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Warming-up Exercise

2 < 4?

Now, can you formally prove it?

What would you need to do so?
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How to Give a Formal Proof of 2 < 4?

We need to understand the objects we manipulate ...

Natural numbers: N is a set (inductively) defined as

0 : N

n : N

n + 1 : N

... and also how to relation < is defined!

< : N→ N→ Prop

n : N

0 < n + 1

n < m

n + 1 < m + 1

Now we can formally prove that 2 < 4!
Can you see how?
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What about more Complex Proofs?

Conjunction:
P Q

P ∧ Q

Disjunction:
P

P ∨ Q

Q

P ∨ Q

Implication:
[P]

...
Q

P ⇒ Q
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Propositions as Types, Proofs as Programs

Conjunction: Cartesian product:

P Q

P ∧ Q

a : A b : B

< a, b >: A× B

Disjunction: Disjoint sum:

P

P ∨ Q

Q

P ∨ Q

a : A

inl a : A + B

b : B

inr b : A + B

Implication: Functions:

[P]
...
Q

P ⇒ Q

[a : A]
...

b : B

λa.b : A→ B
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Are We Missing Something?

Quantifiers!!!
∀x .P(x) ∃x .P(x)

What do they correspond to in the word of types?

Dependent Types!!
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Dependent Types

A dependent type is a type that depends on a value.

Example: List of a given length.

data Vec (A : Set) : N → Set where
[ ] : Vec A zero
:: : ∀ {n} → A → Vec A n → Vec A (suc n)

Could also be used to state properties of certain objects!

Example: Property of being a sorted vector.

data SortedV : ∀ {n} → Vec N n → Set where
sorted[ ] : SortedV [ ]
sorted[-] : ∀ {x} → SortedV [ x ]
sorted:: : ∀ {n x y} (xs : Vec N n) → x ≤ y →

SortedV (y :: xs) → SortedV (x :: y :: xs)
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Programming with Dependent Types: Sorting

How can we write a function that sorts a sequence of numbers?
What type will it have?

sort : List N → List N

Result should have the same number of elements:

sort : ∀ {n} → Vec N n → Vec N n

Result should be sorted:

sort : ∀ {n} → Vec N n → ∃ (λ ys → SortedV {n} ys)

Result should have the same elements:

sort : ∀ {n} (xs : Vec N n) →
∃ (λ ys → SortedV {n} ys × PermV xs ys)
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What about the Law of Excluding Middle (LEM)?

We have learnt that the LEM

P ∨ ¬P

is always true (tautology).

But here we can only construct a proof of it if we know that
P is true or ¬P is true!!

P

P ∨ ¬P
¬P

P ∨ ¬P

We work here with intuitionistic/constructive logic!
(as oposite to classical logic)
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Curry-Howard Isomorphism

In 1934, Haskell Curry observed the correspon-
dance between (a theory of) functions and (a the-
ory of) implications.

In 1969, William Howard extended the correspon-
dance to other logic connectives.
He also proposes new concepts for types (now
known as dependent types) that would correspond
to the quantifiers ∀ and ∃.
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Propositions as Types

Mathematicians and computer scientists proposed numerous systems
based on this concept:

de Bruijn’s Automath

Martin-Löf’s type theory, developed into the Agda proof assistant
(here at D&IT, Chalmers-GU)

Bates and Constable’s nuPRL

Coquand and Huet’s Calculus of Constructions, developed into the
Coq proof assistant
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Once Upon a Time ...

In early 1900’s, Bertrand Russell showed that for-
mal logic can express large parts of mathematics.

In 1928, David Hilbert posed a challenge known as
the Entscheidungsproblem (decision problem).
This problem asked for an effectively calculable
procedure to determine whether a given statement
is provable from the axioms using the rules of logic.
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To Prove or Not To Prove: That Is the Question!

The decision problem presupposed completness:
any statement or its negation can be proved.

“Wir müssen wissen, wir werden wissen”
(“We must know, we will know”)

In 1931, Kurt Gödel published the incompleteness
theorems.

The first theorem shows that any consistent system capa-
ble of expressing arithmetic cannot be complete: there is a
true statement that cannot be proved with the rules of the
system.

The second theorem shows that such a system could not

prove its own consistency.
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λ-Calculus as a Language for Logic

In the ’30s, Alonzo Church (and his students
Stephen Kleene and John Barkley Rosser) intro-
duced the λ-calculus as a way to define notations
for logical formulas:

x | λx .M | M N

In 1935, Kleene and
Rosser proved the system
inconsistent (due to self
application).
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λ-Calculus as a Language for Computations

Church discovered how to encode numbers in the λ-calculus.

For example, 3 is encoded as λf .λx .f (f (f (x))).

Encoding for addition, multiplication and (later) predecesor were defined.

Thereafter Church and his students became convinced any effectively
calculable function of numbers could be represented by a term in the
λ-calculus.
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Church’s Thesis

Church proposed λ-definability as the definition of effectively calculable
(known today as Church’s Thesis).

He also demonstrated that the problem of whether a given λ-term has a
normal form was not λ-definable (equivalent to the Halting problem).

A year later, he demonstrated there was no λ-definable solution to the
Entscheidungsproblem.
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General Recursive Functions

1933: Gödel was not convinced by Church’s assertion that every effectively
calculable function was λ-definable.

Church offered that Gödel would propose a different definition which he
then would prove it was included in λ-definability.

1934: Gödel proposed the general recursive functions as his candidate for
effective calculability (system which Kleene after developed and published).

Church and his students then proved that the two definitions were
equivalent.

Now Gödel doubt his own definition was correct!
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Turing Machines

Simultaneously, Alan Mathison Turing formulated
his notion of effectively calculable in terms of a
Turing machine.

He used the Turing machines to show the Entschei-
dungsproblem undecidable.

Turing also proved the equivalence of the λ-calculus and his machines.
(Church-Turing Thesis)

Gödel is now finally convinced! :-)
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Computer Science Was Born!

Turing’s approach took into ac-
count the capabilities of a (human)
computer: a human performing a
computation assisted by paper and
pencil.
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Turing Award

Since 1966, annual prize from
the Association for Computing
Machinery (ACM) for lasting
technical contributions to the
computing community.

Seen as the Nobel Prize of com-
puting.
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Which Courses Can You Take?

TMV027/DIT321 Finite Automata Theory and Formal Languages.
Bachelor course given in LP4.

DAT060/DIT201 Logic in Computing Sciences.
Master course given in LP1.

DAT140(DAT350)/DIT232 Types for Programs and Proofs.
Master course given in LP1.

TDA184/DIT310 Models of Computation.
Master course given in LP2.

February 9th 2017, Ana Bove Foundations of Computation 21/21


