Lecture Data structures (DAT037)

Nils Anders Danielsson

2014-11-14

Today

- ► Binary trees.
- ► Priority queues.
 - Binary heaps.
 - Leftist heaps.

- A binary tree is either empty or a node.
- A node may contain a value.
- A node has two subtrees (possibly empty):
 A left one and a right one.

► Terminology:

- ▶ Parent, child, sibling, grandchild etc.
- ▶ Root, leaf.

```
One representation:
  data Tree a = Empty
              | Node (Tree a) a (Tree a)
Example:
  tree :: Tree Integer
  tree = Node (Node Empty 2 Empty)
              (Node Empty 3 (Node Empty 5 Empty))
```

Another representation:

```
class Tree<A> {
   class TreeNode {
        A        contents;
        TreeNode left; // null if left child is missing.
        TreeNode right; // null if right child is missing.
   }
```

```
TreeNode root; // null if tree is empty.
}
```

Height:

- Empty trees have height -1.
- Otherwise:

Number of steps from root to deepest leaf.

Height:

- Empty trees have height -1.
- Otherwise: Number of steps from root to deepest leaf.

```
height :: Tree a -> Integer
height Empty = -1
height (Node l _ r) = 1 + max (height l) (height r)
```

Height:

- Empty trees have height -1.
- Otherwise: Number of steps from root to deepest leaf.

```
int s(TreeNode n) {
    if (n == null) {
        return 0;
    } else {
        return 1 + s(n.left) + s(n.right);
    }
}
```

What is the result of applying s to the root of the following tree?

Priority queues

Queues where every element has a certain priority.

Interface (example):

- Constructor for empty queue.
- ▶ insert: Inserts element.
- ▶ find-min: Returns minimum element.
- ▶ delete-min: Deletes minimum element.
- decrease-key: Decreases priority.
- merge: Merges two queues.

Some applications:

- ► Scheduling of processes.
- ► Sorting.
- ► Dijkstra's algorithm (3rd assignment).

2nd assignment: Implement priority queue.

If you implement the priority queue ADT with lists, what is the worst case time complexity of insert and delete-min?

- ▶ insert: $\Theta(1)$, delete-min: $\Theta(1)$.
- ▶ insert: $\Theta(1)$, delete-min: $\Theta(n)$.
- ▶ insert: $\Theta(n)$, delete-min: $\Theta(1)$.
- ▶ insert: $\Theta(n)$, delete-min: $\Theta(n)$.

Binary heaps

Heap-ordered complete binary trees.

Heap-ordered

Every node is smaller than or equal to its children.

Complete binary tree

As low as possible, every level completely filled except possibly the last one, which is filled from the left.

A binary heap of size n has height $\Theta(\log n)$.

Identify the binary heaps.

Implementation of binary heaps

- Empty queue: Empty tree.
- ▶ find-min: Return the root.
- ▶ insert: Insert at the end. Percolate up.
- delete-min: Remove the root.
 Move the final element to the top.
 Percolate down.
- decrease-key: Change priority, percolate up (or down for increase-key).

Percolate up/down until the tree is heap-ordered.

If the nodes can be found quickly:

- Empty queue: $\Theta(1)$.
- ▶ find-min: $\Theta(1)$.
- insert: $O(\log n)$ (maybe amortised).
- delete-min: $O(\log n)$ (maybe amortised).
- decrease-key: $O(\log n)$.

(Assuming that comparisons take constant time.)

Most nodes are located "close" to the leaves. Average time complexity of insertion: O(1).

Implementation of binary heaps

One can represent the tree using an array (2nd assignment).

- The root at position 1.
- ▶ The last element at position *n*.
- The first empty cell at position n + 1.
- Node *i*'s left child: 2i.
- Node *i*'s right child: 2i + 1.
- Node *i*'s parent (i > 1): $\lfloor i/2 \rfloor$.

decrease-key: How can the node be located quickly?

Can use extra data structure.

Example: Hash table.

Leftist heaps

- Merging two binary heaps, implemented using arrays, seems to be inefficient.
- ▶ With *leftist heaps*: O(log n) (assuming O(1) comparisons).

- Heap-ordered (pointer-based) binary trees, with extra invariant (later).
- ▶ Basic operation: merge.
- Easy to implement insert, delete-min in terms of merge.

Leftist heaps, first attempt

- -- Invariant for Node x l r:
- -- * x is smaller than or equal to
- -- all elements in 1 and r.
- data PriorityQueue a
 - = Empty
 - | Node a (PriorityQueue a) (PriorityQueue a)

```
empty :: PriorityQueue a
empty = Empty
```

```
isEmpty :: PriorityQueue a -> Bool
isEmpty Empty = True
isEmpty (Node _ _ ) = False
```

Leftist heaps, first attempt

-- Precondition: The queue must not be empty.
findMin :: PriorityQueue a -> a
findMin Empty = error "findMin: Empty queue."
findMin (Node x _ _) = x

-- Precondition: The queue must not be empty. deleteMin :: Ord a => PriorityQueue a -> PriorityQueue a deleteMin Empty = error "deleteMin: Empty." deleteMin (Node _ l r) = merge l r merge implemented by going down right spines:

```
merge :: Ord a =>
    PriorityQueue a -> PriorityQueue a
merge Empty r = r
merge l Empty = l
merge l@(Node xl ll rl) r@(Node xr lr rr) =
    if xl <= xr then
        Node xl ll (merge rl r)
    else
        Node xr lr (merge l rr)</pre>
```

What is the worst case time complexity of merge? Assume that both queues have n elements, and that comparisons take constant time.

- ► Θ(1).
- ► $\Theta(\log n)$.
- $\blacktriangleright \ \Theta(n).$
- $\blacktriangleright \ \Theta(n\log n).$
- $\blacktriangleright \ \Theta(n^2).$
- $\blacktriangleright \ \Theta(n^2 \log n).$

- Trees may be very unbalanced: no left children, only right children.
- ▶ This makes merge linear (in the worst case).
- ▶ Solution: Ensure right spine is short.

Null path length

- ▶ -1 for empty trees.
- Otherwise: Number of steps from root to closest node with at most one child.

Null path length

▶ -1 for empty trees.

 Otherwise: Number of steps from root to closest node with at most one child.

```
height :: PriorityQueue a -> Integer
height Empty = -1
height (Node _ l r) = 1 + max (height l) (height r)
```

Leftist

For Node x l r, npl l \geq npl r.

This implies:

• Number of nodes on right spine: 1 + npl t.

▶ 1 + npl t is $O(\log n)$, where n is the size of t. Thus the right spine is short.

Leftist heap invariants

- 1. Heap-ordered.
- 2. Leftist.

Identify the leftist heaps.

- The previous implementation of merge sometimes breaks the leftist invariant.
 Simple fix: When necessary,
 - swap the left and right subtrees.

```
Old code:
  merge :: Ord a =>
           PriorityQueue a -> PriorityQueue a ->
           PriorityQueue a
  merge Empty
                           r
                                              = r
                                             = 1
  merge 1
                           Empty
 merge l@(Node xl ll rl) r@(Node xr lr rr) =
    if xl <= xr then
      Node xl ll (merge rl r)
    else
      Node xr lr (merge l rr)
```

```
New code.
 merge :: Ord a =>
           PriorityQueue a -> PriorityQueue a ->
           PriorityQueue a
 merge Empty
                           r
                                             = r
                                             = 1
 merge 1
                          Empty
 merge l@(Node xl ll rl) r@(Node xr lr rr) =
    if xl <= xr then
      node xl ll (merge rl r)
    else
      node xr lr (merge l rr)
```

Smart constructor used to enforce leftist invariant:

- -- Precondition for node x l r:
- -- * x is smaller than or equal to
- -- all elements in 1 and r.

```
node x l r =
```

```
if npl l >= npl r then
```

```
Node x l r
```

```
else
```

Node x r l

Leftist heaps

One final tweak:

- ▶ The recursive calculation of npl is unnecessary.
- ▶ Fix: Store npl values in nodes.

What is the result of applying deleteMin to

	Binary heap	Leftist heap (immutable)
find-min	O(1)	<i>O</i> (1)
delete-min	$O(\log n)$	$O(\log n)$
insert	O(1) (average)	$O(\log n)$
decrease-key	$O(\log n)$	O(n)
merge	O(n)	$O(\log n)$

(Assuming that comparisons take constant time.)

Other priority queue data structures

Comparison on Wikipedia.

- Binary trees.
- Priority queues.
 - Binary heaps.
 - ► Leftist heaps.

Next time:

► Hash tables.