
Requirement Elicitation
[Iteration 1, Phase 1]

Slide Series 2

Hmmm...

Problem Domain

The problem domain is the area of expertise that
needs to be examined to solve the problem
● Often, as computer engineers, we don't have expertise in that

area!
- How do you write "human resource" system for hotels?

● Must explore/learn/understand … (and consult domain experts)

 What's the
inside of this?

Requirement elicitation

Requirement elicitation is the exploration/learning
phase

During RE we aim to get an understanding of the
problem domain ...

...and to get a common vision of what to build!
● Else you'll end up building multiple (different) applications inside

one application....

RE Topics
Purpose
● Why are we doing this? What are we trying to achieve? Who will use it?

General characteristics of application
● What kind of application is this? In what environment will it be used?

Scope of the system
● What should be in and what should not

Objectives and success criteria
● When are we finished?

What can we do with the system?
● Functional requirements: Set of inputs, the behavior, and outputs

Other criteria to judge the operation of a system
● Non-functional requirements (GUI kind of?)

Introducing: "The Monopoly Project"
As a running "case" we'll implement a prototype of
the board game Monopoly by Parker Bros.
● It's an application instance, there are other kind of

applications/styles/ways...
● Abbreviation: MP (on slides)

Problem Domain MP

Problem domain known (?) but note...
● ...there are quite a few rules!
● ...there are different sets of rules!
● ...there are possibly unspecified situations!
● ...there are possibly contradicting rules!
● ...there are possibly hidden rules (hard or impossible in physical

world but very possible with computers)?

 Have to find them all....!!!

Requirements for MP

We have no customer so what's our vision for the
project?

We'll inspect beginning of the RAD for MP (on course
page)
● Purpose
● General characteristics of application
● Scope of the system
● Objectives and success criteria

First parts of
RAD starts here
(during RE)

Finding Functional Requirements

● To capture functionality we create use cases (examples later)
● Known or apparent functionality described as use cases
● Start at either side

Use case Functionality

Discover

Describe

Use Cases

A use case describes a sequence of actions that provide a
measurable value to an actor (user or possibly another system)
● A use case has a name
● Name use cases using domain terminology (correct: board, dice, … wrong: array,

randomGenerator, subclass ...)
● Use case names begin with a strong verb

A use case is represented as a text document
● Often two columns, one for user, one for system
● Numbered steps (no commonly accepted numbering standard)
● Template on course page

 Hmm, who started out with this ?

http://en.wikipedia.org/wiki/Ivar_Jacobson

Use Cases: Starting out

The sequence of actions starts with a user invoking
some action from the user interface
● To write the UC's we need a preliminary user interface

User Interface

During requirement elicitation we sketch a preliminary
user interface
● Needed for use cases
● Tip: Use a paper mock up

Also
● Initially envision the system.
● Enables you to explore the problem space with your stakeholders
● Enables you to explore the solution space of your system.
● A vehicle to communicate the possible UI design(s) of your system
● A potential foundation from which to continue developing the system (finding use

cases)

User Interface for MP

Should look like a Monopoly game
● Flat 2d look for now
● Animations later?
Possible to select different location (Alingsås,
Warszawa, Ouagadougou,...)
● Must be possible to change texts,
● Internationalization,...must use internal representation (keys) for

all text
Possibly small screen
● Will use popup for details, dialogs for messages

GUI Sketch MP

Use Cases: Normal FLow

User System

1 clicks on destroy button (see GUI sketch)

2 feels bad

3 clicks ok in confirm dialog

4 goodbye cruel world...

Normal flow is the most likely (normal) path in
the sequence of actions

NOTE: Sorry, silly example

Use Cases: Alternate flows

Often have alternative path's in the sequence of
actions, alternate flows
● Depending on outcome of response, or other...
● As noted: No standard numbering system, example later

Use Cases: Exceptional flow

How will the sequence of actions behave if we get an
exception?

Example: User enables auto reply on mail
Normal flow:

Exceptional flow: Can you think of a (funny) exception?

User System
1. Selects auto reply

2. System shows a ...

3. User ...

4. System...

n. Incoming mail

n+1. Auto replies to sender

Finding Use Cases

Techniques
● Interviews
● Questionnaires
● User observation
● Literature study
● Workshops
● Brainstorming
● Screen (GUI) mockups

UML for Use Cases

Use case diagram, not overly useful but can give an overview

There will be a
use case text
named
"OrderWine" to
describe in detail

Actors

Use
case

Use Cases: Fine Prints

Use case granularity
● Too large, have to break down
● Too small, trivial, possibly part of another use case
Use case "extends"
● Inserting additional action sequences into the base use-case

sequence
Use case "includes"
● An invocation of a use case by another one
Use case refactoring
● Must do! Else possibly end up with duplicate code

Use Cases for MP

UC Examples for MP

The UC's (on course page)
● Move
● EndTurn

Quality of UC

The quality of the UC's will have impact later
● Let UC text be as focused (short) as possible but try to be

precise (missing facts may affect later stages)
● Make it a short play (one person emulating the system, playing

really dumb), does it work?

Priority of Use Cases

The use cases should be ordered by priority
● High, implemented in first iteration
● Mid, later iterations
● Low, optional, possible never implemented

High priority characteristics
● Significant, central functionality
● Substantial coverage of the solution, stress or illustrate a

specific point of the solution (to be solved)

UC Priority for MP

Highest
● Move
● EndTurn

Mid
● Buy, sell
● …

Low
● Save and restore game

Scenarios

Finding the general interaction (use case) with the
system is sometimes too complicated
● A scenario is special case of a use case (fixed data)

Example: Schedule a meeting
● Use case: What is a meeting in general? Location, remote

participating, duration, who can participate individuals, groups,
roles, rights...who can schedule a meeting .. lot to analyze

● Scenario: Pick an instance. Sven schedules a meeting with Lisa
(remote) and all sales representatives at ... thu 10-11...

Non-Functional requirements

● Usability, the ease of use and learnability of a human-made
object

● Reliability, probably NA
● Performance, probably NA
● Supportability
● Testability (yes, implicitly mandatory in course more to come...)
● Implementation (any restrictions? Yes, Java in this course)
● Packaging and installation
● Legal
 See Wikipedia for long list .. (don't overdo)

http://en.wikipedia.org/wiki/Non-functional_requirement
http://en.wikipedia.org/wiki/Non-functional_requirement

Non-Functional for MP

We'll inspect the RAD again

Documenting the RE

All outcome from RE is documented in the RAD
● List of use cases
● Put full UC texts in appendix (not inline)
● Priority of UC's
● Non-functional requirements
● Preliminary user interface

Hmmm...

Summary

Requirement elicitation focus on
● Understanding the problem domain
● To create a shared vision of the project
● Finding functional and nonfunctional requirements
● A preliminary GUI
● We tried to do so using the Monopoly project as a case

RE documented as part of RAD

Next: From requirements to the analysis model,
 i.e. the analysis phase

