
Design 

Phase 3



NOTE 1

● All the way we have been using the OO paradigm
● All software is not OO...! 

○ 3D graphics is built on an rendering pipeline
○ Relational databases are not OO!
○ The web is not OO
○ ...

● If using any above have to incorporate different paradigms 
in one application

○ ...hard...
● Not covered in course (avoid if newbie)!



Design

● For now the task is to create a runnable version of the 
domain model i.e. the design model

○ Implicit design issue are... 
○ ... high testability
○ ... implies minimizing dependencie (remove or simplify 

associations)

There are many levels of design : Design of the model, detailed design of 
classes (or a few classes), system design (subsystems, GUI,...) ...and more



Dynamic Model

● The domain model is a static view 

● As a transition from domain to design model we analyse 
how to objects in the domain model interact, i.e. create a 
dynamic model 

● Visualized as an UML sequence diagram

● Possible new objects (not in domain model) will show up
○ Boundary objects, represents the borders of the system (input, 

output). Example: GUI components
○ Control objects... 



Control Objects

● Control objects uses domain objects to fulfill some 
functionality (run use case)

● Variations
○ Having "toplevel"-domain objects (i.e. Game, Shop,...) 

as controls
○ Having dedicated control classes (matching the use 

cases, DoMoveCtrl)
■ Can extend or include (as in a use case diagram)

○ .. or a mixture of both



UML for Dynamic Model (1)

● Sequence diagram (dedicated control object)



UML for Dynamic Model (2)

● Sequence diagram (top level domain object as control)



Dynamic Model for MP 0.1

Design thougths: Piece is what we move (not player). Piece must have a 
position..? Piece knows player but not other way. There's always an actual 
piece. Everything is done with the actual. Player has a dice?? Where did 
the board go? What will be the control?

UC : Move



Parameterization of the Model

● The model normally has quit a few parameters (in MP, 
number of players, how much money for each player, 
number of spaces of board,...)

● Don't want all that spread all over the model

● As a standard I create a singleton class named "P" to hold 
all parameters (get-method for each parameter)

○ The bad name is justified by...
■ Laziness, less to type 
■ It's not a concept, just a collection of parameters



Design Model for MP 0.1

Design thoughts: We shall use packages (core package holds the model). 
P class for model parameters, Main for main-method (a standard). A long 
chain from control to dice.roll().. possible rework? We put an index for 
every space, needed?

UC : Move



Domain Driven Design

● We don't bother about all the services the model needs to 
become a fully functional program

● We focus on the model
○ The model is the solution to the problem!

● Other parts (possible developed in parallel)
○ GUI 
○ Subsystems
○ ... are not part of the solution...!! (technical services)
○ Possible will blur the model, leave out for now...

■ Possible mock-up, hard code



Summary

● We started with the domain model
● Selected a high priority use case
● Created a dynamic model to for the use case, using the 

domain objects
● Used the dynamic model to create a design model (new 

classes, simplified associations)

Next: From design model to running implementation


