UNIX security

Ulf Larson (modified by Erland Jonsson/Magnus Almgren) Computer security group Dept. of Computer Science and Engineering Chalmers University of Technology, Sweden

Outline

- UNIX security ideas
- Users and groups
- File protection
- Setting temporary privileges
 - Permission bits
 - Program language components
- Examples

UNIX security ideas

- Memory protection for processes
 - Processes have own virtual address space
 - Communication with hardware is done through the operating system
- Files are protected between users
 - The "Everything is a file" concept implies that same mechanisms apply for all objects
- Maintenance is carried out by a "reliable" system administrator
 - Also known as root, or superuser

Users and groups

- A user name is internally represented by a user identifier, or UID
 - Special user names are used for system functions, such as root, guest and apache
 - UNIX id command show UID
 - UIDs are stored in file /etc/passwd with username, preferred shell
 - Your system privileges depends on UID
- Group id, or GID is used to identify groups of users
 - UNIX groups <username> shows the groups that <username> belongs to

Users and groups (2)

- /etc/passwd file entry for user root:
 - root:AAencryptedpw:0:0:root:/root:/bin/bash
- Special user names
 - UNIX comes with special users for administrative purposes: the superuser, or root.
 - As root you can log users out and in, shutdown the computer, start and run network services, run all programs, view all files for all users
 - As root: *most security restrictions are bypassed*.
 - "Hacking root" provides an attacker with unrestricted privileges to a system...BAD!

Users and groups (3)

- Sometimes a user need to perform actions as another user
 - UNIX su command (substitute user / switch user)
 - User enter username and password for account. User becomes the other user until log out
 - UNIX sudo command
 - Run a single command usually limited for root (perm. in sudoers file)
 - Users enter their own password (typically) and the access is logged.
 - Executable files with SUID bit set
 - Operating system lets user perform the desired operation with the privileges of the *owner* of the object. When execution finished, user assumes ordinary privileges.
 - Using the setuid() function call

Users and groups (4)

- Real and effective UIDs
 - Each user has at any given point in time two (sometimes three) different UIDs
 - Real UID, or RUID is assigned to user when logging in. Used to identify unique user and remain unchanged
 - Effective UID, or EUID is initially same as RUID, but changes to *owner* of file during execution of files with the SUID flag set (SUID files).
 - EUID changes back to RUID after execution

File Protection

- UNIX file system controls which users can access what items and how
- Simply put: Everything visible to a user can be represented as a "file"
 - Each "file" has at least one name, an owner and access rights
 - Running UNIX Is command reveals information about files and directories

File Protection (2): Example

```
>>ls -l /home/ulf/example.txt
```

```
-rw-r--r- 1 ulf ulfgrp 1024 Sep 1 11:00 example.txt
```

- file type

rw-r--r-- file permissions (owner, group, other)

1 # names of the file

ulf owner ulfgrp group file size

Sep 1 11:00 modification date and time

example.txt name

File Protection (3)

- File permissions indicate who that can do what on a specified object.
- 9 characters grouped in 3 classes and 3 kinds of permissions
- Classes:

```
Owner = The file's owner
```

Group = Users in the file's group

Other = Everybody else (except the superuser)

■ Kinds:

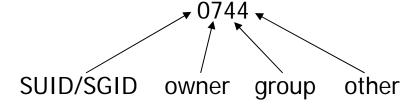
w = Class has write access to file,

x = Class has *execute* access to file

File Protection (4)

■ Example:

- Who can access file a.txt, and in what way:
 - rwx r-- --- usrOne grpTwo a.txt


Answer:

usrOne has read, write and execute access to a.txt grpTwo has read access to a.txt other has *no* access to a.txt

(superuser has full access to a.txt)

File Protection (5)

- UNIX *chmod* command is used to change file access permissions 2 different modes
 - Octal file permissions
 - Four octal numbers are used as follows:

When calculating: r adds 4, w adds 2 and x adds 1 to total.

Example: What is the result (in octal) of setting r,w,x for owner, r for group and r for other for non SUID file?

File Protection (6)

- Combining kinds r, w and x and s with '+', '=' and '-'
 and classes u, g and o
 - To add write permissions for group: g+w
 - To remove read permissions for other: o-r
 - To set read access for user: u=r

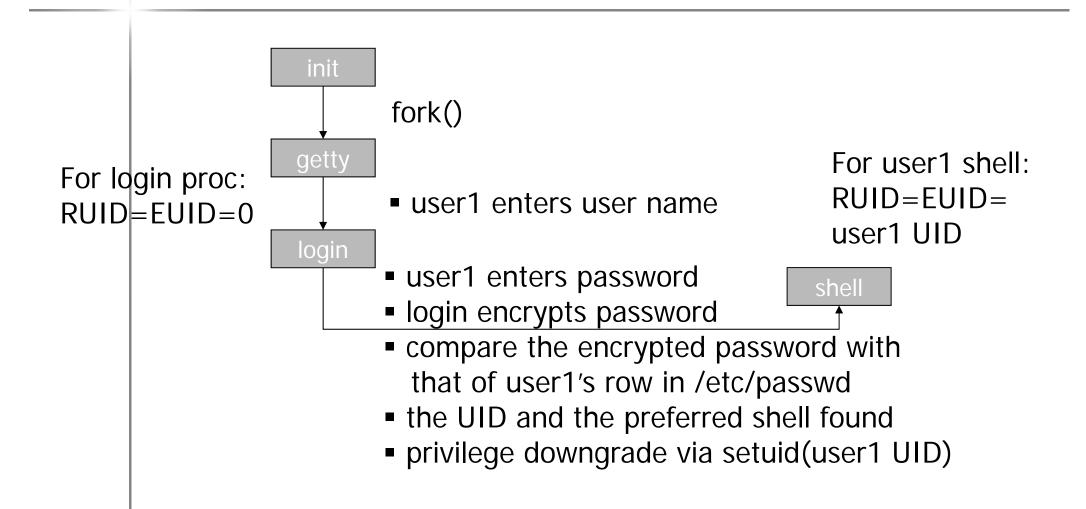
Example:

Assuming file.txt has permissions 0744, the following two operations achieve the same result

- >> chmod 0764 file.txt
- >> chmod g+w file.txt

Setting temporary permissions: SUID program

- A SUID program is a program for which the "s" bit is set
- Used to grant temporary privileges during execution to unprivileged user
 - Example: change the /etc/passwd file
 - What programs are SUID on your system, runfind / -perm -4000 -print
- There are two main methods for changing the s flag through the use of permission bits and chmod
 - SUID bits in file permission.
 - SUID = chmod 4755 file.txt, or chmod u+s file
 - Result: rws r-x r-x


Setting temporary permissions: SUID example

- Impact on RUID and EUID from the use of SUID
 - Repeat slide "Users and Groups (4)"
 - During execution of a SUID file, EUID changes to that of the *owner* of the SUID file. The RUID does not change.

Setting temporary permissions: setuid fcn call

- The setuid() function call
 - >man setuid (for help used in Lab 1)
 - Changes the UID of the user to that of the argument of the function call
 - Non-root users can only setuid to their own UID.
 - If the caller of the setuid() function is non-root, then EUID is changed.
 - If the caller of the setuid() function is root, then RUID and EUID is changed. This is used by root to *downgrade* privileges for a user after the user has logged in.

Example: UNIX login

Summarizing example 1

Example 1

 User Alice logs in to run the SUID file /home/ulf/becomeMe.exe owned by ulf (UID 12345)

>>ls -l becomeMe.exe rwsr-xr-x ulf ce becomeMe.exe

If user Alice has UID=22448, what are the RUID and EUID before, during and after execution of the file becomeMe.exe?

Summarizing example (2)

■ Example 2

- User Alice logs in to run the file
/home/ulf/dontbecomeMe.exe
owned by ulf (UID 12345)
>>1s -1 dontbecomeMe.exe
rwxr-xr-x ulf ce dontbecomeMe.exe

If Alice has the UID 22448, what are the RUID and EUID before, during and after execution of file dontbecomeMe.exe?

Solutions to examples

- Example 1
 - Before RUID=EUID=22448
 - During RUID=22448, EUID=12345
 - After RUID=EUID=22448
- Example 2
 - Before RUID=EUID=22448
 - During RUID=EUID=22448
 - After RUID=EUID=22448