
The n-1 next iterations

Running through all phases ...

Iterating MP (1)

● Have a few use cases running
○ Move
○ EndTurn (i.e. switch player)
○ Buy/Sell property

Deepening the MP Model (1)

● During the iterations we discover and hopefully deepening
our understanding of the domain model.

● Example: There's an rule "only the actual player" should be
able to move

○ How should this be realized?

● We can of course disable components in GUI but that's not
the way to do it

○ GUI shouldn't control the domain logic
○ Better: Add attribute "moveable" (boolean) to class Piece (or similar)
○ Also: moveable probably affects many parts of GUI (so use Observer)

Deepening the MP Model (2)

● We previously stated: "All actions only affect the actual
player"

● But that's not true!!!
○ A card can affect the piece and the player or all players (not just the

actual player)
○ Also: A card can move the piece! And possible a new card can move it

again... the game running by itself!?!? Or?
● Possible: Design horror!!!!!

○ Will this break the design ...??
● Suggested solutions

○ Pieces and Players must be able to react to cards, let both have
actOnCard()-method.

○ Card's have an action and an argument (int). move 2, pay 4000, ...

Transition from Command Line to GUI

● Until now we used the "command line loop" as IO for the
application

● Time to add a GUI
○ Should have a preliminary one

● What will replace the command line as controller?

● Design choice for MP
○ We'll use a top-level class Monopoly as the control
○ Possible to port much of the command line version code to the

class
○ GUI will call methods on Monopoly (should create interface in

between)

Keep the Model Clean

● GUI applications use the MVC pattern

● Will introduce foreign (service) code into model

● During the transition we must try to keep the model as clean
possible

○ Try to put service code in design classes (non-domain)
○ And of course no GUI code in model (a remainder)

MVC Technicalities

● Need Observer pattern to push state changes to GUI
○ Game loops possible a bit different

● Many choices
○ Advanced: Google Guice, Context and Dependency Injection

(CDI, a Java Standard)
○ Simple: Create a "in-house" EventBus

● Design choice: We'll use a simple in-house EventBus
○ Excellent way to trace all events (they all pass the bus)
○ Will minimize service code in model (see demos from course

page)

GUI Technicalities

● State changes in model and other event possible updates
GUI

● Code to update GUI resides in GUI (else testability issues)
○ In listener (actionPerformed)

■ before call to control/model
■ after call to control/model

○ In observer-callback method
● Swing single thread rule (all GUI code in Swing thread)

○ Possible need SwingUtilities.invokeLater(...) or
invokeAndWait(), (blocking)

● Time consuming method calls will block GUI
○ Use SwingWorker to run tasks in separate thread
○ Use Timer and TimerTask to run periodically in background

Connecting GUI to Model

● Inspection and demo run of MP 0.4

Dependencies

● High quality software is composed of loosely composed
modules, i.e. few and controlled dependencies between
modules (packages)

● Dependencies going down towards lower abstraction levels
○ Low abstraction levels often uses primitive types

● Typical layering

Dependencies

Mainly
added at
system
design,
upcoming

Dependency Analysis of MP 0.4

● Have UML diagrams
for ocular inspection, not fool
proof? Use a tool!

○ Eclipse has STAN plugin
○ Possible need to remove test

classes (.class files from JUnit-
tests)

Seems very good!

Exception Handling

● Handle exceptions where it's possible

● If not possible in actual method let caller try to handle it
○ Should normally be in domain or control layers

● Possible create central ExceptionHandler
○ Methods: ignore(e), retrow(e)
○ Possible to log all exceptions from one place

● Often need to inform GUI (show dialog), use EventBus
○ Don't propagate exception all the way to GUI

More Model Design Issues

● Still working with the model albeit we have a GUI

● A few examples
○ Mutability
○ State
○ Swapping algorithms
○ Canonical form for objects
○ Reducing dependencies (a constant design issue)
○ Interfaces

Mutability

● Always try to use immutable objects
○ Safe to share and more...

● Use final all over as much as possible

● Set initial state in contructor

Application/Object States

● Object state
○ MP: Have movable (as state for Piece)
○ ..other?

● Identifying distinct states (modes) for application or objects

● Outcome depends on input and state
○ Example: Game character in state "dead" will not react to

damaging input (events)

● Design pattern "State"

Changing the algorithm (behavior)

● To be able to swap algorithms use "Strategy pattern"
○ Example: Useful for game levels (all objects having same

interface)
■ Level 1, simple algorithm (An object)
■ Level 2, a bit smarter (Other object)
■ ...
■ Level N, can't beat this (Yet other object)

● Also possible "Template Pattern"
○ If much of algorithm common to all objects

Canonical Object Form

● Do the object(s) need to be
○ Compared?

■ Override Object.equals()
■ If so also override hashCode()

■ Very common to get the standard Java collections to work as
expected

○ Sorting?
■ Implement Comparable, Comparator

○ Cloned?
■ Override Object.clone()

○ Other general behavior...?

Summary

● We have done a few iteration, thereby deepened our
understanding of the model.

● Have solved some design problems
● Have added a (primitive) GUI
● Hopefully the design is stable

○ If so, ... we start furiously to implement everything
● Our process have some weakness, the over all design i.e.

"the big picture"...

Next: System design...

