Higher-Order Functions

The Heart and Soul of Functional
Programming
T

What is the Type of filter?

fitereven [1, 2, 3,4,5] =2, 4]

even :: Int->Bool

filter:: (Int -> 1) -> [Int] -> [Int]
Afunction type can be
the type of an argument.

filter:: (@ -> Bool)-> [a] ->[a]

Quiz: What is the Type of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True,
False]

map :: (a> b) > [a] > [b]

Any function of Any list of

one argument arguments

What is a “Higher Order” Function?

Afunction which takes another function as a parameter.

even :: Int->Bool
evenn=n"mod 2 ==

Examples

map even [1, 2, 3, 4, 5] =[False, True, False, True, False]
filtereven[1, 2,3,4,5]=[2, 4]

Quiz: What is the Type of map?

Example

map even[1, 2, 3, 4, 5] =[False, True, False, True, False]

map also has a polymorphic type -- can you write it
down?

Quiz: What is the Definition of map?

Example

map even[1, 2, 3, 4, 5] =[False, True, False, True,
False]

map :: (a->b) ->[a] ->[b]

map =7

Quiz: What is the Definition of map?

Example

map even[1, 2, 3, 4, 5] =[False, True, False, True,
False]

map :: (a-> b) -> [a] -> [b]

mapfl] =]
map f (x:xs) = fx : map fxs

Case Study: Summing a List

sumf{] =0
sum (X:xs) =X + sumxs

General Idea

Combine the elements of a list using an operator.

Specific to Summing

The operatoris +, the base case returns 0.

Case Study: Summing a List

New Definition of sum

sum xs = foldr plus 0 xs

where plusx y = x+y

orjust... sumxs = foldr (+) 0 xs

Just as fun’ lets a function be used as an operator,

so (op) lets an operator be used as a function.

Is this “Just Another Feature”?

NO!!!

*Higher-order functions are the “heart and soul” of
functional programming!

*Ahigher-orderfunction can do much more than a
“first order” one, because a part of its behaviour can
be controlled by the caller.

*We can replace many similar functions by one higher-
order function, parameterised on the differences.

Case Study: Summing a List

sumf{] =0
sum (X:xs) =X + sum xs

Replace 0 and + by parameters -- + by a function.

foldrop z[] =z
foldrop z (x:xs) = x ‘op” foldrop z xs

Applications

Combining the elements of a listis a common operation.

Now, instead of writing a recursive function, we can just
use foldr!

product xs foldr (*) 1 xs

and xs foldr (&&) True xs
concat xs = foldr (++) [] xs
maximum (x:xs) = foldr max x Xxs

An Intuition About foldr
a b : c: d

foldr (W) z

a@ow(cwa v w3

The operator“:”isreplaced by W and[]is replaced by z.

Quiz

Whatis
foldr(:)[]1xs

Quiz

Whatis
foldr (:) ys xs

An Intuition About foldr

foldr op z [] =

z
foldr op z (x:xs) = x “op” foldr op z xs

Example

foldrop z (a:(b:(c:[]))) =a “op" foldrop z (b:(c:[]))
=a ‘op (b "op foldr op z (c:[]))
=a ‘op (b 'op (c "opfoldrop z[]))
=aop (b ‘op’(c 'op”2)

The operator“:”is replaced by ‘op’, [] is replaced by z.

Quiz

Whatis
foldr(:)[] xs

Replaces “”by “”, and [| by [] -- no change!

The resultis equalto xs.

Quiz

Whatis
foldr (:) ys xs

foldr (:) ys (a:(b:(c:[1)))
= a:(b:(ciys))

The result is xs++ys! xs++ys =foldr () ys xs

Quiz

Whatis
foldrsnoc [] xs

where snocy ys = ys++[y]

A-€expressions

reverse xs = foldr snoc [] xs
where snocyys = ys++[y]

It's a nuisance to need to define snoc, which we only
use once! Ai-expression lets us define it where itis
used.

reverse xs = foldr (Ly ys -> ys++[y])[] X:l,

On the keyboard:
reverse xs = foldr (\y ys -> ys++[y]) [] xs

Further Standard Higher-Order
Functions

Quiz

Whatis
foldrsnoc[] xs
where snocyys = ys++[y]
foldrsnoc[] (a:(b:(c:[1)))
=a snoc’ (b snoc’ (c 'snoc []))
= ([++[c]) ++[b] ++ [a]

The result is reverse xs!
reverse xs = foldr snoc [] xs

where snocyys = ys++[y]

Defining unlines

unlines [“abc”, “def”, “ghi”] = “abc\ndef\nghi\n”

unlines [xs,ys,zs] = xs ++ “\n” ++ (ys ++ “\n” ++ (zs ++ “\n” ++[]))

unlines xss = foldr (Axs ys -> xs++“\n"++ys) [] xs4

Justthe same as
unlines xss = foldrjoin [] xss

where join xs ys =xs ++“\n” ++ ys

Another Useful Pattern

Example: takeLine “abc\ndef” = “abc”

used to define lines.

takelLine [] =[]

takelLine (x:xs)
| x/="\n" = x:takelLine xs
| otherwise = []

General Idea
Take elements from a list while a condition is satisfied.

Specific to takeLine
The condition is that the elementis not \n".

Generalising takeLine

takelLine [] =[]
takelLine (x:xs)
| x/="\n" =

| otherwise

x : takelLine xs
[]

takeWhile p [] =[]
takeWhile p (x:xs)
| p x = x : takeWhile p xs
| otherwise = []

New Definition
takeLine xs = takeWhile (Ax -> x/="\n") xs

or takeLine xs =takeWhile (/="\n") xs

Defining lines

We use
» takeWhile p xs -- returns the longest prefix of xs
-- whose elements satisfy p.

+ dropWhile p xs -- returns the rest of the list.

lines[] =]
lines xs = takeWhile (/="\n") xs :
lines (tail (dropWhile (/="\n") xs))

General idea Break a list into segments whose
elements share some property.

Specifictolines The property is: “are not newlines”.

Generalising lines

segmentsp []=[]
segments p xs = takeWhile p xs :
segments p (drop 1 (dropWhile p xs)|

Example
segments (>=0)[1,2,3,-1,4,-2,-3,5] segments is
- [[1,2,3], [4],1,[5]] not a standard

function.

lines xs = segments (/="\n") xs

Notation: Sections

As a shorthand, an operator with one argument stands
fora function of the other...

emap (+1) [1,2,3] =[2,3.,4]
«filter (<0) [1,-2,3] =[-2]
«takeWhile (0<)[1,-2,3] =[1]

(ar)b=arb
(ca)b =bra

Note that expressions like (*2+1) are not allowed.

Write Ax ->x*2+1 instead.

Quiz: Properties of takeWhile and
dropWhile

takeWhile, dropWhile :: (a -> Bool)->[a] -> [a]

Can you think of a property that
connects takeWhile and dropWhile?

Hint: Think of aproperty that connects take and

drop
Useimport
= Text.Show.Functions

prop_TakeWhile_DropWhile p xs =
takeWhile p xs ++ dropWhile p xs == (xs :: [Int]

Quiz: Comma-Separated Lists

Many Windows programs store data in files as “comma
separated lists”, forexample

1,2,hello,4
Define commasSep :: String -> [String]
so that
commaSep “1,2,hello, 4" ==[*1", “2”, “hello”, “4"]

Quiz: Comma-Separated Lists

Many Windows programs store data in files as “comma
separated lists”, forexample

1,2,hello,4
Define commaSep :: String -> [String]
so that
commaSep “1,2,hello,4”==["1",“2”, “hello”, “4”]

commasSep xs = segments (/=",) xs|

Partial Applications

Haskell has a trick which lets us write down many
functions easily. Consider this valid definition:

sum=foldr (+) O

foldr was defined with

3 arguments. It’s being
called with 2.

What's going on?

Partial Applications

Any function may be called with fewer arguments
than it was defined with.

The resultis a function of the remaining arguments.

If f::Int->Bool-> Int->Bool
then f 42::Bool->Int-> Bool
f 42 True :: Int->Bool
f 42 True 42 :: Bool

Defining words

We can almost define words using segments -- but

segments (not . isSpace)“a b”=["a", “, “b”]

Function composition
(f.9)x=f(gx

which is not what we want -- there should be no empty

words.

words xs = filter (/="") (segments (not . isSpace) xsi

Partial Applications

sum = foldr (+) O

Evaluate sum[1,2,3]
={replacing sum by its definition}

foldr (+)0 [1,2,3
={by the behaviour of foldr}
1+2+@3+0)
6

Now foldrhas the
right number of
arguments!

Bracketing Function Calls and
Types

We say function application “brackets to the left”

function types “bracket to the right”

If f::Int-> (Bool-> (Int-> Bool) Functions really

take only one
argument, and
return (in this case)
afunction
expecting more
as a result.

then f3::Bool-> (Int-> Bool)
(f3) True :: Int->Bool
((f3) True)4 :: Bool

Designing with Higher-Order
Functions

*Break the problem down into a series of small steps,
each of which can be programmed using an existing
higher-order function.

*Gradually “massage” the input closerto the desired
output.

*Compose togetherall the massaging functions to get the
result.

Step 1: Breaking Input into Words

“hello clouds\nhello sky”

words

[‘hello”, “clouds”, “hello”, “sky’]

Digression: The groupBy Function

groupBy :: (a->a-> Bool) -> [a] -> [[a]]
groupBy p xs breaks xs into segments
[x1,x2...], such that p x1 xiis
True foreach xiin the segment.
groupBy (<)[3,2,4,3,1,5]=[[3], [2,4,3],[1,5]]

groupBy (==)“hello” =[*h”, “e”, “II", “0”]

Example: Counting Words

Input

Astring representing a text containing many words. For
example

“hello clouds hello sky”

Output

Astring listing the words in order, along with how many

times each word occurred. clouds: 1
“clouds: 1\nhello: 2\nsky: 17 [hello: 2
sky: 1

Step 2: Sorting the Words

[*hello”, “clouds”, *hello”, “sky’]
sort

[“clouds”, “hello”, “hello”, “sky”]

Step 3: Grouping Equal Words

[“clouds”, “hello”, “hello”, “sky”]

groupBy (==)

[[clouds™], [hello”, *hello”], [“sky]]

Step 4: Counting Each Group

[[‘clouds’], [*hello”, “helio”], [“sky”]]

| map (Aws -> (head ws, length ws))|

[(“clouds’,1), (hello”, 2), (‘sky”,1)]

Step 6: Combining the Lines

[“clouds: 17, “hello: 27, “sky: 17]

unlines

“clouds: 1\nhello: 2\nsky: 1\n”

clouds: 1
hello: 2
sky: 1

Quiz: A property of Map

map :: (@a->b) ->[a] -> [b]

Can you think of a property that merges
two consecutive uses of map?

prop_MapMap :: (Int-> Int) -> (Int -> Int) -> [Int] -> Bool
prop_MapMap fg xs =
map f(map g xs) ==map (f .) xs

Step 5: Formatting Each Group

[(“clouds”, 1), (“hello”, 2), (“sky”,1)]

| map (A(w,n)->w ++ “ 7 ++ show n)|

[“clouds: 17, “hello: 27, “sky: 1]

The Complete Definition

countWords :: String -> String
countWords = unlines
. map (A(w,n)->w++": ++show n)
. map (Aws->(head ws, length ws))
. groupBy (==
. sort

. words

The Optimized Definition

countWords :: String -> String
countWords
= unlines
. map (Aws-> head ws ++ “:” ++ show(length ws))
. groupBy (==)
. sort

. words

Where Do Higher-Order Functions
Come From?

Generalise a repeated pattern: definea
functionto avoid repeating it.

Higher-orderfunctions let us abstract
patterns that are not exactly the same, e.g.
Use +in one place and * in another.

Basic idea: name common code patterns, so
we can use them without repeating them.

Lessons

Higher-order functions take functions as parameters,
making them flexible and useful in very many
situations.

By writing higher-order functionsto capture common
patterns, we can reduce the work of programming
dramatically.

A-expressions, partial applications, function
composition and sections help us create functions to
pass as parameters, without a separate definition.

Haskell provides many useful higher-order functions;
break problems into small parts, each of which can be
solved by an existing function.

Must | Learn All the Standard
Functions?

Yes and No...

No, because they are justdefined in Haskell.
You can reinventany you find you need.

Yes, because they capture very frequent
patterns;learning them lets you solve many
problems with greatease.

*Stand on the shoulders of giants!”

Reading

Chapter 9 covers higher-order functions on lists, in
alittle more detail than this lecture.

Sections 10.1to 10.4 cover function compaosition,
partial application, and A-expressions.

Sections 10.5, 10.6, and 10.7 cover examples not
in thelecture -- useful to read, but notessential.

Section 10.8 covers alarger example in the same
style as countOccurrences.

Section 10.9 is outside the scope ofthis course.

