
Software Development Overview

Joachim von Hacht

Software Development Is ...

● ... often very complex!
● ... a young engineering discipline

○ Somewhat of an art
● ...in between very informal (dynamic/chaotic)
● ...short of mathematical tools (formulas)
● ...normally a group task
● ...highly dependent on communication

Software Development Process

● To handle the complexity of software development
a software development process is used

○ Opposite: Ad hoc, "Happy hacking"

● A software development process is a framework that is used
to structure, plan, and control the process of developing a
program (system).

● ...but no guarantees!
○ There's no "Silver Bullet"!

 Process Philosophies

● Big design up front (BDUF), heavy process
○ Everything is specified before starting to implement (the

traditional engineering approach)
○ Pros: Efficient in general ... but software seems different?!
○ Cons: Hard to handle changes (specification obsolete before

we begin to implement)
● Agile development, lightweight process

○ Start with a rather preliminary specification.
Implement iteratively (in small steps) and learn

○ Pros: Quick adaption to changes/problems
○ Cons: Insufficient design and documentation (missing general

aspects of the problem)
● ... and many others

○ See Wikipedia for a list
○ Latest hype: Scrum

Philosophy In Course

● We use a simplified agile (iterative) process
○ We should have some understanding (and some beginning

of a solution) before the implementation starts
○ We start to implement a few selected parts ...
○ ... thereby gaining deeper understanding ...
○ ... as a result we update the solution ...
○ ... we refactor the code to reflect the new solution ...
○ ... then we continue with a few more part...
○ ...
○ ... until finished!

 Process Phases

● All processes are composed of a number of steps
○ We say "phases"

● �Phase have input and and output
○ Commonly: Output from phase n, input to n+1

Process Phases in Course

1. Requirement Elicitation
○ What are we going to build?

2. Analysis
○ Build an model of it

3. Design
○ Adapt (parts of) it so that it can be implemented
○ Add supporting systems for it (system design)

4. Implementation
○ Implement (part of) it, test it ...

This has very little with
computers and
programming to do

Iterations
Each
iteration runs
through the
phases

The process has 4 phases.

Time Plan

● Must have something to run at week 3!

Software Development and
Communication

● Effective communication is a fundamental requirement for
software development.

Communication in Course

● Find a room with a whiteboard and gather
○ Don't spread the group!

● Use issue trackers, can't remember everything...
○ Possible use //TODO in Eclipse
○ Better: Google code (or similar)

Process Documentation

● BDUF processes often implies a lot of documentation
○ Has gained much criticism
○ Code and documentation not synchronized

● Agile methods less of documentation
○ Working code is the ultimate documentation
○ Together with tests, more to come...

Process Documentation in Course

● The group meetings (see Course PM)
○ There should be an agenda and and

an documented outcome!!
■ It's part of the working process
■ Being a chairman is a qualified task (rotate)
■ Be efficient!...socialize after the meeting...
■ Follow up ... !

● For us to be able to trace the project you have to handle in
the the meeting agendas (in e-form, no papers)

○ We'll also use the version control history to be able to trace
individual contributions

Software Documentation

● Undocumented software is at best a pain... at worse ... (we
say no more in this course, you'll understand sooner or
later...)

○ Documenting is hard...

● Optimal: Self documenting code
○ Should be possible to read "as a book"
○ A book has chapters, paragraphs, sentences

Software Documentation in Course

● We require two documents (besides the code)
○ The "Requirement and Analysis Document" (RAD)
○ The "System Design Document" (SDD)

● The documents will give us an introduction, overview and
high level explanation of your application (the big picture)...

○ ...if sufficiently qualitative!

● Good (not long) documentation will make more justice to
your project

○ Don't over-do it, short, precise descriptions appreciated
○ It's no magic, just try to explain the structure/behaviour of it!

Supporting the Process

● During the process (or at different stages) we use;
○ "Domain driven design" (DDD), that means "Focus on the

model" (more later)
○ Kind of "test driven development", (TDD) i.e. all non-trivial

code should be tested
■ Unit testing for objects (classes)
■ Integration testing for collaborating objects (classes)
■ There will be a workshop (how to use the JUnit testing

framework)
■ Tests are improve the projects quality (i.e. grading)

Practical Organizing of Software
Development

● Version handling (for everything), Git , mandatory!
○ There will be a workshop. How to use the Git version control

system

http://git-scm.com/

Hmmm

Summary

● We use a simplified agile process
● The process has 4 phases

○ Output from one phase is input to next
○ During the process we repeatedly iterate the phases thereby

for each iteration extending the application (adding
functionality)

● Communication is extremly important
● We do some simple documentation

○ Of the process: Meeting agendas
○ Of the software: RAD and SDD

Next: Requirement elicitation

