
Design and Implementation
[Iteration 1, Phase 3 & 4]

Slide Series 5

Remainder: Domain Driven Design

We don't bother about all the services the model
needs to become a fully functional program. Not part
of the core solution...!!
● Will blur the model, leave out for..
● We only need simplest possible input and output.

We focus on the model
● The model is the solution to the problem!

Must Run Week 3

The task for now is to create a very basic runnable
version of the model

To be able to fulfil this we need to simplify
● Only a small part of application implemented (i.e part of the

model)
● Normal flow, no exception handling, simplest possible IO, no

MVC, no subsystems, hard coding values, everything in same
package, ...

● Basic (possible clumsy) design

Need a running version to deepening our understanding, as a start
point for further explorations

Starting Out

From RE and analysis in RAD we have
● A few high priority use cases
● The analysis model (class diagram)
● A GUI (mockup or possible some basic implementation)

We pick 1-2 high priority use cases and classes
involved!

Developing the Design Model

The design model is a executable version of the
analysis model

Common techniques
● Using UML sequence diagrams, upcoming ...
● Prototyping (quick'n'dirty coding)

...the above interact
● diagram gives overview
● prototyping clarify details, use in parallel

UML Sequence Diagram

// Code
class FinancialAnalyst {
...
availableReports = system.
getAvailableReports();
...
}

Timeline

Object call itself

Method return

Object (variable) name and typeObjects

Method call

First Running UC for MP

Selected UCs: Move (first to be implemented), EndTurn
Classes: .. at least Piece and Board, we'll see...

Analysis
model from
RAD

Sequence Diagram for UC Move from MP

: Monopoly : Dice actual: Player : Piece : Board

roll()

steps
getPiece()

piece

: Board: Board : Space

getPosition()

oldPos: Space

getPosition(old, steps)

newPos: Space

setPosition(newPos)

Assume
we have
the
methods
we need

This is one way to do it, there are others...

move()

Lot of
alternate
flows
(separate seq
diagram)

Design Model for MP

Not much to design right now, small part of model
and no services (possible GUI))

Anyway...
- Direction of associations given by sequence diagram
- Must construct the model, add constructors realizing the
associations (pass in association as constructor argument)
- Create a Factory to build complete model
- Parameters to model (number of spaces, how much money, …),
create Options class
- Main class for main method
- Package core, other packages …?

Design Model for MP, cont

Design is a multilevel activity

- Design of individual classes and methods not
stressed right now
- Will do design review next iteration

Design Model for MP 0.1

From class diagram, sequence diagram and code we get
(something like) this (good no mutual or circular associations!)

edu.chl.hajo.monopoly

core
<<Entry>>

Main

<<Global>>
Monopoly
Factory

<<Global>>
Monopoly
Options

Monopoly

Player

Dice

Piece

Board

Space

This will
change
don’t
overdo

Now
associations
have
directions.
(multiplicity
missing)

Implement UC Move MP

Should be fairly straightforward

- Create Project
- Create packages
- Create classes
- Add constructors, behaviour

Final Step to Run MP UC Move

Have GUI but simpler to run using a command line
- No obscuring GUI code

Create CommandLine class to run design model
● Input: method Scanner in CommandLine class
● Output: override toString() using System.out.println()

DEMO time...version 0.1

Summary

Using RAD as input
● We selected a 1-2 high priority use case
● Created some UML sequence diagram from the use cases (a

dynamic model) using the objects (classes) from analysis model
● We got something very basic up and running
● From the above we got a basic design model (class diagrams,

package diagram)
● Started to expand the running model, putting a simple GUI over

model, started to do some serious testing

Next: Iteration 2

