
TDA367/DIT211 – Project Course IT

Pattern workshop

Pelle Evensen

April 1, 2011

Abstract

In software engineering, a design pattern is a general reusable solution to a

commonly occurring problem in software design. A design pattern is not a

finished design that can be transformed directly into code. It is a description

or template for how to solve a problem that can be used in many different

situations. Object-oriented design patterns typically show relationships and

interactions between classes or objects, without specifying the final application

classes or objects that are involved1.

In this workshop session we will see how to improve and adapt an existing

(poor) design to increase maintainability and performance.

1 The stage

We just got a new job at Pelle’s Venerable Software Shop. One of our clients have

some terribly old hardware sitting around. One of their previous consultants have

been kind enough to provide us with a Java class that let us control a venera-

ble pen plotter2 as shown in Fig. 1. The consultants were also nice enough to

provide us with a class for on-screen simulation of the plotter. Both the con-

troller class (which we do not have access to, not even as a class- or jar-file)

and the simulation class (orig.plotter.ColorPenPlotter) implement the inter-

face orig.plotter.Plotter.

To get an idea on how the output typically could look, run orig.demo.Drawing-

Program.

2 Our problem(s).

The classes we are given in orig.plotter.* and orig.screen.* must not be changed.

Let’s say the source code was lost long ago and there may be other classes that rely

on them. Let us also assume they have been thoroughly tested.

2If you’ve never seen one in action, take a look at http://www.hpmuseum.net/upload_htmlFile/
Web7440Plot.mpg.

1

Figure 1: A HP74440A ColorPro pen-plotter.

2.1 Different simulation needs.

The client who still uses the plotter wants to be able to simulate the plotter’s ac-

tions, by seeing on screen what the plotter do, given some commands. The class

orig.plotter.ColorPenPlotter can be used for this.

At the same time, the client is sometimes more keen to see what the result looks

like than how the plotter goes about doing its thing. The client has provided us with

a class orig.screen.ScreenDrawer that can display a window where one can draw

some simple graphic primitives. Alas, the public interface for orig.plotter.Color-

PenPlotter is quite low level. Even worse, the two simulation classes have different

interfaces.

2.1.1 Your adapter task

By using the adapter pattern we can consolidate the interfaces.

First create a new, empty, interface; better.plotter.GenericPlotter.

Now create two adapter classes, both implementing better.plotter.

GenericPlotter. These two classes should adapt the orig.plotter.Plotter

interface and the orig.screen.ScreenDrawer class.

You will have to decide what methods should be in GenericPlotter.

Hint 1: Don’t worry too much about the colours. The easy way to con-

solidate the colour handling is to ignore all colours but the ones defined in

orig.plotter.PenColor.

Hint 2: When deciding on what methods the interface GenericPlotter should

contain, question if we are interested in anything but drawing lines. Think

about the proper level of abstraction.

2.1.2 Your wrapper/decorator task

One major problem with pen plotters is that if they do run out of ink while drawing

a line segment, there is no easy way to resume drawing that particular segment.

2

The client demands a better interface for pen plotters that can give a good

estimate on how much ink has been used as well as how long the pen-head has

traveled. This lets the programmer raise an alarm before a pen has ran out of ink.

Create a new interface, better.plotter.InstrumentedPlotter, that ex-

tends better.plotter.GenericPlotter. An example of how the instru-

mentation could be implemented is in demo.plotter.InstrumentedPlotter-

Adapter. Note that the demo version most likely is incompatible with your

GenericPlotter-interface. Copy and modify the instrumentation class and

put it in the better.plotter-package. We provide the demo-class in the

interest of time.

2.1.3 Proper level of abstraction

Now that you have extended the plotter to some extent, implement this method:

void circle(int xCenter, int yCenter, int radius, PenColor color).

In what class or interface should this method reside and why?

Reflect. . .
Why do we not let better.plotter.InstrumentedPlotterAdapter inherit the con-

crete plotter we would like to instrument? Do we lose any reliability, flexibility or

both?

3 Can you tell the difference between speed and height?

The constructor for orig.plotter.ColorPenPlotter has five parameters. One

problem is that we have no way (at compile-time) of detecting if we get the order

wrong since every parameter is of type int. Might there even be sensible default

values for some of these parameters so that we don’t need to pass all of them?

3.1 First attempt at dealing with defaults.

We could provide five different constructors. Java does, after all, have constructor

overloading. . .

This “solution” is problematic for several reasons;

1. It does nothing to prevent us from permuting the arguments when calling the

constructor.

2. If we have an constructor with very many parameters,3 we may have to provide

as many constructors as there are arguments (or more).

3As a somewhat pathological example, java.awt.GridBagConstraints has a constructor that
takes 11 arguments. . .

3

3. We may want the first n values to take on defaults and just change parameter

n+1. We will still need to pass the first n values, even if we safely can assume

that the class will have sensible defaults for them.

3.2 Second attempt at dealing with defaults.

Provide a constructor that takes no parameters and puts the object in some “sensi-

ble” state. Provide setters to access the values you would like to change.

This solution also comes with some problems;

1. There may be dependencies between parameters. Let’s say that the object

needs a point that lies within a circle but takes two integers to describe it.

Depending on the order of the calls to the setters, this may fail.

2. The object may be in an inconsistent state if we can not check several param-

eters at the same time.

3. We can not make the class immutable even if there are no other uses for the

setters.

3.3 Builder to the rescue!

One use for the builder pattern is as a remedy for the telescoping constructor anti-

pattern. The “solution” in section 3.1 above illustrates that pattern well; every

constructor takes one more parameter than the previous one.

Study the builder example in Fig. 2. Use the same builder technique used in

orig.demo.GridBagConstraintsAlternative on your adapter for the orig.

plotter.ColorPenPlotter.

Reflect. . .
Suggested reading: Items 2 and 15 in [Blo08]. In this example, the builder pattern

simulates named optional parameters as found in e.g. Ada and Python.

4 Conclusion

You have now seen a few usages of some common patterns, trying to remedy some

regularly occuring potential problems.

In particular, the decorator pattern is something that always should be considered

before one uses implementation inheritance. Aside from mostly preventing the fragile

base class problem4 from occuring, the pattern will also let us recombine properties

and functionality in a type-safe manner at run-time.

4Why extends is evil: http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-toolbox.
html

4

public class GridBagConstraintsAlternative {
private int gridx;
private int gridy;
private int gridwidth;
private int gridheight;

// Ignoring the other 7 parameters for the sake of brevity. . .

private GridBagConstraintsAlternative(Builder builder) {
gridx = builder.gridx;
gridy = builder.gridy;
gridwidth = builder.gridwidth;
gridheight = builder.gridheight;

}

public static class Builder {
private final int gridx; // Required parameter
private final int gridy; // Required parameter
// Set defaults here.
private int gridwidth = 0;
private int gridheight = 0;

// And so on and so forth.

public Builder(int gridx, int gridy) {
this.gridx = gridx;
this.gridy = gridy;

}

public Builder gridWidth(int gridWidth) {
this.gridwidth = gridWidth;
return this;

}

public Builder gridHeight(int gridHeight) {
this.gridheight = gridHeight;
return this;

}

public GridBagConstraintsAlternative build() {
return new GridBagConstraintsAlternative(this);

}
}

public static void main(String[] args) {
// We want to build an object that sets the height but takes the default
// value for the width.
GridBagConstraintsAlternative gbc = new Builder(1, 2).gridHeight(2)

.build();

// Yay! We did not need to create bogus default values and we ran (almost) no
// risk of getting the order of parameters wrong.

}
}

Figure 2: The GridBagConstraintsAlternative class.

References

[Blo08] Joshua Bloch. Effective Java. Addison-Wesley, 2nd edition, 2008.

5

