Technical Report no. 2004-09

BNF Converter
Multilingual Front-End Generation
from Labelled BNF Grammars

Michael Pellauer, Markus Forsberg and Aarne Ranta

CHALMERS | GOTEBORG UNIVERSITY

Department of Computing Science
Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg, Sweden

Goteborg, 2004

Technical Report in Computing Science at
Chalmers University of Technology and Gé6teborg University

Technical Report no. 2004-09
ISSN 1650-3023

Department of Computing Science

Chalmers University of Technology and Go6teborg University
SE-412 96 Goteborg, Sweden

Telephone + 46 (0)31-772 1000

Goteborg, Sweden, 2004

Abstract

The BNF Converter is a compiler-construction tool that uses a Labelled BNF
grammar as the single source of definition to extract the abstract syntax,
lexer, parser and pretty printer of a language. The added layer of abstraction
allows it to perform multilingual code generation. As of version 2.0 it is able
to output front ends in Haskell, Java, C or C++.

1 Introduction

Language implementors have long used generative techniques to implement
parsers. However, with advances in language design the focus of the compiler
front end has shifted from the parsing of difficult languages to the definition
of a complex abstract-syntax-tree data structure. It is the common practise
for modern implementors to use one tool to generate an abstract syntax
tree, another to generate a lexer, and a third to generate a parser.

Yet this requires that the implementor learn three separate configuration
syntaxes, and maintain disparate source files across changes to the language
definition. The BNF Converter! is a compiler-construction tool based on the
idea that from a single source grammar it is possible to generate both an
abstract syntax tree definition, including a traversal function, and a concrete
syntax, including lexer, parser and pretty printer.

The decoupling of the grammar description from the implementation
language allows our tool to perform multilingual code generation. As of
version 2.0 the BNF Converter is able to generate a front end in Haskell,
Java, C, or C++. This continues the tradition of Andrew Appel [1, 2, 3],
whose textbooks apply the same compiler methodology across three widely
different target languages.

The BNF Converter Approach.

With the BNF Converter the user specifies a grammar using an enhanced
version of Backus Naur Form called Labelled BNF (LBNF), described in
Section 2. This grammar is language independent and serves as a single
source for all language definition changes, increasing maintainability. After
the user selects a target language it is used generate the following:

e Abstract syntax tree data structure
e Lexer and parser specification
e Pretty printer and traversal skeleton

e Test bench and Makefile

! Available from the BNF Converter website [7]

e Language documentation

This unified approach to generation offers many advantages. First of
all, the increased level of abstraction allows our tool to check the grammar
for problems, rather than attempting to check code written directly in an
implementation language like C. Secondly, the components are generated
to interoperate correctly together with no additional work from the user.
Packages such as the abstract syntax and pretty printer can be supplied as
development frameworks to encourage applications to make use of the new
language.

Combined with BNF Converter 2.0’s multiingual generation this facili-
tates interesting possibilities, such as using a server application written in
C++ to pretty-print output that will be parsed by a Java application run-
ning on a PDA. The language maintainers themselves can experiment with
implementing the same methodology over multiple languages, even creating
a prototype language implementation in Haskell, then switching to C for
development once the language definition has been finalized.

This paper gives an overview of the LBNF grammar formalism. We
then compare the methodology the BNF Converter uses to produce code in
Haskell, Java, C++, and C, highlighting some of the differences of generating
a compiler in these languages. Finally, we conclude with a discussion of our
practical experiences using the tool in education and language prototyping.

Language Describability.

The requirements that the BNF Converter puts on a language in order to
describe it are simple and widely accepted: the syntax must be definable
by a context-free grammar and the lexical structure by a regular expression.
The parser’s semantic actions are only used for constructing abstract syntax
trees and can therefore not contribute to the definition of the language. Toy
languages in compiler text books are usually designed to meet these criteria,
and the trend in real languages is to become closer to this ideal.

Often it is possible to use preprocessing to turn a language that almost
meets the criteria into one that meets them completely. Features such as
layout syntax, for example, can be handled by adding a processing level
between the lexer and the parser. Our experiences with real-world languages
are discussed in Section 8.

2 The LBNF Grammar Formalism

The input to the BNF Converter is a specification file written in the LBNF
grammar formalism. LBNF is an entirely declarative language designed to
combine the simplicity and readability of Backus Naur Form with a handful
of features to hasten the development of a compiler front-end.

Besides declarativity, we find it important that LBNF has its own se-
mantics, instead of only getting its meaning through translations to Haskell,
Java, C, etc. This means, among other things, that LBNF grammars are
type checked on the source, so that semantic errors do not appear unexpect-
edly in the generated code. Full details on LBNF syntax and semantics are
given in [8], as well as on the BNF Converter homepage [7].

2.1 Rules and Labels

At the most basic level, an LBNF grammar is a BNF grammar where every
rule is given a label. The label is an identifier used as the constructor of
syntax trees whose subtrees are given by the non-terminals of the rule; the
terminals are just ignored. As a first example, consider a rule defining
assignment statements in C-like languages:

SAssign. STM ::= Ident "=" EXP ;

Apart from the label SAssign, the rule is an ordinary BNF rule, with ter-
minal symbols enclosed in double quotes and non-terminals written without
quotes. A small, though complete example of a grammar is given in Section
2.4.

Some aspects of the language belong to its lexical structure rather than
its grammar, and are described by regular expressions rather than by BNF
rules. We have therefore added to LBNF two rule formats to define the
lexical structure: tokens and comments (Section 2.2).

Creating an abstract syntax by adding a node type for every BNF rule
may sometimes become too detailed, or cluttered with extra structures. To
remedy this, we have identified the most common problem cases, and added
to LBNF some extra conventions to handle them (Section 2.3).

Finally, we have added some macros, which are syntactic sugar for po-
tentially large groups of rules and help to write grammars concisely, and
some pragmas, such as the possibility to limit the entrypoints of the parser
to a subset of nonterminals.

2.2 Lexer Definitions

The token definition format.

The token definition form enables the LBNF programmer to define new
lexical types using a simple regular expression notation. For instance, the
following defines the type of identifiers beginning with upper-case letters.

token UIdent (upper (letter | digit | ’_’)*) ;

The type UIdent becomes usable as an LBNF nonterminal and as a type
in the abstract syntax. Each token type is implemented by a newtype in
Haskell, as a String in Java, and as a typedef to char* in C/C++.

Predefined token types.

To cover the most common cases, LBNF provides five predefined token types:
Integer, Double, Char, String, Ident

These types have predefined lexer rules, but could also be defined using the
regular expressions of LBNF (see [8]). In the abstract syntax, the types are
represented as corresponding types in the implementation language; Ident
is treated like user-defined token types. Only those predefined types that
are actually used in the grammar are included in the lexer and the abstract
syntax.

The comment definition format.

Comments are segments of source code that include free text and are not
passed to the parser. The natural place to deal with them is in the lexer.
A comment definition instructs the lexer generator to treat certain pieces of
text as comments.

The comment definition takes one or two string arguments. The first
string defines how a comment begins. The second, optional string marks
the end of a comment; if it is not given then the comment is ended by a
newline. For instance, the Java comment convention is defined as follows:

comment "//" ;
comment ll/*ll ||*/|| ;

2.3 Abstract Syntax Conventions
Semantic dummies.

Sometimes the concrete syntax of a language includes rules that make no
semantic difference. For instance, the C language accepts extra semicolons
after statements. We do not want to represent these extra semicolons in the
abstract syntax. Instead, we use the following convention:

If a rule has only one non-terminal on the right-hand-side, and
this non-terminal is the same as the value type, then it can have
as its label an underscore (-), which does not add anything to
the syntax tree.

Thus, we can write the following rule in LBNF:

. STM ::= STM ";"

Precedence levels.

A common idiom in (ordinary) BNF is to use indexed variants of categories
to express precedence levels, e.g. EXP, EXP2, EXP3. The precedence level
regulates the order of parsing, including associativity. An expression be-
longing to a level n can be used on any level < n as well. Parentheses lift
an expression of any level to the highest level.

Distinctions between precedence levels and moving expressions between
them can be defined by BNF rules, but we do not want these rules to clutter
the abstract syntax. Therefore, we can use semantic dummies (_) for the
transitions, together with the following convention:

A category symbol indexed with a sequence of digits is treated
as a type synonym of the corresponding non-indexed symbol.

A non-indexed symbol is treated as having the level 0. The following gram-
mar shows how the convention works in a familiar example with arithmetic
sums and products:

EPlus. EXP ::= EXP "+" EXP2 ;
ETimes. EXP2 ::= EXP2 "x" EXP3 ;
EInt. EXP3 ::= Integer ;

. EXP ::= EXP2 ;

_ EXP2 ::= EXP3 ;

_. EXP3 ::= "(" EXP ")"

The indices also guide the pretty-printer to generate a correct, minimal
number of parentheses.

The coercions macro provides a shorthand for generating the dummy
transition rules concisely. It takes as its arguments the unindexed cate-
gory and the highest precedence level. So the final three rules in the above
example could be replaced with:

coercions EXP 3 ;

Polymorphic lists.
It is easy to define monomorphic list types in LBNF:

NilDEF. ListDEF ::= ;
ConsDEF. ListDEF ::= DEF ";" ListDEF ;

But LBNF also has a polymorphic list notation. It follows the Haskell syntax
but is automatically translated to native representations in Java, C++, and

C.

[1. [DEF]
(:). [DEF]

DEF ";" [DEF] ;

The basic ingredients of this notation are

[C], the category of lists of type C,
[1 and (:), the Nil and Cons rule labels,

(:[1), the rule label for one-element lists.

The list notation can also be seen as a variant of the Kleene star and plus,
and hence as an ingredient from FEztended BNF in LBNF.

Using the polymorphic list type makes BNF Converter perform an au-
tomatic optimization: left-recursive lists. Standard lists in languages like
Haskell are right-recursive, but LR parsers favor left-recursive lists because
they save stack space. BNF Converter allows programmers to define famil-
iar right-recursive lists, but translates them into left-recursive variants in
parser generation. When used in another construction, the list is automat-
ically reversed. The code examples below, generated from the grammar in
Section 2.4, show how this works in the different parser tools.

The terminator and separator macros.

The terminator macro defines a pair of list rules by what token terminates
each element in the list. For instance,

terminator STM ";"
is shorthand for the pair of rules

(1. [STM]
(:). [STM]

STM ";" [STM] ;

The separator macro is similar, except that the separating token is not
expected after the last element of the list. The qualifier nonempty can be
used in both macros to make the one-element list the base case.

2.4 Example Grammar

A small example LBNF grammar is given in Figure 1. It describes a language
of boolean expressions, perhaps written as part of a larger grammar. In this
small language a PROGRAM is simply a list of expressions terminated by
semicolons. The expressions themselves are just logical AND and OR of
true, false, or variable names represented by the LBNF built-in type Ident.

This example, though small, is representative because it uses both poly-
morphic lists and precedence levels (the AND operator having higher prece-
dence than OR). We will use this single source example to explore BNF Con-
verter’s generation methodology across multiple implementation languages.

PROGRAM. PROGRAM ::= [EXP] ;

EOr. EXP ::=

EXP "||" EXP1 ;
EAnd. EXP1 ::

EXP1 "&&" EXP2 ;
ETrue. EXP2 ::= "true" ;
EFalse. EXP2 ::= "false" ;
EVar. EXP2 ::= Ident ;
terminator EXP ";" ;
coercions EXP 2 ;

Figure 1: LBNF Source code for all examples

3 Haskell Code Generation

The process the BNF Converter uses to generate Haskell code is quite
straightforward. Here we will only present an overview of this process, for
comparison with the methods used for Java and C. For a more complete look
at this process see the documentation on the BNF Converter Homepage [7].

The Abstract Syntax.

Consider the example grammar given in Section 2.4.

The Haskell abstract syntax generated by the BNF Converter, shown in
Figure 2A, is essentially what a Haskell programmer would write by hand,
given the close relationship between a declarative grammar and Haskell’s
algebraic data types.

The Lexer and Parser.

The BNF Converter generates lexer and parser specifications for the Alex [6]
and Happy [15] tools. The lexer file (omitted for space considerations) con-
sists mostly of standard rules for literals and identifiers, but has rules added
for reserved words and symbols (i.e. terminals occurring in the grammar),
regular expressions defined in token definitions, and comments.

The Happy specification (Figure 2B) has a large number of token defi-
nitions, followed by parsing rules corresponding closely to the source BNF
rules. Note the left-recursive list transformation, as defined in Section 2.3.

The Pretty Printer and Case Skeleton.

The pretty printer consists of a Haskell class Print with instances for all
generated data types, taking precedence into account. The class method

prt generates a list of strings for a syntax tree of any type (Figure 2C).

The list of strings is then put in layout (indentation, newlines) by a
rendering heuristic, which is generated independently of the grammar. This
function is designed to make C-like languages look good by default, but it
is written with easy modification in mind.

The case skeleton (Figure 2D) is a simple traversal of the abstract syn-
tax tree representation that can be used as a template when defining the
compiler back end, e.g. type checker and code generator. The same method-
ology is also used to generate the pretty printer. The case branches in the
skeleton are initialized to fail, and the user can simply replace them with
something more interesting.

The Makefile and Test Bench.

The generated test bench file can be loaded in the Haskell interpreter hugs
to run the parser and the pretty printer on terminal or file input. If parsing
succeeds the test functions display a syntax tree, and the pretty printer
linearization. Otherwise an error message is displayed.

A simple makefile is created to run Alex on the lexer, Happy on the
parser, and LaTeX on the document, by simply typing make. The make
clean command removes the generated files.

Translation Summary.

Overall, it is easy to represent an LBNF grammar as a Haskell data type—a
straightforward translation between source productions and algebraic data
types. Language implementors have long known that the similarities be-
tween algebraic data types and grammar specifications make functional pro-
gramming a good choice for compilers.

4 Java Code Generation

Translating an LBNF grammar into an object-oriented language is less
straightforward. Appel outlines two possible approaches to abstract syn-
tax representation in Modern Compiler Implementation in Java [2].

In the first method, which Appel refers to as the “Object-Oriented
method,” there is one Java class for each rule in the language grammar.
Each class inherits from a single superclass, and each class defines operations
on itself. For instance, if our compiler were to translate to SPARC and Intel
assembly code each class would have a method toSPARC() and toIntel()
that would translate itself to the appropriate representation. The advantage
of this method is that it is easy to add new language categories. The user
may add new classes containing the appropriate methods without altering

C. Pretty Printer

instance Print PROGRAM where

prt i e = case e of

PROGRAM exp -> prPrec i 0O

(concat [prt 0 expl)

instance Print EXP where

prt i e = case e of

EOr expO exp -> prPrec i 0

(concat

A. Abstract Syntax

data PROGRAM = PROGRAM [EXP]
deriving (Eq, Show)

datangPE;P EXP [prt 0 exp0 , ["II"] , prt 1 expl)
| EAnd EXP EXP EAnd exp0 exp -> prPrec i 1
| ETrue (concat
| EFalse [prt 1 exp0 , ["&&"] , prt 2 expl)
| EVar ETrue -> prPrec i 2

(concat [["true"l])
EFalse -> prPrec i 2
(concat [["false"]1)

deriving (Eq, Show)

B. Happy Parser EVar id -> prPrec i 2
(concat [prt 0 id])

PROGRAM :: { PROGRAM } prtList es = case es of
PROGRAM : ListEXP { PROGRAM (reverse $1) } [1 -> (concat [I)
EXP :: { EXP } X:1Xs ->
EXP : EXP ||’ EXP1 { EOr $1 $3 } (concat

| EXP1 { $1 } [prt 0 x , [";"] ,
EXP1 :: { EXP } prt 0 xs])
EXP1 : EXP1 &%’ EXP2 { EAnd $1 $3 }

| EXP2 { $1} D. Case Skeleton

EXP2 :: { EXP }
EXP2 : ’true’ { ETrue }

| ’false’ { EFalse } transPROGRAM :: PROGRAM -> Result
| Ident { EVar $1 } transPROGRAM x = case x of
| > EXP °)’ { $2 } PROGRAM exp -> failure x
ListEXP :: { [EXP] } transEXP :: EXP -> Result
ListEXP : {- empty -} { [1 } transEXP x = case x of
| ListEXP EXP ’;’> { flip (:) $1 $2 } EOr exp0 exp -> failure x

EAnd expO exp -> failure x
ETrue -> failure x

EFalse -> failure x

EVar id -> failure x

Figure 2: Haskell source code fragments generated from Figure 1

existing definitions. The disadvantage is that it can be hard to add new syn-
tax tree traversals. Adding a function toAlpha() for instance, could result
in editing hundreds of classes.

In the second “syntax separate from interpretations” method, there is
still one Java class for each grammar rule, but now classes are simply empty
data structures with no methods aside from a constructor. Translation
functions are removed from the data structure, and traverse the tree by
straightforward manner. With this method it is easy to add new traversals,
and these functions can make better use of context information than single
objects’ methods. The disadvantage is that adding new language constructs

requires editing all existing traversal functions to handle the new cases.

However, the BNF Converter, which makes the grammar the central
point of all language changes, lessens this disadvantage. Additionally, since
translation functions are now traversals, it is easy for our tool to generate
skeleton functions as we do in Haskell and for the user to reuse the template
in all transformations.? Therefore the BNF Converter uses this method in
generating Java (and C++) abstract syntax.

Java Abstract Syntax Generation.

Let us return to our example of Boolean Expressions from earlier (Section
2.4). Given this grammar, the BNF Converter will generate the abstract
syntax found in Figure 3A, following Appel’s method.

There are several differences between this transformation and the Haskell
version that should be highlighted. First, experienced Java programmers
will quickly notice that all the generated classes are public, and in Java
public classes must go into their own . java file, with class name matching
the file name. Since it common to have hundreds of productions in an
LBNF grammar, the user’s source directory can quickly become cluttered,
so Abstract Syntax classes are placed into a sub-package called Absyn, and
thus must be kept in a file-system subdirectory of the same name, which the
tool creates.

There is a second difference in the code in Figure 3A: names. Classes in
Java have instance variables and parameters, and all of these require unique
names (whereas in Haskell data structures the names are only optional).
First, we realize that parameter names generally are not important—we can
simply give them the name “p” plus a unique number. The names of instance
variables, on the other hand, do matter. The BNF Converter converts the
type name to lowercase and adds an underscore to prevent conflicts with
reserved words. If there is more than one variable of a type then they are
numbered. Thus, the classes EPlus and ETimes have members exp_1 and
exp-2.

Notice that Appel’s method uses public instance variables, which may
be regarded as bad style by object-oriented programmers today. We have
chosen to remain with the original method, both to keep a higher correspon-
dence to the textbook, and to ease the generation of the pretty printer and
other traversals.

Finally recall that Java 1.4 does not support polymorphic lists. Generic
types is supported in the Java 2 Platform, Standard Edition 1.5 release, also
implemented in BNF Converter (see section 5). The BNF Converter Java
1.4 backend generates simple null-terminated linked lists for each list that

20f course, if the user implements a translation and then modifies the language defini-
tion they must still change the implemented code to reflect the modifications. However,
they can refer to the template function in order to locate the differences.

10

the grammar uses. These special classes are prefixed with “List,” such as
the class ListEXP above, which takes the place of Haskell’s [EXP].

The Lexer and Parser.

The BNF Converter generates specification files for the JLex [4] and CUP
[12] tools which create a lexer and parser in a manner similar to the Haskell
version. The difference between the tools is mainly a matter of syntax.
For example, CUP cannot work with strings directly but requires terminal
symbols be defined for each language symbol or reserved word. Also, CUP
does not refer to variables with $ variables like Bison, but rather by assigning
names to all possibly-used values. Specifications equivalent to the Happy
code in Figure 2B is shown in Figures 3B.

The Java Pretty Printer and Skeleton Function.

Similar to the Haskell version, the Java pretty printer linearizes the abstract
syntax tree using some easily-modifiable heuristics. It follows the method
Appel outlines, using Java’s instanceof operator to determine which sub-
class it is dealing with, then down-casting and working with the public
variables. For example, the code to pretty-print an EXP is found in Figure
3D.

However, the pretty printer alone is not enough to test the correctness of
a parse. In the Haskell version the built-in show function is used to print out
the abstract syntax tree so that the programmer can confirm its correctness.
We could use Java’s toString() method in a similar role, but this is not
satisfying, as it is generally used for debugging purposes. Instead, the BNF
Converter adds a second method to the pretty printer, similar to Haskell’s
show function, shown in Figure 3E.

Throughout both methods the generated code makes use of Java’s
StringBuffer class to efficiently build the result of the linearization.

This instanceof method is also used to generate a code skeleton. How-
ever, this method may seem awkward to many object-oriented programmers,
who are often taught to avoid instanceof wherever possible.

Much more familiar is the Visitor Design Pattern [11]. In it each member
of the abstract syntax tree implements an accept method, which then calls
the appropriate method in the visiting class (double-dispatch).

There is no reason that these two methods cannot live side by side.
Therefore the BNF Converter generates code skeletons using both Appel’s
method and a Visitor interface and skeleton (Figure 3F).

Most familiar Visitor Design Patterns use a Visitee-traversal algorithm.
That is to say, visiting the top member of a list will automatically visit
all the members of the list. However, the BNF Converter-generated pat-
tern uses Visitor-traversal. This means that it is the Visitor’s responsibility,

11

when visiting a list, to visit all the members in turn. This is because certain
algorithms that compilers want to implement are not compositional, so per-
forming a transformation on a single member may be quite different than
performing that transformation on a certain pattern of nodes. For exam-
ple, during peephole analysis a compiler may wish to merge to subsequent
additions into a single operation, but may want to leave single additions
unchanged. In our experience, these types of algorithms are easier to imple-
ment if the Visitor itself is in control of the traversal.

The Test Bench and Makefile.

With the pretty printer defined it is trivial to define a test bench and makefile
to compile the code. However, the lack of an interactive environment such
as Haskell’s hugs means that the user is not able to specify which parser is
used. Instead the first-defined entry-point of the grammar is used by default.
However it is easy for the user to specify another entry point directly in the
test bench source code.

Translation Summary.

Overall, translating from a declarative grammar to an object-oriented ab-
stract syntax definition is possible, however the translation introduces a
number of new complications such as the names of instance variables. A
comparison of Figure 2A and Figure 3A emphasizes the challenges of imple-
menting a compiler in Java.

The BNF Converter tries to deal with these complications in a consis-
tent way to ease the implementation of the rest of the compiler. Appel’s
syntax-separate-from-interpretations method introduces several conventions
that object-oriented programmers may find confusing at first. However, in
practice the ease of using the generated transformation templates should
help users to quickly overcome these difficulties.

5 Java 1.5 Generation

The Java backend has been adapted to Java 1.5 by Bjorn Bringert at Com-
puting Science, Chalmers. The main difference is generic types. Generic
types ensure type safety without having to resort to monomorphic types.
For example, the container types in Java 1.5 are parameterized by a type
T. Compare this with Java 1.4 where all objects in a container are of type
Object. Furthermore, some adaptions were needed to reflect these changes,
in particular in the syntax tree traversal.

12

A. Abstract Syntax

public class PROGRAM {
public ListEXP listexp_;
public PROGRAM(ListEXP p1)
{ listexp_ = pi1; }
}
public abstract class EXP {}
public class EAnd extends EXP {
public EXP exp_1, exp_2;
public EAnd(EXP pi1, EXP p2)
{ exp_1 = p1; exp_2 = p2; }
}
public class EOr extends EXP {
public EXP exp_1, exp_2;
public EOr(EXP pl, EXP p2)
{ exp_1 = p1; exp_2 = p2; }
}
public class ETrue extends EXP {
public ETrue() { }
}
public class EFalse extends EXP {
public EFalse() { }
}
public class EVar extends EXP {
public String ident_;
public EVar(String p1)
{ ident_ = p1; }
}
public class ListEXP {
public EXP exp_;
public ListEXP listexp_;
public ListEXP(EXP pl, ListEXP p2)
{ exp_ = pl; listexp_ = p2; }
}

B. CUP Parser

terminal _SYMB_O; /71
terminal _SYMB_1; /! &&
terminal _SYMB_2; // ;
terminal _SYMB_3; /7«
terminal _SYMB_4; /7)
terminal _SYMB_5; // false
terminal _SYMB_6; // true
terminal String _IDENT_;
PROGRAM ::= ListEXP:p_1 {:

if (p_1 != null) p_1 = p_1l.reverse();
RESULT = new Absyn.PROGRAM(p_1); :}

3
EXP ::= EXP:p_1 _SYMB_O EXP1:p_3 {:
RESULT = new Absyn.EOr(p_1, p_3); :}
| EXP1:p_1 {: RESULT = (p_1); :}

EXP1 ::= EXP1:p_1 _SYMB_1 EXP2:p_3 {:

RESULT = new Absyn.EAnd(p_1, p_3); :}
| EXP2:p_1 {: RESULT = (p_1); :}
EXP2 ::= _SYMB_6 {:
RESULT = new Absyn.ETrue(); :}
| _SYMB_5 {:
RESULT = new Absyn.EFalse(); :}
| _IDENT_:p_1 {:
RESULT = new Absyn.EVar(p_1);

13

CUP Parser (continued)

| _SYMB_3 EXP:p_2 _SYMB_4 {:
RESULT = (p_2); :}

ListEXP ::= /*empty*/{: RESULT = null; :}
| ListEXP:p_1 EXP:p_2 _SYMB_2 {:
RESULT = new Absyn.ListEXP(p_2, p_1); :}

C. Pretty Printer

private static void
pp(Absyn.EXP exp, int _i_) {
if (exp instanceof Absyn.EOr) {
Absyn.EOr eor = (Absyn.EOr) exp;
if (_i_ > 0) render (_L_PAREN);
pp(eor.exp_1, 0);
render("||");
pp(eor.exp_2, 1);
if (_i_ > 0) render(_R_PAREN);
if (exp instanceof Absyn.EAnd) {
Absyn.EAnd eand = (Absyn.EAnd) expj|
if (_i_ > 1) render (_L_PAREN);
pp(eand.exp_1, 1);
render ("&&") ;

D. Abstract Syntax Viewer

private static void sh(Absyn.EXP exp)
{
if (exp instanceof Absyn.EOr) {
Absyn.EOr eor = (Absyn.EOr) exp;
render ("(");
render ("EOr") ;
sh(eor.exp_1);
sh(eor.exp_2);
render(")");
if (exp instanceof Absyn.EAnd) {
Absyn.EAnd eand = (Absyn.EAnd) expj|
render("(");
render ("EAnd") ;

E. Visitor Design Pattern

public void visitEOr(Absyn.EOr eor) {
/* Code For EOr Goes Here */
eor.exp_1.accept(this);
eor.exp_2.accept (this) ;

}

public void visitEAnd(Absyn.EAnd eand) A
/* Code For EAnd Goes Here */

public void
visitListEXP(Absyn.ListEXP listexp) {
while(listexp!= null) {
/* Code For ListEXP Goes Here */
listexp.listexp_.accept(this);
listexp = listexp.listexp_;

Figure 3: Java source code fragments generated from Figure 1

6 C+-+ Code Generation

With the Java version implemented it was straightforward to add support for
C++ generation, using Flex [10] and Bison [9]. This translation is similar to
the Java version—the main difference being the additional complications of
destructors and the separation of interface (\H) and implementation (.cpp)
files. The details of this translation have been omitted for space considera-
tions but may be found on the BNF Converter homepage [7].

7 C Code Generation

The Abstract Syntax.

The translation to C code is quite different than the other languages. It
follows the methodology used by Appel in the C Version of his textbook [1].

In this methodology, each grammar category is represented by a C
struct. Each struct has an enumerated type indicating which LBNF la-
bel it represents, and a union of pointers to all corresponding non-terminal
categories. Our boolean-expressions example generates the structs shown
in Figure 4A. Structs are originally named with an underscore, and typdef
declarations clean up the code by making the original grammar name refer
to a pointer to that struct.

Data structure instances are created by using constructor functions,
which are generated for each struct (Figure 4B). These functions are straight-
forward to generate and take the place of the new operator and constructors
in an object-oriented language.

The Lexer and Parser.

The BNF Converter also generates a lexer specification file for Flex and
a parser specification file for Bison. Figure 4C shows specification code
equivalent to the examples in Figures 2B and 3B.

One complication is that there is no way to access the result of the parse
without storing a global pointer to it. This means that every potential entry
point production must store a pointer to the parse (the YY_RESULT variables
in Figure 4C), in case they are the final successful category. Users can limit
the performance impact of this by using the entrypoints pragma.

The Pretty Printer and Case Skeleton.

Any algorithm that wishes to traverse the tree must switch on the kind field
of each node, then recurse to the appropriate members. For example, Figure
4E shows the pretty-printer traversal. The abstract syntax tree viewer and
skeleton template are similar traversals.

14

A. Abstract Syntax

struct PROG_ {
enum {is_PROG} kind;
union {
struct { ListEXP listexp_; } prog_;
} ou;
};
typedef struct PROG_ *PROG;
struct EXP_ {
enum { is_EOr, is_EAnd, is_ETrue,
is_EFalse, is_EVar } kind;
union {
struct { EXP exp_1, exp_2; } eor_;
struct { EXP exp_1, exp_2; } eand_;
struct { Ident ident_; } evar_;
} u;
};
typedef struct EXP_ *EXP;
struct ListEXP_ {
EXP exp_;
ListEXP listexp_;
};
typedef struct ListEXP_ *ListEXP;

B. Constructor Functions

EXP make_EOr (EXP p1l, EXP p2) {
EXP tmp = (EXP) malloc(sizeof (*tmp));
if ('tmp) {
fprintf (stderr,
"Error: out of memory!\n");
exit(1);
}
tmp->kind = is_EOr;
tmp->u.eor_.exp_1 = pil;
tmp->u.eor_.exp_2 = p2;
return tmp;
}
EXP make_EAnd(EXP pl, EXP p2)
{

C. Bison Parser

PROGRAM YY_RESULT_PROGRAM_ = O;
PROGRAM pPROGRAM(FILE #*inp) {
initialize_lexer (inp);
if (yyparse()) /* Failure */
return 0;
else /* Success */
return YY_RESULT_PROGRAM_;

}

%token _ERROR_ /* Terminal */
%token _SYMB_O /1l x/
%token _SYMB_1 /x k& x/
%token _SYMB_2 /* */
%token _SYMB_3 /* (*/
%token _SYMB_4 /*) */
%token _SYMB_5 /* false */
Jtoken _SYMB_6 /* true x/

Bison Parser Continued

Y44
PROGRAM : ListEXP {
$$ = make_PROGRAM(reverseListEXP($1));
YY_RESULT_PROGRAM_= $$; }
3
EXP : EXP _SYMB_O EXP1 {

$$ = make_EOr($1, $3);
YY_RESULT_EXP_= $$; }
| EXP1 { $$ = $1; YY_RESULT_EXP_= $$; }
3
EXP1 : EXP1 _SYMB_1 EXP2 {
$$ = make_EAnd($1, $3);
YY_RESULT_EXP_= $$; }
| EXP2 { $$ = $1; YY_RESULT_EXP_= $$; }
EXP2 : _SYMB_6 { $$ = make_ETrue();
YY_RESULT_EXP_= $$; }
make_EFalse();
YY_RESULT_EXP_= $$; }
make_EVar ($1);
YY_RESULT_EXP_= $$; }
SYMB_4 { $$ = $2;
YY_RESULT_EXP_= $$; 1}

| _SYMB_5 { $$

| _IDENT_ { $%

| _SYMB_3 EXP

ListEXP : /* empty */ { $$ = 0;
YY_RESULT_ListEXP_= $$; }
| ListEXP EXP _SYMB_2 {
$$ = make_ListEXP($2, $1);

YY_RESULT_ListEXP_= $$; }
D. Pretty Printer

void ppEXP(EXP _p_, int _i_) {

switch(_p_->kind) {

case is_EOr:
if (_i_ > 0) renderC(_L_PAREN);
PpEXP(_p_->u.eor_.exp_1, 0);
renderS("||");
PpEXP(_p_->u.eor_.exp_2, 1);
if (_i_ > 0) renderC(_R_PAREN);
break;

case is_EAnd:
if (_i_ > 1) renderC(_L_PAREN);
ppEXP(_p_->u.eand_.exp_1, 1);
renderS("&&") ;

void ppListEXP(ListEXP listexp, int i) {
while(listexp!= 0) {

if (listexp->listexp_ == 0) {
PpPEXP(listexp->exp_, 0);
renderC(’;’);
listexp = 0;

} else {
PpEXP(listexp->exp_, 0);
renderC(’;’);
listexp = listexp->listexp_;

15

Figure 4: C source code fragments generated from Figure 1

Translation Summary.

While it is straightforward to generate a parser and a data structure to
represent the results of a parse in C, the combination of pointers and unions
(seen in Figures 4B and 4D) results in code that can be sometimes hard
for the user to work with. We are currently looking into ways to make the
generated code more friendly through the use of macros or other methods.

8 Discussion

Productivity Gains.

The source code of the Boolean expression grammar in Section 2.4 is 8 lines.
The size of the generated code varies from 425 lines of Haskell/Happy/Alex
to 1112 lines of C++/Bison/Flex. The generated code is not superfluously
verbose, but similar to what would be written by hand by a programmer
following Appel’s methodology [1, 2, 3]. This amounts to a gain of coding
effort by a factor of 50-100, which is comparable to the effort saved by,
for instance, writing an LR parser in Bison instead of directly in C.? In
addition to decreasing the number of lines, the single-source approach alle-
viates synchronization problems, both when creating and when maintaining
a language.

The BNF Converter as a Teaching Tool.

The BNF Converter has been used as a teaching tool in a fourth-year com-
piler course at Chalmers University in 2003 and 2004. The goal is, on the
one hand, to advocate the use of declarative and portable language defini-
tions, and on the other hand, to leave more time for back-end construction.
The generated code follows the format recommended in Appel’s text books
[1, 2, 3], which makes is coherent to use the tool as a companion to those
books. The results are encouraging: the lexer/parser part of the compiler
was estimated only to be 25 % of the work at the lowest grade, and 10 %
at the highest grade—at which point the student compiler had to include
several back ends. This was far from the times when the parser was more
than 50 % of a student compiler. About 50 % of the laboration groups
use Haskell as implementation language, the rest using Java, C, or C++.
In 2004, when the BNF Converter was available for all these languages, 16
groups of the 19 accepted ones used it in their assignment. The main dis-
couraging factor were initial problems with Bison versions: older versions
than 1.875 do compile the generated Bison file, but the parser fails with all
input.

3In the present example, the Flex and Bison code generated by the BNF Converter is
172 lines, from which these tools generate 2600 line of C.

16

In Autumn 2003, the BNF Converter was also used in a second-year
Chalmers course on Programming Languages. It is replacing the previously-
used parser combinator libraries in Haskell. The main motivation at this
level is to teach the correspondence between parsers and grammars, and
to provide a high-level parser tool also for programmers who do not know
Haskell.

One concern about using the BNF Converter was that students would
not really learn parsing, but just to write grammars. However, students
writing their parsers in YACC are equally isolated from the internals of
LR parsing as those writing in LBNF. In fact, as learning the formalism
takes less time in the case of LBNF, the teacher can allocate more time for
explaining how an LR parser works.

Real-World Languages.

Students in a compiler class usually implement toy languages. What about
real-world languages? As an experiment, a complete LBNF definition of
ANSI C, with [14] as reference, was written.* The result was a complete
front-end processor for ANSI C, with the exception, mentioned in [14] of type
definitions, which have to be treated with a preprocessor. The grammar has
229 LBNF rules and 15 token definitions (to deal with different numeral
literals, such as octals and hexadecimals).

The BNF Converter has also been applied in an industrial application
producing a compiler for a telecommunications protocol description lan-
guage. [5]

Another real-world example is the object-oriented specification language
OCL [20].° Finally, the BNF Converter itself is implemented by using mod-
ules generated from an LBNF grammar of the LBNF formalism.

A Case Study in Language Prototyping.

A strong case for BNF Converter is the prototyping of new languages. It is
easy to add and remove language features, and to test the updated language
immediately. Since standard tools are used, the step from the prototype
to a production-quality front end is small, typically involving some fine-
tuning of the abstract syntax and the pretty printer. We have a large-scale
experience of this in creating a new version of the language GF (Grammatical
Framework, [18]).

The main novelties added to GF were a module system added on top
of the old GF language, and a lower-level language GFC, playing the role
of “object code” generated by the GF compiler. The GF language has
constructions mostly familiar from functional programming languages, and

4BSc thesis of Ulf Persson at Chalmers.
®Work by Kristofer Johannisson at Chalmers (private communication).

17

the size of the full grammar is similar to ANSI C; GFC is about half this size.
We wrote the LBNF grammar from scratch, one motivation being to obtain
reliable documentation of GF. This work took a few hours. We then used
the skeleton file to translate the generated abstract syntax into the existing
hand-written Haskell datatypes; in this way, we did not need to change the
later phases of the existing compiler (apart from the changes due to new
language features). In a couple of days, we had a new parser accepting all
old GF files as well as files with the new language features. Working with
later compilation phases suggested some changes in the new features, such as
adding and removing type annotations. Putting the changes in place never
required changing other things than the LBNF grammar and some clauses
in the skeleton-based translator.

The development of GFC was different, since the language was com-
pletely new. The crucial feature was the symmetry between the parser and
the pretty printer. The GF compiler generates GFC, but it also needs to
parse GFC, so that it can use precompiled modules instead of source files.
It was reassuring to know that the parser and the pretty printer completely
matched. As a last step, we modified the rendering function of the GFC
pretty printer so that it did not generate unnecessary spaces; GFC code is
not supposed to be read by humans. This step initially created unparsable
code (due to some necessary spaces having been omitted), which was another
proof of the value of automatically generated pretty-printers.

In addition to the GF compiler written in Haskell, we have been working
on GF-based applets (“gramlets”) written in Java. These applications use
precompiled GF. With the Java parser generated by the BNF Converter, we
can guarantee that the GFC code generated by the Haskell pretty-printer
can be read in by the Java application.

Related Work.

The BNF Converter adds a level of abstraction to the YACC [13] tradition
of compiler compilers, since it compiles a yet higher-level notation into no-
tations on the level of YACC. Another system on this level up from YACC
is Cactus [16], which uses an EBNF-like notation to generate front ends in
Haskell and C. Unlike the BNF Converter, Cactus aims for completeness,
and the notation is therefore more complex than LBNF. It is not possible
to extract a pretty printer from a Cactus grammar, and Cactus does not
generate documentation.

The Zephyr definition language [19] defines a portable format for abstract
syntax and translates it into SML, Haskell, C, C++, Java, and SGML,
together with functions for displaying syntax trees. It does not support the
definition of concrete syntax.

In general, compiler tools almost invariably opt for expressive power
rather than declarativity and simplicity. The situation is different in linguis-

18

tics, where the declarativity and reversibility (i.e. usability for both parsing
and generation) of grammar formalisms are highly valued. A major example
of this philosophy are Definite Clause Grammars (DCG) [17]. Since DCGs
are usually implemented as an embedded language in Prolog, features of
full Prolog are sometimes smuggled into DCG grammars; but this is usually
considered harmful since it destroys declarativity.

9 Conclusions and Future Work

BNF Converter is a tool implementing the Labelled BNF grammar formal-
ism (LBNF). Given that a programming language is “well-behaved”, in a
rather intuitive sense, an LBNF grammar is the only source that is needed
to implement a front end for the language, together with matching LaTeX
documentation. Since LBNF is purely declarative, the implementation can
be generated in different languages: these currently include Haskell, Java,
C++, and C, each with their standard parser and lexer tools. Depending
on the tools, the size of the generated code is typically 50-100 times the size
of the LBNF source.

The approach has proven to be useful both in teaching and in language
prototyping. As for legacy real-world languages, complete definitions have
so far been written for C and OCL. Often a language is almost definable,
but has some exotic features that would require stronger tools. We have,
however, opted to keep LBNF simple, at the expense of expressivity; and
we believe that there are many good reasons behind a trend toward more
and more well-behaved programming languages.

One frequent request has been a possibility to retain some of the position
information in the abstract syntax tree, so that error messages from later
compiler phases can be linked to the source code. This has been partly
solved by extending the token pragma with the keyword position that
enable position information to be retained in that particular token. However,
further generalizations are needed at this point. Other requests are increased
control of the generated abstract syntax and some means of controlling the
output of the pretty-printing.

References

[1] A. Appel. Modern Compiler Implementation in C. Cambridge Univer-
sity Press, 1998.

[2] A. Appel. Modern Compiler Implementation in Java. Cambridge Uni-
versity Press, 1998.

[3] A. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

19

[4]

[10]

[11]

[12]

E. Berk and C. Ananian. JLex: A Lexical Analyzer Generator for Java,
2000. http://www.cs.princeton.edu/ appel/modern/java/JLex/.

C. Déldborg and O. Noreklint. ASN.1 Compiler. 2004. Master’s Thesis,
Department of Computing Science, Chalmers University of Technology.

C. Dornan. Alex: a Lex for Haskell Programmers, 1997.
http://www.cs.ucc.ie/dornan/alex.html.

M. Forsberg, P. Gammie, M. Pellauver, and A. Ranta.
BNF Converter site. Program and documentation,
http://www.cs.chalmers.se/ markus/BNFC/, 2004.

M. Forsberg and A. Ranta. Labelled BNF: a highlevel formalism for
defining well-behaved programming languages. Proceedings of the FEs-
tonian Academy of Sciences: Physics and Mathematics, 52:356-377,
2003. Special issue on programming theory edited by J. Vain and T.
Uustalu.

Free Software Foundation. Bison - GNU Project, 2003.
http://www.gnu.org/software/bison/bison.html.

Free Software Foundation. Flex - GNU Project, 2003.
http://www.gnu.org/software/flex/flex.html.

E. Gamma, R. Hehn, R. Johnson, and J. Viissides. Design Patterns.
Addison Wesley, 1995.

S. E. Hudson. CUP Parser Generator for Java, 2003.
http://www.cs.princeton.edu/ appel/modern/java/CUP/.

S. C. Johnson. Yacc — yet another compiler compiler. Technical Report
CSTR-32, AT & T Bell Laboratories, Murray Hill, NJ, 1975.

B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1988. 2nd edition.

S. Marlow. Happy, The Parser Generator for Haskell, 2001.
http://www.haskell.org/happy/.

N. Martinsson. Cactus (Concrete- to Abstract-syntax Conversion Tool
with Userfriendly Syntax) . Master’s Thesis in Computer Science, 2001.
http://www.mdstud.chalmers.se/ md6nm/cactus/.

F. Pereira and D. Warren. Definite clause grammars for language
analysis—a survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13:231-278, 1980.

20

[18] A. Ranta. Grammatical Framework: A Type-Theoretical Grammar
Formalism. The Journal of Functional Programming, 14(2):145-189,
2004.

[19] D. C. Wang, A. W. Appel, J. L. Korn, and C. S. Serra. The Zephyr
Abstract Syntax Description Language. 1997. USENIX Association.

[20] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modelling with UML. Addison-Wesley, 1999.

21

