
Test Driven Development

Slide Series 4

Test Driven Development

Is a development approach
● So it's not a testing approach

Incoming from
analysis Used during design

and implementation.
Phases 3 & 4

TDD is a robust way of designing
software components (“units”)
interactively so that their behaviour is
specified through unit tests.

Next iteration

Reuse

TDD in Course

A bit relaxed
● We'll get a few UC's up and running before starting

...when UC's running and design started to stabilize
we start writing tests
● Ok to write test in parallel to code (i.e. not before)

Testability

To make it possible to test the application we must
design it for testability
● Minimize dependencies
● Avoid inline use of static classes, Singletons or any global

dependency
● No inline use of new, use factories
● All dependencies passed in via constructor (later possible to

mock)
● Use interfaces
● More later ...

Organizing Test Code

Keep test code separate from application code
● Use (create) a source folder "test" in Eclipse
● Use same package structure as application, more to come...

The Units

Single class (basic functionality)

Small aggregate of classes (to fulfill a use case)

Service (package with unified interface), more to
come...

No "visual" units (i.e. GUI tests)

Using JUnit

JUnit is test framework for Java (many similar for
other platforms)
● Installed plugin in Eclipse

Procedure
● We have a unit under test, UUT
● Write a "test"-class (in Java) for the UUT
● Let JUnit run the test class (exercising the UUT)
● JUnit will report outcome of tests

UUT is a Single Class

Test class has one test-method for each public
non-trivial method of UUT

MyClass (UUT)

public ... A(){
// non trivial method

TestMyClass

public void testA(){
// outcome

public void testB(){
// outcome

public void testC(){
// outcome

public ... B(){
// non trivial method

public ... C(){
// non trivial method

Outcome is a logical true/false i.e. test passed or
not

Implementing Test Methods

A test method must have signature and annotation
as (i.e. no return value no params);

@Test
public void anyNameHere(){
 // Code to run test
}

Possible if exception should be thrown
@Test(expected=IllegalStateException.class)

Implementing Test Methods, cont

Last in test method a "logical test"-expression
(assert*-expressions, part of JUnit, built in)
● assertTrue(o.getName().equals("Olof"))
● assertFalse(o.getValue <= 199))
● No System.out println() in test methods (only acceptable

during development of test, use debugger more to come...)

Test shouldn't need any interaction, we run, tests
pass... (if fail have to fix)
● Just a mouse click to run all tests

Test Method Names

Should be loooooong and descriptive

@Test
public void playerLandOnPropertyOwnedByOther(){
 ... // Similar to UC
}

Private and Void

If UUT method private, normally not in test.
● If in need, change to public and back (bad.., just for now)

If UUT method void, need to inspect state
● Possible extra "test"-method getNNN(), not part of any

public API

If UUT (class) private
● Possible to test if we have same package-structure in test

source folder as in application (src-folder)

If more objects needed have to create a fixture
● = A setup to create and connect involved objects
● JUnit has special setup-methods (and tear down)

// In test class
@BeforeClass // or @AfterClass
public static void anyNameHere(){

... // Run once before all test
}

@Before // or @After
public void anyNameHere(){
... // Run before **each** test
}

UUT is an Aggregate

Designing Tests

Try to find UUT-method possible to run in isolation
● If not possible let test-method use as few UUT-methods as

possible
● Use UUT-methods already tested in later test-methods

Make each test orthogonal
● I.e. independent to all the others, tests should not rely on

each other
● Should not use global state (test must run with well defined

start state)

"Very" Graphical Application

Games and alike
● Should be possible to use TDD but maybe not to

the same extent
● Model should be tested, the graphics is just a

view of model!

What's happening in the
model?

Debugging using Tests

Very efficient
● Much easier than to run complete application
● Put breakpoint in test class ...
● .. continue a usual

Code Coverage

"Code coverage is a measure used in software testing. It
describes the degree to which the source code of a program
has been tested." //Wikipedia

Possible to see how much of code is run during tests, high
percentage good (90% or more)

Many tools, ECLEmma a plugin for Eclipse

TDD: Pros and Cons

Pros
● Kind of specification
● Confidence in doing changes (refactoring), just re-run the

tests!
● Documentation

Cons
● All tests passed does not imply application pass (i.e. no

bugs)
● No specific technique for this in course, have to find...

Summary

We use TDD as a way to increase the quality of the
units of the application

Will make increase confidence when refactor

Will be part of documentation

