
The n-1 next iterations

Running through all phases ...

Iterating MP (1)

● Have one running use case: move
● Now we add the following UC's

○ EndTurn (i.e. switch player)
○ Buy (something for now)
○ Sell (-"-)

● New design choice: Piece.isMovable()
○ Can't move if not movable (i.e. user can click in GUI nothing

will happen). Only choice for user is to click next player
○ Control class switches: movable = false/true
○ Add a test for movable

● A quick demo run of version MP 0.2

Iterating MP (2)

● Have 4 running use case
● Continue to add more UC's (or make existing more

complete)
○ Income, expense, passing GO, ...

● Then !! ... Pick card.... Oooops!
● Design horror!!!!!

○ A card can move the piece! And possible a new card can move
it again... the game running by itself!?!? Or?

○ A card can affect the piece and the player or all players (not
just the actual player)

● Will this break the design ...??
○ A quick demo run of version MP 0.4

Adding a GUI to MP

● Having quite a few working use cases
● Time to add a GUI

○ Should have a preliminary one
● Design choice

○ We'll use the top-level class Monopoly as the control
○ Possible to move much of the command line version code to

the class
○ GUI will call methods on Monopoly (should create interface in

between)
● Also, ... should use MVC, how to?

GUI Technicalities

● State changes in model and other event possible updates
GUI

● Code to update GUI resides in GUI
○ In listener

■ before call to control
■ after call to control

○ In observer-callback method
● Swing single threaded

○ Possible need SwingUtilities.invokeLater(...) or
invokeAndWait(), (blocking)

● Time consuming method calls will block GUI
○ Use SwingWorker to run tasks in separate thread
○ Use Timer and TimerTask to run periodically in background

MVC Technicalities

● Need Observer pattern to push state changes to GUI
● Many choices

○ Advanced: Google Guice, Context and Dependency Injection
(CDI, a Java Standard)

○ Simple: Create a "in-house" EventBus
● Design choice: We'll use a simple EventBus

○ Excellent way to trace all events (they all pass the bus)
● How not to blur the model with event handling?

○ Events should be sent when state changes
○ State changes are normally in the set-methods
○ Use (possible internal, private) set-methods to separate event

handling code from domain logic

Connecting GUI to Model

● Inspection and demo run of MP 0.4

Dependencies

● High quality software is composed of loosely composed
modules, i.e. few and controlled dependencies between
modules (packages)

● Dependencies going down towards lower abstraction levels
● Typical layering

Dependencies

Dependency Analysis of MP 0.4

● Have UML diagrams for ocular
inspection, but are we shore? Use
a tool!

○ Eclipse has STAN plugin
○ Possible need to remove test

classes (.class files from JUnit-
tests)

Seems very good!

Exception handling

● Handle exceptions where it's possible
● If not possible in this class let caller try to handle it

○ Should normally be in domain or control layers
● Possible create central ExceptionHandler

○ Methods: ignore(e), retrow(e)
○ Possible to log all exceptions from one place

● Often need to inform GUI (show dialog), use EventBus
○ Don't propagate exception all the way to GUI

More Design Issues

● Mutability
● Handling of Resources (texts, images, config data, ...)
● State
● Swapping algorithms
● Canonical form for objects
● Immutable objects?
● Reducing dependencies (a constant design issue)

○ Interfaces

Mutability

● Always try to use immutable objects
○ Safe to share

● Use final all over as much as possible

Resources

● How to find/organize?
○ Use Resource Bundles

■ java.util.ResourceBundle
■ A map as a text file. Automatically read and converted to Java

object
○ For images use ClassLoader class

■ getResource(s), findResource(), ...
○ Possible XML, use Java JAXP (API For XML processing)

■ Even better (simpler) XStream library, see sample on
course page.

Application/Object States

● Object state
○ MP: Have movable (as state for Piece)
○ ..other?

● Identifying distinct states (modes) for application or objects
● Outcome depends on input and state

○ Example: Game character in state "dead" will not react to
damaging input (events)

● Design pattern "State"

Changing the algorithm (behavior)

● To be able to swap algorithms use "Strategy pattern"
○ Example: Useful for game levels (all objects having same

interface)
■ Level 1, simple algorithm (An object)
■ Level 2, a bit smarter (Other object)
■ ...
■ Level N, can't beat this (Yet other object)

● Also possible "Template Pattern"
○ If much of algorithm common to all objects

Canonical Object Form

● Do the object(s) need to be
○ Compared?

■ Override Object.equals()
■ If so also override hashCode()

○ Sorted?
■ Implement Comparable, Comparator

○ Cloned?
■ Override Object.clone()

○ Other general behavior...?

Summary

● We have done a few iteration and added a primitive GUI
● Have solved some design problems
● Hopefully the design is stable

○ If so, ... we start furiously to implement everything
● Our process have some weakness, the over all picture...

Next: System design...

