
D&IT
Joachim von Hacht
Adam Waldenberg

Workshop 1 : Revision control with Git

It is required that you utilize Git for the project of the course, no other revision control
software is allowed. Revision control software not only allows you to track the content
of �les in the project, but also when that content was added and by whom. It also
enables you to backtrack changes and pull out old content from the repository. Before
you start this workshop, it is recommended that you gain some understanding of Git and
it's bene�ts compared to other revision control software. A good starting point would
be the Wikipedia page1 and the link collection2 on the course home page.
Git is fully distributed and does not require a central point to work from. Everybody

that makes a copy of a repository has a complete local instance of that repository. Con-
sequently, data and history can be shared directly between users without the need of
involving the whole development team.
Despite it's distributed design, it is still preferred to have a bare central repository

that everyone can reference when working on the source code. In this workshop, we
will create such a repository and do some simple exercises. The central repository does
not require any special server. The only requirement is a storage point for storing the
repository �les. For this purpose, the Git client can communicate directly with a local
�le system or via one of it's supported protocols (GIT, SSH and HTTP).
You should follow the following work �ow when working with Git:

• Before you start work on a new task, you should normally pull (fetch) all the recent
changes from the central repository into your local repository. This is done so that
you work is based on the latest version of the project.

• You edit the content of any �les and documents in the local repository that are
part of the task you are working on.

• When you are done, the changes made in you local repository are pushed (sent) to
the central repository. This makes your changes available to everyone else in the
team.

For the project, it is recommended that you use one of the online git

hosting services that exist. If you do, you will also have access to a wiki

and an issue tracker (plus many other features). Examples of services

that support git and offer good functionality for development include

google code and github.

1 Creating a bare central repository

The �rst step is to create a bare repository that will act as the central repository for
the project. A bare repository is a git repository without an actual local representation
of the content the repository holds. Thus, it is especially useful when creating a central

1http://en.wikipedia.org/wiki/Git_(software)
2http://www.cse.chalmers.se/edu/course/TDA367#faq

1

D&IT
Joachim von Hacht
Adam Waldenberg

repository. Everything in this workshop is done via a terminal - keep this terminal open
throughout the whole workshop.

1. Change the current directory to the group directory:

$ cd /chalmers/groups/tda367/ooproj-NN (NN is your group number)

2. Create a directory with the name of the project followed by �.git�. This su�x is
used to denote that we are dealing with a bare repository.

$ mkdir project.git

Change directory to the newly created project directory:

$ cd project.git

Initialize the repository as a bare git repository:

$ git --bare init

A number of directories and �les are created.

2 Creating a local repository

Even if we now have a central repository, we can't really use to do any actual work (this
is because we created it as a bare repository). Therefore, we need to create the local
directory from which we will conduct all work.

1. Change the current directory to the home directory:

$ cd ~

2. Create a local copy of the central repository. This can easily be done with the clone
command:

$ git clone /chalmers/groups/tda367/ooproj-NN/project project

If you look closely, you can see that the �rst argument to the clone command is
missing the �.git� su�x. This su�x can be omitted (just as in the command above)
or included. Git will still �nd the correct directory.

When you run the command, Git will give you a warning and say that the repository
you have cloned seems to be an empty archive. This is normal and obviously quite
correct. Git will continue to consider the repository empty until we make an initial
commit.

3. Change the current directory to the newly created local repository and check the
status of the Git repository:

2

D&IT
Joachim von Hacht
Adam Waldenberg

$ cd project

$ git status

Git will say something similar to:

On branch master

...

Git enables developers to work on di�erent versions of the repository in parallel
(these are called branches). The default base branch that normally contains a
working version of the project is usually called �master�. As you can see, this
branch is created by default. We will cover branches later in this workshop.

3 Con�guring your Git settings

Before we begin adding �les to the repository, we should con�gure the default Git settings.
This can easily be done with the graphical Git-gui tool.

1. With the current directory set somewhere in the local repository, execute the fol-
lowing command:

$ git gui

This will open the main window of the Git-gui tool. This tool will be covered more
thoroughly later in this workshop.

2. Go up to the menu and choose Edit > Options.

a) Set the user name to your full name. Do not use an alias.

b) Set the email address.

c) As all commit messages should always be in English, the spelling dictionary
should be set to �en_US�.

d) Set the default �le contents encoding to Unicode (UTF-8). Never use any
other �le encoding.

These steps should always be taken when installing Git on a new machine or
when cloning or creating a new repository. Notice that there are two con�gu-
ration columns. One is for this repository, while the other holds the default values
used for all other newly cloned or created repositories.

4 Creating an initial project

Next, we should commit an initial version of the project, making the repository non-
empty.

1. To accomplish this, we can create a new project in NetBeans and use the cloned
repository as the location for the project �les.

3

D&IT
Joachim von Hacht
Adam Waldenberg

a) Create a new project (Category:Maven and Project:Java Application)

b) Set the project name to: Project

c) Set the project location to the local project repository we created earlier.

d) Set the GroupId to: edu.chalmers

2. Build the project.

3. Go back to the terminal and run the following command somewhere inside the local
repository:

$ git status

Git will report two untracked entries; .gitignore and the Project/ directory. The
.gitignore �le is a blacklist used to inform Git about �les in the directory structure
that it should ignore and not place under revision control3. This �le was automati-
cally generated by NetBeans when the project was built. If you inspect the �le you
will notice that NetBeans automatically added the /Project/target directory to it.
This is where compiled Java classes are placed during build. The .gitignore �le is
usually committed to the central repository, so that everybody can keep track of
blacklisted �les together.

4. We will tell Git about the �les that we want to include in the next commit. This
can be done with the command:

$ git add --all

This tells git to stage all untracked �les and changes for the next commit.

5. Run the status command again:

$ git status

Git will now report a list of several �les all staged for the next commit.

6. To �nally commit the �les and permanently add them to the local repository, we
use the commit command and specify a commit message.

$ git commit -m �Initial commit.�

Git will show as a list of all the created �les together with the number of total rows
added.

5 Your �rst local changes

We will now do some modi�cations in order to see how Git behaves when �les in the
repository are modi�ed.

3http://git-scm.com/docs/gitignore

4

D&IT
Joachim von Hacht
Adam Waldenberg

1. Go back to the project in NetBeans and open App.java in the editor.

2. Modify the �le by adding an additional printout to the main method and save your
changes.

3. In the terminal, run the status command again:

$ git status

Git should report that it has detected the modi�ed �le.

4. You can also view your changes with the Gitk command:

$ gitk

The entry at the very top in the Gitk window (red dot) shows the current mod-
i�cations that are not yet committed. Gitk is a great tool for viewing your local
changes, enabling you to get a simple overview of each modi�ed �le. We will cover
more of the Gitk tool in the next section.

5. To commit all modi�ed �les, we can run the commit command in the following
manner:

$ git commit -a -m �Added an additional printout to main().�

Git should report some information about the commit, including the �les modi�ed
and the total number of rows that were added and removed.

6 Viewing the history

Git o�ers two standard tools for viewing the modi�cations and history of the repository;
Gitk (which you previously tried) and git log.

1. First, let's try the log command:

$ git log

This should output the two commits that we have done so far, including the date
of the commit, the author, and the SHA-14 hash representing the version of that
particular commit.

2. We can also tell the log command to be more verbose:

$ git log --stat

This gives us some additional information while also showing us the number of
modi�ed rows.

3. Next, let's try the Gitk tool:

4http://en.wikipedia.org/wiki/Secure_Hash_Algorithm

5

D&IT
Joachim von Hacht
Adam Waldenberg

$ gitk

As you can see, the output is similar, but gives a better overview of the actual
changes. Gitk also o�ers us a simple way to search the log. It can be extremely
useful when the commit log grows.

7 Sharing your changes with the central repository

So far, we have made changes in our local copy of the repository. We also need to
share those changes with the rest of the development team. We do this via the central
repository.

1. To push the changes to the central repository, we just use the push command:

$ git push

However; the �rst time we push to an empty central repository, the reference to
master does not exist. Because of this, the above push command will fail and report
an error; saying that there are no refs. This can be easily �xed by specifying that
we want to create the reference to master when we push:

$ git push origin master

This should push the commits and report that the master branch was created in
origin (the central repository).

8 Creating additional local repositories

We will now test the central repository by cloning it from multiple locations and doing
some local modi�cations in multiple locations. Let every group member log onto their
accounts and execute the following steps in a terminal:

1. Con�gure the global Git settings using the Git-gui tool as described in section [3].

2. Change the current directory to the home directory:

$ cd ~

3. Create a local copy of the central repository. To get access to the repository, we
have to clone it using the account of the original author. Write the following on a
continuous row in the terminal:

$ git clone <user name of central repository creator>@remoteMM.

chalmers.se:/chalmers/groups/tda367/ooproj-NN/project project

4. Try opening the project in NetBeans. Everything should be identical to the copy
of the original author.

6

D&IT
Joachim von Hacht
Adam Waldenberg

9 Pushing, pulling & rebasing

Now that everybody has created a local copy of the repository, we can start experimenting
and testing how Git functions when sharing changes between group members. Let every
group member take the following steps while logged in onto their account:

1. Open the project in NetBeans and add a new class. Name the new �le according
to your name plus surname. For example; if your name was John Smith, the name
of the class �le would be:

JohnSmith.java

2. Commit your changes and push them to the central repository:

$ git add --all

$ git commit -m �Added class JohnSmith that does nothing.�

$ git push

a) When the second person tries to push, Git will complain that your current
tip is behind the master branch in the central repository. This is happening
because the previous person made changes to the repository after you cloned
it. This can be �xed by executing the following command:

$ git pull

When done; Git will inform you that it has merged your changes, while also
listing all the �les that were added.

i. When a merge is done with the default strategy (used above), an extra
branch is created, showing from which commit the merge originated. This
is called a self merge. If we were to push this, it would eventually pollute
the Git history with hundreds of minor branches. Unnecessary branching
is never a good thing. In the next section, we will brie�y cover branches
and how to work with them. Using the Gitk tool, you can see the extra
branch that was created:

$ gitk

ii. To avoid the branching, we can bring our branch up to date with the
remote master, e�ectively merging our changes onto the top of the cur-
rent version. This is called rebasing and can be done with the following
command:

$ git rebase

iii. Let's view the history again:

$ gitk

As you can see, the extra branch is now gone.

iv. We can �nally share our changes:

7

D&IT
Joachim von Hacht
Adam Waldenberg

$ git push

Now that everybody has committed a new �le, we also want to sync up the local repository
of each person and make sure that everybody has the latest version.

1. To get the latest changes, each person just executes the following command:

$ git pull

2. Inspect the project in NetBeans. Everybody should now have the same version of
the project.

10 Branches

Branching is something Git handles exceptionally well; providing many di�erent ways
of merging and sharing branches. When creating a branch, a copy of the head of the
currently active branch is created (often from master). Branches are created locally (in
the private repository), but can be shared with the remote (central) repository whenever
appropriate. Some uses for a branch include:

• Privately testing new features and playing with ideas without polluting the central
repository.

• Creating feature branches. If the code of the master branch is in working order
and a very substantial feature (which will break the code for a while) needs to be
implemented, a common practice is to create a feature branch that is shared via
the central repository. This way, the master branch can be kept workable, while
everybody works on the new feature. When the feature is completed, it is merged
(or rebased) onto the master branch.

Let's experiment with the branch support in Git:

1. Go into your project directory and create a new branch called �feature�:

$ git branch feature (creates the branch)

$ git checkout feature (checks out the newly created branch)

Git has now created the branch �feature� and switched to it.

2. To view all the available branches and show the one that is currently active, you
can run the following command:

$ git branch

3. Open the source code in NetBeans and modify in some way. Commit your modi�-
cation to the repository.

4. Once committed, inspect your changes by starting the Gitk tool in the following
manner:

8

D&IT
Joachim von Hacht
Adam Waldenberg

$ gitk --all

This command tells Gitk to show all the available branches. The default behavior is
to show the current branch, plus the master branch. So in this case, providing the
�ag doesn't change what is shown. Knowing about this �ag, however, is important.

5. Let's jump over to the master branch again:

$ git checkout master

If you inspect the code again, you will see that the modi�cations you just did are
gone. This is because we are on the master branch.

6. Now, let's imagine that we are extremely happy with the changes on the feature
branch and want to bring those changes over to the master branch. This can now
be done with the merge command:

$ git merge feature

Git will inform you about the update and report all the �les that were imported
from the feature branch.

7. Now that we are done with that particular feature, we can safely remove the branch:

$ git merge -d feature

Note that everything we just did was done locally and that nothing was changed
in the central repository (we didn't push anything).

There is an important choice that needs to be made whenever you merge a branch; to
rebase or not to rebase. The usual thumb of rule is that big feature branches, with many
changes, including other long-lived branches are often merged in order to preserve the
branching point. Smaller (or short-lived) branches are generally rebased onto master in
order to keep the repository history clean.

11 Dealing with merge con�icts

Nasty con�icts can occur upon merging whenever two people modify the same line or the
same chunk of code. Sometimes, Git is able to solve con�icts on it's own, other times it
will need manual help from you. Let's create such a con�ict on purpose and see what
happens:

1. Let two people modify the same row in the same class. Each person should make
a di�erent change.

2. The �rst person commits and pushes the change to the central repository.

3. The second person commits and then pulls from the central repository.

9

D&IT
Joachim von Hacht
Adam Waldenberg

4. Git will promptly complain about merge con�icts when the second person does
this, reporting the �le with the con�ict.

5. You should now open the �le in NetBeans and help Git to choose which change
should be kept and which one should be thrown away. Depending on the changes
you made, the �le will contain something similar to the following:

<�<�<�<�<�<�< HEAD

System.out.println("This was the old version");

=======

System.out.println("This is the new version");

>�>�>�>�>�>�> 38fc8527df449fa353fa20e9df68f8fd16952108

Git is showing you the two versions that it has trouble choosing between. Every-
thing between �<�<�<�<�<�<�< *� and �=======� is one version, while everything
between �=======� and �>�>�>�>�>�>�> *� is another version. You simply se-
lect the version that you consider as the correct one, removing all the rows with
markings (===, <�<�<, >�>�>).

6. Next, you just commit and push your changes. The con�ict should be solved.

TIP: If you ever get many con�icts and know that the changes you have locally can be
safely thrown away, you can pass the following commands, e�ectively resetting your local
copy to be identical to the master branch in the central repository:

$ git fetch origin

$ git reset --hard origin/master

12 Tags

Git supports another very useful feature; tagging. Tags can be applied to a given commit
or directly to the current head. They are used to tag releases or certain events.

1. Let's try out this functionality by tagging the version 0.0.1 onto the head of our
local master branch:

$ git tag v0.0.1

2. To share the tag with everyone else we can push it to the central repository with
the following command:

$ git push --tags

Tags can also contain annotations. In the case of version tagging, these are often used
to add release notes. An annotated tag is created using the following command:

$ git tag -a v0.0.1

10

D&IT
Joachim von Hacht
Adam Waldenberg

13 A word about the Git integration in NetBeans and

Eclipse

It is important that we talk about the Git integration in NetBeans and Eclipse. While it
is extremely useful to have direct access to Git commands from within your IDE of choice,
it has to be said that the Git support in these IDE's is based on a reimplementation of
the Git client, that is completely written in Java (JGit). In a nutshell, this means that
there are certain incompatibilities between Git and JGit and that certain features are
missing.
For this reason, it is recommended that you avoid branching, committing or pushing

from within the IDE. Everything else should be �ne, though. Also, the tools provided
by Git (Gitk and Git-gui) are superior in almost every way.

14 Some other useful Git commands

Git is ridiculously comprehensive. In fact, you can easily write a book, several hundred
pages long, and still not manage to cover all of the functionality that Git o�ers. Obviously,
we can never go through it all. That being said, there is some very important functionality
in Git that you should check out on your own:

• git bisect5 - If you happen to introduce a bug in the code that you know didn't
exist in a previous commit, the bisect command can help you track down the exact
revision where the bug was introduced. The bisect command can save you many
hours of bug hunting.

• git cherry-pick6 - Sometimes, when you have been working on a branch, you only
want to merge certain commits onto master without merging the whole branch.
This is often the case when you do a lot of experimentation in a branch. This is
exactly what the cherry-pick command is for; it let's you apply commits from one
branch onto another.

• git rebase �interactive - Gives you the ability to merge (squash) commits and
edit commit messages. Only works on local changes that are not yet pushed to the
central repository.

• git reset - O�ers functionality to undo commits. Only works on local changes that
are not yet pushed to the central repository.

• git stash [push/pop/drop]7 - An extremely useful command to use when you
get con�icts and want to temporarily store away local changes. This command
also gives you the ability to pull the latest version of the repository and inspect it
without the need of immediately merging your changes.

5http://git-scm.com/book/en/Git-Tools-Debugging-with-Git
6http://git-scm.com/docs/git-cherry-pick
7http://git-scm.com/book/en/Git-Tools-Stashing

11

