in a derivative
work. The ”New BSD License” or ”MIT License”2 are typical choices.

◦ You can find more information at http://opensource.org/licenses/category.
• Use a separate content license: If you want to use separate licenses for your code and the other

parts of your application, e.g. the documentation. You can choose the other license here.
• Project labels: Keywords to describe your application.

When enabled, click ”Create project”, voilà! You're in the game!

You will now be transferred to your project's main page, where the tabs mark different sections and
functions on the site. Click ”Source” and turn this page!

1 The distinction is blurred for some licenses.
2 The ”MIT license” is sometimes called ”X11 license”.

http://code.google.com/hosting/
http://opensource.org/licenses/category
http://code.google.com/hosting/createProject

Initial content setup
– There's a world above you

Google is running a Subversion (SVN) server that monitors a repository, that is a storage containing
your project files (not necessarily all of the files you'll be dealing with, but the ones you'll find
convenient to share among everyone in the group). SVN is a system for sharing files and managing
contributions from different users, for example when two users edit the same file. It is also a
versioning system, it keeps track of all commited changes of all stored files and makes it possible to
go back in history to retrieve or restore older versions. The collaboration means that every member in
the project have their own copy of the group of files, a working copy. Each copy is synchronized with
a central copy, the repository.

The process of creating a working copy is called checking out. On the ”Source” tab of your project
site you'll find the following text:

svn checkout https://<project name>.googlecode.com/svn/trunk/ <project
name> --username <your username>

This is how to do the check out using the the command line svn client (the svn command). In most
occations you'll probably choose a graphical svn client, preferrably embedded in your IDE (Integrated
Development Environment). On the Chalmers computers, the Eclipse IDE has an SVN client
embedded as a plugin, it's called Subclipse. Let's create a working copy from our newly created
repository. The information needed can be read from the command listed above.

Let one person in your group will initially both add content to the repository and check out a working
copy:

1. Download the project archive holiday_check-start.zip and import in Eclipse.
2. Right-click on the project folder and choose Team → Share Project...
3. Choose “SVN” and click Next
4. Choose “Create new repository location” if asked for it.
5. Copy and paste the information from the command above: https://<project

name>.googlecode.com/svn/trunk/
6. Choose “Use project name as folder name” and click Finish.
7. Possibly choose to accept the untrusted site.
8. Enter username and password (the username is listed in the command; the password is not

your Google account password, you can reach it from a link on the same page as the
command).

9. In the opened “Synchronize” perspective, click the button Commit All Outgoing Changes...
(the name will pop-up).

10. All commits (changes to the repository) shall be documented with a note. In the window that
pops up, add a short message like ”Initial commit”. Then start the transfer by clicking OK.

The rest of the members can now check out their own working copy by:

1. Start Eclipse
2. File → New → Project...
3. SVN → Checkout Projects from SVN
4. Choose “Create new repository location”
5. Copy and paste the information from the command above: https://<project

name>.googlecode.com/svn/trunk/
6. Enter username and password (the username is listed in the command; the password is not

your Google account password, you can reach it from a link on the same page as the
command).

7. Click to mark the base of the tree (probably at the top, ending with trunk) and click Next.
8. Mark ”Check out as a project in the workspace”, write a suitable name e.g. your project name.
9. Click Finish.

You've now created a working copy of the content in the repository.

Changing file content
– When life is good!

Just changing file content is straight forward, you can use any tool you wish as usual (probably
Eclipse now). But you're only changing the content in your working copy! When you want to upload
these changes to the repository, you'll do a commit. To bring up the window in the toy application, let
someone in your group:

1. Uncomment the corresponding lines in file “Main.java” and save the file.
2. Right-click the project folder and choose Team → Commit...
3. Enter a note and click OK.

The rest of the group, does an update to retrieve the changes:

1. Right-click the project folder
2. Choose Team → Update to HEAD

Check to see that the update is performed, and test the application.

This is the typical way to work: Everyone does changes in their respective working copy, uploads
them with “commit” and receives the other's changes with “update”. Try the simple application!

Communication between people
– Letting Google be the man in the middle

Even though a source management system like SVN can notify about conflicts and alleviate file
sharing, it's still only prevention of total clashes. It doesn't help your group work effectively dividing
tasks, organize, manage the work flow etc. This you'll have to discuss and set up! There are tools to
use though...

Wiki
Your project site has a wiki section that lets you document your project and tag different pages with
labels.

Read: http://code.google.com/p/support/wiki/GettingStarted?tm=6#Documenting_your_Project

Issues
To make a list of requested changes, the issue section of the project site can be used. This is typically
used to report bugs, ask for reviews of changes, and sometimes also for requesting new features. An
issue is usually tagged with a severity to announce how important it is considered. It is also changing
status over time as work on it progresses, from being issued (”Open”) to being fixed (”Closed”).
Several predefined options are provided to choose from.

Read: http://code.google.com/p/support/wiki/GettingStarted?tm=6#Tracking_Project_Tasks

Observe that while editing an issue, you have to click in the text area below ”Add a comment and
make changes” to make more (important) options appear.

http://code.google.com/p/support/wiki/GettingStarted?tm=6#Tracking_Project_Tasks
http://code.google.com/p/support/wiki/GettingStarted?tm=6#Documenting_your_Project

Changing the repository tree
– Be special, use SVN!

Now the ground is set to change the content of the repository. But remember! When you add, remove,
move or copy files or folders, you have to use the svn client, not your usual OS commands, i.e. don't
use a file manager3 or commands like mv, cp etc. on the content of your working copy. If you do,
SVN won't track those changes and be able to synchronize them with the repository. Eclipse
(Subclipse) is an obedient disciple though, it automatically handles this for you when you drag and
drop files in the Package Explorer view. But even though the changes happen directly in the working
copy, they won't be reflected in the repository until you do a commit.

The toy application calculates when the next holiday occurs. But wouldn't it be nice if you could set
the current date?

Let someone in the group do the following:

1. holiday_check-changes.zip contains updates of two files, extract them.
2. Delete the current file MainFrame.java and add the new Mainframe.java
3. Replace all of the content in HolidayController.java with the new file's content by copy and

paste.
4. Add the jar-file to the external library path.
5. Commit the changes and observe how the different changes are presented in the lower part of

the commit window.
6. Add a new issue at the project site for a Code review of the changes.

Someone else shall now change the issue's status to “Accepted” and start reviewing (after updating!).
Test the new features and close the Review issue.

3 E.g. Nautilus, Dolphin or Windows explorer

Conflicts
– Can't live with them, won't live without them

Even though the application calculates Swedish holidays, the application is in English. But the
message box popping up shows a message in Swedish (complete Swedish message if it is run on a
machine with a default Swedish locale). Let two people in the group simultaneously change this by
editing method nextHoliday() in HolidayController.java. One of you exchange the second to last line
with its corresponding commented version, while the other exchange the last line.

Now, the last one of you won't be able to commit your change, a conflict has arisen! You solve a
conflict by first updating your working copy. When you have changed your working copy to a
consistent state, you can commit your changes. There are some options when solving a conflict on a
file: you can either fully discard the changes in the repository, discard all changes you made, or merge
the changes together. The merge can either be done manually or (if possible) by letting SVN do it for
you. In this case you can just run an update to HEAD and then do the commit (Eclipse will force the
update). For more information about resolving conflicts, see chapter 2 in “Version Control with
Subversion” (link below).

Getting information
– The difference between here, there, now and then

You can see differences over time by going to the History view in Eclipse:
Right-click on an item and choose Team → Show history. There you can also generate comparisons
between versions in different revisions.

To browse and examine the content of the repository you can open the SVN Repository Exploring
perspective:
Window → Open perspective → Other... → SVN Repository Exploring.

Command line client

This workshop has only been dealing with the Subclipse SVN client. The command line client is run
by simply typing “svn”. A useful command is:

svn help

which gives you a listing of available commands, many of them have abbreviations (e.g. checkout =
co). The commands are run with:

svn <command> [options]

Help on a specific command is received by:

svn help <command>

It's important to know that many commands are dependent on which the current directory is, the
command might only affect that part of the tree. Observe also which commands only affect your
working copy and which affect the repository. Some of them can affect either depending on what
argument you're giving.

We won't deal with the commands, but you're welcome to try them out and ask for help! Here's a non-
exhaustive list, many of the names shall now be familiar:

svn checkout

svn update
svn commit -m “Descriptive message”

svn add
svn mv
svn cp
svn mkdir

svn status
svn diff
svn list
svn cat

svn import
svn export

Appendix

Notes

• When you're checking out, it's one folder (and it's corresponding subfolders) that you get, i.e.
not necessarily everything in the repository. It is possible to have several different so called
”branches” of your application in the repository (in different folders). This is useful if you
want to have several variants of your application. The folder ”trunk” then typically contains
the default branch of your application. You don't have to worry about this unless you choose to
divide the project into different variants.

• Never commit code containing bugs or something that you know might trouble your fellow
developers!

• Remember that you don't have to commit everything you've changed all the time. But try to
update as often as possible! If you don't want to commit all changes, you can right-click on
part of a folder-tree, or only a specific file.

• Again: Spend time to divide and coordinate the work between yourselves! It pays off in the
end... and the fastest way to solve conflicts is not through SVN, it's by working in the same
room so you can talk.

• Binary files shall be locked while edited, since they can't be merged. But you might not need
to add them to the repository...

• It's possible to postpone the resolution of conflicts... see “Version Control with Subversion”
(link below).

• I recommend reading chapter 1 and 2 in “Version Control with Subversion” (link below).

Links

Google Code project hosting
Main homepage: http://code.google.com/hosting/
Support wiki: http://code.google.com/p/support/wiki/GettingStarted

Subversion
Main homepage: http://subversion.apache.org/
Free (extensive) O'Reilly book “Version Control with Subversion”: http://svnbook.red-bean.com/
Subclipse Eclipse SVN client plugin: http://subclipse.tigris.org/

http://subclipse.tigris.org/
http://svnbook.red-bean.com/
http://subversion.apache.org/
http://code.google.com/p/support/wiki/GettingStarted
http://code.google.com/hosting/

	Introduction
	Project site creation
– Becoming friends with Google
	Initial content setup
– There's a world above you
	Changing file content
– When life is good!
	Communication between people
– Letting Google be the man in the middle
	Changing the repository tree
– Be special, use SVN!
	Conflicts
– Can't live with them, won't live without them
	Getting information
– The difference between here, there, now and then
	Command line client
	Appendix
	Notes
	Links

