
System Design

The big picture

System Design

● Have the model, but the model needs help...
○ What services is required by the model?
○ MP: Have event bus and GUI, probably need a few others

● During system design we try to
○ Identify services (implemented as subsystems)

■ Mandatory to have a least one
○ Manage overall structure and flow
○ Global design issues
○ Resource handling (images, etc.)

System Design Overview

● Global design decisions
● Software decomposition (the pieces)

○ Tiers, subsystems, interfaces
● Layering (overall)
● Communication
● More dependency analysis
● Persistency, storing data, data formats
● Concurrency issues
● Security
● Boundary conditions; Start, stop, errors
● Selecting platform, done, (Java SE >= 1.6)

Global design decisions

● Decisions affecting "everything"
○ Distributed application (optional). Where does the model live?
○ Globally unique id's (the spaces in MP?...)
○ Global data structures (accessible globally)
○ MVC model, done
○ Life cycles of objects (possible to restore game??...)
○ Interoperability requirements
○ Communication (also inside single application), we have the

EventBus, is that enough?
○ ...

Subsystems (services)

● Some typical
○ Persistence (store/retreive)
○ Printing
○ Communication
○ Rule systems (business/game rules)
○ Engines, simulation engine
○ Graphics 2D, 3D...
○ Processors (text formatter, spell checker)
○ Security, authorization module
○ Mappers, mapping between formats

UML for System Design

● Deployment diagram (left)
● Package diagram (right)
● Also: Class diagrams myapp.jar

"In house" or Not?

● Typically you don't implement subsystems for
○ Graphics
○ Sound
○ Data handling, XML, ...
○ Networking
○ ... find somewhere!

● Always look for high level
○ Network: Sockets, NO!!!!

■ XML-RPC, RMI, ... other, ... much better
○ Databases to Objects, very hard, use JPA, Hibernate, ...

● If no other possibility ... in-house (avoid)
○ Possibility: Adapt existing code (Adapter pattern)

Subsystem Interfaces

● The interfaces are the important design decisions
○ Subsystem of course has a single responibility
○ Should be possible to swap implementations

● Example: IPersistency.java
○ Interface to storage system

1. What would you like to do (not how)?
2. Implement it: Flat files, serialization, XML, real database

Subsystem Implementation

● Prefer stateless subsystems

● Standard: Facade + Factory design pattern
○ Factory always return interface type

● Possibly add features by wrapping (Decorator pattern)
○ Make it a singleton
○ Make it observable
○ ...

Testing of Subsystems
● Any in-house subsystem is of course thoroughly tested

before attached to the application
○ Hopefully others are too

Keep the Model Clean
● Again: Minimize use of foreign (service) code in model

● Let model use subsystems in a disciplined manner

● Preferable: Only one model object uses any given
subsystem

Lookups

● Very common need for global lookup
○ Singletons
○ Resource Locator

■ Singleton with methods to locate objects
■ Read only

○ Global maps
■ Enum as keys (no misspelling)
■ Read only

Resources

● How to find/organize resources?

○ Use Resource Bundles (see demos)
■ java.util.ResourceBundle
■ A map as a text file. File automatically read and converted to Java

"map-like" object

○ For images use ClassLoader class
■ getResource(s), findResource(), ...

○ Possible XML, use Java JAXP (API For XML processing)
■ Even better (simpler) XStream library, see sample on

course page.

Wiring It Togheter
● Where and when to wire together the application?

○ Static wiring; fixed references
○ Dynamic wiring; changing references

● Ad-hoc (non general)
○ Class "A" creates "B" creates "C", ...

■ Creation all over!
■ Dependencies..?!

● Centralized creation better
○ If simple, create/wire in Main class
○ Else, Builder design pattern or similar

● Possibly (advanced) use a framework
○ A framework can "inject" objects into other objects
○ Very loose coupling
○ Have look at testweld.ep, testguice.ep (on course page)

● Note: Interfaces never have methods for creation

Summary

● One weakness with our process is the lack of design
upfront, possible problems at the system level

● If a bit more experienced we should have worked with
system design in parallel

Next: No... this is the ending. Thanks and GOOD LUCK!!

