
Implementation

Phase 4

Implementation

● Goal is to get the first running version of design model

● As stated out: We do it incrementally "use case by use
case" (version by version)

● For now we have the highest priority use case

Single Responibility Principle

● (Remainder) "Everything", package, class, method, attribute, ...
should have one well defined responsibility (on it's
abstraction level)

○ Possible the most important principle

● We have used this in domain and design model. Now we
must keep it that way!

○ Easy to get lost when lots of details pop up
○ Switch between domain/design-model and code to keep

control (also helps when stuck)
○ Possible change model if code reveals better ideas

Testing

● Unit testing: Testing a single class (object)

● Integration testing: Testing the interaction of many classes
(objects), possible a full use case

○ Time consuming when number of objects increase

● Best fit for this course: Unit testing (only)
○ The test are an important part of the quality and documentation

of the application

Unit Testing Techniques

● Test shouldn't need any human interaction (besides a start
command)

○ Implies: No dependency from model to view
● Test nontrivial classes from design model
● Each class that needs testing has a companion "test class"

performing the tests (a one-to-one match)
○ Model/design-class Player has test class TestPlayer (Java)

● Test class has "test methods". Each test method tests one
(or a few) method(s) of "class under test" (CUT)

○ CUT has move(), test class has testMove(){ // call move() }
○ Sometimes hard to test single method. Test as few as possible

● Possible to debug tests. Very efficient!!!

Unit Testing Graphical Application

● Should be possible but maybe not to the same extent

What's happening in
the model?

Unit Testing Technical Details

See Workshop JUnit and Monopoly 0.1 (on course page)

Example: From a cancelled Wordfeud-lab ...

Testing in MP 0.1

● Most classes trivial
● A small test of the move method (in Piece)

○ Must go in circle i.e. use modulus

Domain Driven Design (again)

● We focus on the model, the model is the solution
● We don't want the solution blurred by other code (in

particular not tons of awful GUI code...)
○ Develop parallel but wait to connect it to the model

● So..
● ...to be able to "explore" the model we create a simple

command line version of the program
○ Again: If needed, hard code, mock-up
○ For now a simple loop will be the only control (i.e. coordinating

domain object to fulfill the functionality of a use case)

 GUI and MVC, more later

Implementation of MP 0.1

● Technicalities
○ To be able to see the output we override toString() for most

domain classes (common development practise)

● Demo run...!!! Now... MP 0.1
● Inspection model vs code...!

Different Applications

● As said. Not all applications are perfect OO (like MP)

● If application is very "graphical" (2-3D games)
○ Command line version probably not very useful
○ Make fist running version a very scaled down graphical version

■ Again: Goal is to explore the model
■ Much design to get a smooth interaction between model and

"view"

● Others...(any one)?

Documentation at Implementation Level

● Code is the ultimate documentation ...
○ ... if it's understandable!
○ Put in a comment if you in any way think this could be hard to

understand, high level, what is happening (not how)
○ All coding and comments in English

● Classes should have a class comment (at top)
○ What is this, responsibility of this, who uses it, @author

● Methods
○ If in need put a comment (better a clear informative name)

● Attributes
○ Why, for what (better a clear informative name)

● Silly/Bad comments are a pain or a risk (low quality)

The Impact of Design

On which curve are we..?

Hmm...

Summary

● Using the design model we have created a first running
increment of the application

● We focus on the model, no GUI for now
○ Possible a special case for MP or alike

● We'll have some tests (start of a full test suite)

Next: The n-1 following iterations....

