
System design document for the
Monopoly project (SDD)

Contents

1 Introduction 1

1.1 Design goals . 1
1.2 De�nitions, acronyms and abbreviations 2

2 System design 2

2.1 Overview . 2
2.1.1 The model functionality . 2
2.1.2 Rules . 2
2.1.3 Unique identi�ers, global look-ups 3
2.1.4 Spaces . 3
2.1.5 Event handling . 3
2.1.6 Internal representation of text . 4

2.2 Software decomposition . 4
2.2.1 General . 4
2.2.2 Decomposition into subsystems . 4
2.2.3 Layering . 4
2.2.4 Dependency analysis . 4

2.3 Concurrency issues . 6
2.4 Persistent data management . 6
2.5 Access control and security . 6
2.6 Boundary conditions . 6

3 References 6

Version: Monopoly .. last iteration...

Date ...some date...

Author hajo

This version overrides all previous versions.

1 Introduction

1.1 Design goals

The design must be loosely coupled to make it possible to switch GUI and/or partition
the application into a client-server architecture. The design must be testable i.e. it
should be possible to isolate parts (modules, classes) for test. For usability see RAD

1

1.2 De�nitions, acronyms and abbreviations

All de�nitions and terms regarding the core Monopoly game are as de�ned in the refer-
ences section.

• GUI, graphical user interface.

• Java, platform independent programming language.

• JRE, the Java Run time Environment. Additional software needed to run an Java
application.

• Host, a computer where the game will run.

• Round, one complete game ending in a winner or possible canceled.

• Turn, the turn for each player. The player can only act during his or her turn (roll
dices, buy, sell, etc.). Thou, the player can be a�ected during other players turns
(i.e. pay to actual player, etc.)

• Resources (for players), the total value of the properties, buildings and cash of a
single player. A player is bankruptcy when he or she has no more resources.

• MVC, a way to partition an application with a GUI into distinct parts avoiding a
mixture of GUI-code, application code and data spread all over.

2 System design

2.1 Overview

The application will use a modi�ed MVC model.

2.1.1 The model functionality

The models functionality will be exposed by the interface IMonopoly. To avoid a very
large and diverse interface the functionality will be split into interfaces for Player and
Board. IMonopoly will be the top level interface acting as an entry to other interfaces
IPlayer and IBoard, see Figure.

2.1.2 Rules

The rules of the game could vary. This could be handled by di�erent implementations
of a�ected classes (subclasses). Yet, here we have chosen a di�erent approach. All rules
will be been re-factored to a Rules class. Model classes delegates the rules-dependent
parts to the Rules class.
In this way the rules also can easily be used to enable/disable components in the GUI.

2

Figure 1: Model and functionality (interfaces)

2.1.3 Unique identi�ers, global look-ups

We will not use any globally unique identi�ers for any entity. There will be no look ups
from anywhere in the application (objects will be directly connected or accessible without
an identi�er). Example: The spaces-objects will not be stored in any global accessible
data structure to be looked up. They will be directly connected to interacting objects
(GUI, etc.). See also Spaces.

2.1.4 Spaces

To have a uniform handling of spaces (possible con�gurable), all kinds of spaces are kept
in a single list. The ordering of the spaces is determined by the ordering of the list. This
will make it easy to create di�erent views of the spaces (just traverse list and create a
view for each space).

2.1.5 Event handling

Many events, state changing or not, can happen during the play (new player, dices equal,
go to jail, etc.). A need for a �exible event handling is evident. If this is done at an
�individual� level i.e. each receiver and sender connects, we possible end up with a hard
to understand web of connections (also possible many receivers for one event/sender).
How and when should connections be set? Also, during testing of the model we possible
would like to disable the event handling.

3

To solve the above we decide to develop an �event-bus�. All connections of senders/receivers
and transmitting of evens is handled by the event-bus.
The connections could be setup at application start for static parts. Dynamic parts

must have means to connect to the bus at any time.

2.1.6 Internal representation of text

All texts should be localizeable. Therefore internally all objects will use language in-
dependent keys for the actual text. Using the key the object can retrieve the actual
text.

2.2 Software decomposition

2.2.1 General

The application is decomposed into the following modules, see Figure 2.

• dialogs, GUI dialogs to interact with users. View parts for MVC.

• view, main GUI for application. View parts for MVC.

• eventbus, classes for the eventbus.

• ctrl, is the control classes for the MVC model

• adapter, contains an EventAdapter for the model. Broadcasting events for model
state changes

• model, is the core object model of the game. Model part of MVC.

• Main is class holding main-method, application entry point.

• io, is for �le handling.

2.2.2 Decomposition into subsystems

The only subsystem is the �le handling in package io (not a uni�ed subsystem, just
classes handling io).

2.2.3 Layering

The layering is as indicated in Figure below . Higher layers are at the top of the �gure.

2.2.4 Dependency analysis

Dependencies are as shown in Figure. There are no circular dependencies.

4

Figure 2: High level design

Figure 3: Layering and Dependency analysis

5

2.3 Concurrency issues

NA. This is a single threaded application. Everything will be handled by the Swing event
thread. For possible increased response there could be background threads. This will
not raise any concurrency issues.

2.4 Persistent data management

All persistent data will be stored in �at test �les (format, see APPENDIX). The �les
will be;

• A �le for spaces. The ordering of the spaces is used as the internal (implicit)
ordering for the spaces-objects. This ordering will be directly re�ected in the GUI.
See further directions in RAD.

• Localization �les containing entries (texts) for the text keys in the application.

2.5 Access control and security

NA

2.6 Boundary conditions

NA. Application launched and exited as normal desktop application (scripts).

3 References

1. Monopoly game: http://en.wikipedia.org/wiki/Monopoly_game

2. MVC, see http://en.wikipedia.org/wiki/Model-view-controller

APPENDIX

Class diagrams for packages (just one package, for the model, U do more if needed)

6

• Board is a container for Space's

• Monopoly is the controlling class for functionality in model, will coordinate and
perform all operations as a response to user actions. If more user interaction needed
class will keep state for next interaction.

• MonopolyFactory is responsible for building the complete model. Uses �le handling
from io to read Spaces.

• Deck is a container for Cards

• Space is the model for Streets, etc. A Space can have visitors (Players positioned
at the space)

• Building, is houses or a hotel at a Space

• Piece is what the player moves on the Board

• Dice are a pair of dices

• Card is some Card picked by the player entering Chance or other.

• Debt is a class recording a players debt, if landing on some other players Space, to
be paid before ending turn.

• Option is parameters for the model.

File formats (and more, missing, U do...)

7

