
Thesis for the Degree of Doctor of Engineering

Three Tools for Language Processing:

BNF Converter,

Functional Morphology, and Extract

Markus Forsberg

Department of Computer Science and Engineering

Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, Sweden 2007

Three Tools for Language Processing: BNF Converter,
Functional Morphology, and Extract
Markus Forsberg
Göteborg, Sweden, 2007
ISBN 978-91-7291-970-9

c© Markus Forsberg, 2007

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie Nr 2651
ISSN 0346-718X

Technical Report no. 32D
Department of Computer Science and Engineering
Research group: Language Technology

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone + 46 (0)31-772 1000

Abstract

Purely functional programming and meta programming based on declara-
tive models are productive approaches to language processing and language
resource building. Three tools are presented as evidence of this: BNF Con-
verter, Functional Morphology, and Extract.

BNF Converter is a multi-lingual compiler tool. BNFC accepts as its
input a grammar written in Labelled BNF (LBNF) notation, and generates
a compiler front end: an abstract syntax, a lexer, and a parser. Further-
more, it generates a case skeleton usable as the starting point of back end
construction, a pretty printer, a test bench, and a LATEX document usable
as a language specification. The program components can be generated in
Haskell, Java, C, C++, Objective Caml, and C#, and their standard parser
and lexer tools.

Functional Morphology and Extract are tools for creating lexical re-
sources. Lexical resources, i.e. systematic computational descriptions of
words in a natural language, are fundamental resources for any language
technology application and it is imperative that they are of high qual-
ity. Moreover, since the development of lexical resources is such a time-
consuming task, it is important that they can be created efficiently. The
tools have been created to address these issues.

Functional Morphology (FM) is a Haskell library for defining lexical re-
sources. A lexical resource in FM is defined using the word-and-paradigm
model. Paradigms are abstractions of inflection tables, represented as func-
tions over hereditarily finite algebraic data types, and the lexicon consists
of a list of words in citation form annotated with paradigm identifiers. The
runtime system of FM consists of an inflection engine, an analyzer, a syn-
thesizer and a compiler to many standard lexicon formats.

Extract is a special-purpose tool for extracting annotated words from
raw text data. The extraction is based on a set of rules, where a rule is
a propositional formula where the atoms of the formula are regular expres-
sions. The regular expressions, corresponding to a subset of the word forms
in a paradigm, contain variables used for capturing substrings. A recent
addition to Extract is Constraint Grammar constructs together with the
possibility of a structured input format. This addition enables a rule to
refer to the contexts of the word forms and additional information added to
them, such as part of speech (POS) tags.

The six papers included in this thesis, a peer-reviewed paper and a tech-
nical report for each tool, have been published previously as follows:

• BNF Converter

– Labelled BNF: A High-Level Formalism For Defining Well-Behaved
Programming Languages, Markus Forsberg & Aarne Ranta, Pro-
ceedings of the Estonian Academy of Sciences, Special issue on
programming theory, NWPT’02, December 2003, pages 356–393

– BNF Converter: Multilingual Front-End Generation from La-
belled BNF Grammars, Michael Pellauer, Markus Forsberg &
Aarne Ranta, Technical Report no. 2004-09 in Computing Science
at Chalmers University of Technology and Göteborg University

• Functional Morphology

– Functional Morphology, M. Forsberg & A. Ranta, Proceedings
of the Ninth ACM SIGPLAN International Conference on Func-
tional Programming, September 19-21, 2004, Snowbird, Utah,
USA, pages 213–223

– The Functional Morphology Library. M. Forsberg, Technical Re-
port no. 2007-09 in Computing Science at Chalmers University
of Technology and Göteborg University

• Extract

– Morphological Lexicon Extraction from Raw Text Data. M. Fors-
berg, H. Hammarström, A. Ranta. FinTAL 2006, LNAI 4139,
pp.488-499

– The Extract Tool. M. Forsberg. Technical Report no. 2007-10
in Computing Science at Chalmers University of Technology and
Göteborg University

III

IV

Acknowledgements

First of all, I would like to thank my supervisor, Aarne Ranta, for his
constant support and guidance throughout my PhD studies.

Secondly, I want to thank Vinnova and GSLT, for their generous fund-
ings.

Furthermore, I thank all readers of this thesis, besides my supervisor,
which have helped me a great deal in improving the quality of this thesis:
Gérard Huet, Harald Hammarström, Bengt Nordström, Lars Borin, and
Björn Bringert.

I would also like to thank all people in the Language Technology group,
CLT, GSLT and my PhD committee, for all your inspiring discussions and
general good company. Same for all co-workers at the Computing Science
department at Chalmers.

Of course, my family and friends, as always, deserves a massive thank
you for being there when I needed them, and for bringing joy to my life
outside the office.

Finally, a special thank you with love, to my girlfriend Merja and her
wonderful children Tova and Dennis, who take the ’K’ out of my life.

V

VI

Contents

1 Introduction 1

1.1 General Introduction . 1

1.2 Vocabulary . 3

1.3 Contributions . 4

1.4 Introduction to BNF Converter 4

1.4.1 Overview of BNFC . 5

1.4.2 Requirements of BNF Converter 7

1.5 Introduction to Functional Morphology 8

1.6 Lexical Resources in FM . 9

1.7 Why Functional Morphology? 10

1.7.1 FM is an Embedded Domain-specific Language 10

1.7.2 FM is Typed . 10

1.7.3 The Runtime System of FM 10

1.7.4 FM is a Compiler . 10

1.7.5 FM is Open Source . 10

1.7.6 FM is Reusable . 11

1.7.7 FM supports Compound Analysis 11

1.8 FM and the Languages of the World 11

1.9 Morphological Phenomena in FM 13

1.9.1 Vowel harmony . 13

1.9.2 Reduplication . 14

1.9.3 Polysynthetic Languages 15

1.9.4 Clitics . 17

1.9.5 Non-Separating Writing Systems 17

1.9.6 Portmanteau and Fixed Phrases 17

1.10 Lexical Resources in FM . 18

1.10.1 Latin . 18

1.10.2 Modern and Old Swedish 18

1.10.3 Master Thesis Projects 19

VII

1.10.4 Other Implementations 19

1.11 Extended Example: Swedish 19

1.11.1 Type System . 20

1.11.2 Paradigm System . 20

1.11.3 Dictionary Functions 23

1.12 Introduction to Lexicon Extraction 24

1.13 Swedish Nouns in Extract . 25

I BNF Converter 29

2 Labelled BNF: A High-Level Formalism for Defining Well-
Behaved Programming Languages 31

2.1 Introduction . 32

2.2 The LBNF Grammar Formalism 33

2.2.1 LBNF in a nutshell . 34

2.2.2 LBNF conventions . 35

2.2.3 The type-correctness of LBNF rules 38

2.3 LBNF Pragmas . 39

2.3.1 Comment pragmas . 40

2.3.2 Internal pragmas . 40

2.3.3 Token pragmas . 41

2.3.4 Entry point pragmas 41

2.4 BNF Converter code generation 42

2.4.1 The files . 42

2.4.2 Example: JavaletteLight.cf 42

2.4.3 An optimization: left-recursive lists 48

2.5 Discussion . 49

2.5.1 Results . 49

2.5.2 Well-behaved languages 50

2.5.3 Related work . 51

2.5.4 Future work . 51

2.6 Conclusion . 52

2.7 Appendix: LBNF Specification 52

3 Multilingual Front-End Generation from Labelled BNF Gram-
mars 57

3.1 Introduction . 58

3.2 The LBNF Grammar Formalism 59

3.2.1 Rules and Labels . 59

VIII

3.2.2 Lexer Definitions . 60

3.2.3 Abstract Syntax Conventions 61

3.2.4 Example Grammar . 63

3.3 Haskell Code Generation . 64

3.4 Java Code Generation . 65

3.5 Java 1.5 Generation . 71

3.6 C++ Code Generation . 71

3.7 C Code Generation . 72

3.8 Discussion . 74

3.9 Conclusions and Future Work 77

3.10 BNF Converter in Year 2007 78

3.10.1 New Back Ends . 78

3.10.2 Natural Language Support 78

3.10.3 Layout Support . 78

3.10.4 Support for Definitions 79

3.10.5 Multi Views . 79

3.10.6 Haskell GADT Support 80

II Functional Morphology 83

4 Functional Morphology 85

4.1 Introduction . 86

4.2 Morphology . 86

4.3 Implementations of Morphology 87

4.3.1 Finite State Technology 87

4.3.2 The Zen Linguistic Toolkit 88

4.3.3 Grammatical Framework 89

4.4 Functional morphology . 89

4.4.1 Background . 89

4.4.2 Methodology . 91

4.4.3 System overview . 91

4.4.4 Technical details . 92

4.4.5 Trie analyzer . 107

4.4.6 Composite forms . 108

4.5 Results . 109

4.6 Discussion . 110

IX

5 The Functional Morphology Library 115

5.1 Introduction . 115

5.2 FM Tutorial . 116

5.2.1 Overview . 116

5.2.2 Type System . 117

5.2.3 String operations . 119

5.3 Paradigms as functions . 120

5.3.1 Exceptions . 121

5.4 Interface Functions . 123

5.5 Compound Analysis . 125

5.6 Paradigm Identifiers and External Lexicon 126

5.7 Runtime System . 127

5.8 Extending the Translator . 128

5.9 Compound Analysis in FM 129

5.10 Compiling FM . 130

5.11 Running FM . 131

5.11.1 The Analyzer . 131

5.11.2 The Synthesizer . 132

5.12 The Inflection Engine . 134

5.13 The Translator . 134

5.13.1 Full Form Lexicon . 137

5.13.2 Inflection Tables . 137

5.13.3 XML . 139

5.13.4 XFST . 141

5.13.5 LexC . 141

5.13.6 SQL . 142

5.14 Other Commands . 143

5.14.1 Precompiled Dictionary 143

5.14.2 Print Paradigms . 143

5.15 The Functional Morphology API 143

5.15.1 General.hs . 143

5.15.2 Dictionary.hs . 148

5.15.3 Print.hs . 151

5.15.4 Frontend.hs . 153

5.15.5 GeneralIO.hs . 155

5.15.6 CommonMain.hs . 156

5.15.7 CTrie.hs . 156

X

III Extract 159

6 Morphological Lexicon Extraction from Raw Text Data 161

6.1 Introduction . 162

6.2 Paradigm File Format . 163

6.2.1 Propositional Logic . 164

6.2.2 Regular Expressions 164

6.2.3 Multiple Variables . 165

6.2.4 Multiple Arguments 166

6.2.5 The Algorithm . 167

6.2.6 The Performance of the Tool 167

6.3 The Art of Extraction . 167

6.3.1 Manual Verification 169

6.4 Experiments . 169

6.5 Related Work . 171

6.6 Conclusions and Further Work 173

7 The Extract Tool 175

7.1 Introduction . 175

7.2 Lexicon Extraction . 176

7.2.1 Propositional Logic . 179

7.2.2 Regular Expressions 179

7.2.3 Multiple Variables . 180

7.2.4 Multiple Output Patterns 181

7.3 Structured Input Data . 182

7.4 Constraint Grammar . 183

7.4.1 Introduction to Constraint Grammar 183

7.4.2 Constraint Grammar in Extract Rules 184

7.4.3 Positions in CG . 185

7.4.4 Changes in the Algorithm 186

7.5 The Implementation . 186

7.6 Experiments . 187

7.7 Compiling Extract . 187

7.8 Running Extract . 188

7.9 Command-line Options . 188

7.9.1 Character Encodings 188

7.9.2 Data Preprocessing . 188

7.9.3 Output Control . 190

7.9.4 Dictionary . 190

7.10 BNFC Documentation of Extract 190

XI

7.10.1 The Language Extract 190
7.10.2 The Language Data 194

XII

Chapter 1

Introduction

1.1 General Introduction

It is our thesis that purely functional programming and meta programming
based on declarative models are productive approaches to language process-
ing and language resource building. As evidence of this we present three
tools: BNF Converter, Functional Morphology, and Extract.

BNF Converter (BNFC) is a multi-lingual compiler tool for defining
formal languages. Given a BNFC specification of a formal language, or
a Labelled BNF (LBNF) in BNFC terminology, it can generate a complete
front end: a parser, a lexer, an abstract syntax, documentation et cetera.
The multi-lingual part of BNFC allows front ends for the specified formal
language to be generated in many different programming languages: Haskell,
C, C++, Java, C# and Objective Caml. The Haskell generation also allows
generalized LR parsing (GLR), which enables ambiguous grammars. This,
in turn, opens up for processing of natural languages, which are inherently
ambiguous.

BNFC has proved useful as a compiler teaching tool. It encourages
clean language design and declarative definitions. But it also lets the teacher
spend more time on back end construction and/or the theory of parsing than
traditional compiler tools, which require learning tricky and complicated
notations.

BNFC also scales up to full-fledged language definitions. Even though
real-world languages already have compilers generating machine code, it
can be difficult to extract abstract syntax from them. A BNFC-generated
parser, case skeleton, and pretty printer is a good starting point for pro-
grams doing some new kind of transformation or translation of an existing

1

language. Program transformation is used, for example, for dealing with
legacy code, i.e. source code that is no longer supported. The goal of the
program transformation could be to translate the source code into another
programming language or to transform it to a more readable format.

However, the clearest case for BNFC is the development of new lan-
guages. It is easy to get started: just write a few lines of LBNF, run bnfc,
and apply the Makefile to create a test bench, by which files written in
the language can be parsed. Adding or changing a language construct is
also easy, since changes only need to be done in one file. When the language
design is complete, the implementor perhaps wants to change the implemen-
tation language; no work is lost, since the front end can be generated in a
new target language, Finally, when the language implementation is ready
to be given to users, a reliable and human-readable language definition is
ready as well.

Functional Morphology (FM) and Extract were created to suggest a so-
lution to the problem of creating high-quality lexical resources efficiently.
A lexical resource is a computational description of words in a human lan-
guage, where the computational description can be as simple as a word list
or arbitrarily complicated, such as including whatever grammatical or se-
mantic information. Lexical resources are fundamental in most language
technology applications: word prediction on mobile phones, spell-checkers,
educational material, machine translation and information retrieval among
others.

However, many lexical resources already exist, so the question is why
one would be interested in developing a new one. First of all, this statement
is only true for languages with many speakers, such as English or Spanish,
but is not necessarily true for smaller languages. Furthermore, even if re-
sources exist, they may not fit present needs for one reason or another. For
example, they may lack some crucial information that is needed, but hard or
impossible to add — perhaps the resource is in a proprietary closed format
or just structured inconveniently.

Before deciding to develop a lexical resource, it is important to realize
that it is a time-consuming task, even just a word list of average quality
takes a lot of time to develop. The reason is the size — the number of word
forms in a substantial word list, i.e. all inflected forms of the words of the
language, may reach several millions, depending on the degree of inflection
in the language at hand.

The development of a lexical resource, as suggested in this thesis, consists
of defining two things: an inflection engine and a lexicon. The inflection
engine defines what kind of information we may annotate the words with.

2

The lexicon consists of a list of words annotated with the information stip-
ulated by the inflection engine. The second tool presented in this thesis,
Functional Morphology, defines the inflection engine together with the lex-
icon, and the third, Extract, helps the development of a lexicon through
automated methods.

FM and Extract provide a toolbox for lexical resource development.
They allow users to work on different levels, i.e. they allow a division of
labour. An implementer of Extract or the FM library is required to have
good knowledge of Haskell. A morphology developer needs less skill in
Haskell, since she can learn by example, but must have good insights about
the target language. A lexicographer needs no skill in Haskell or in FM, and,
in fact, just average skills in the target language, since it is the morphology
developer who does the most tricky linguistic work. If the lexicographer, on
the other hand, wants to use Extract, she must have a good understanding
about the target language to write successful paradigm rules.

BNFC has also played a role in the creation of the toolbox, since it has
been used to develop Extract. The development of the necessary parts for
processing the Extract language, e.g. a parser, a lexer, an abstract syntax,
would previously been a substantial task, but with BNFC, this task have
been reduced to the definition of the language by a BNF grammar.

1.2 Vocabulary

We will now briefly define some key concepts we will use when discussing
lexical resources. We will not endeavor in a philosophical discussion, instead
we will only go through the most important concepts and make the necessary
distinctions for our purposes.

A word corresponds to a dictionary entry. A word has an inflection
table containing the word’s word forms. One word form, the citation form,
dictionary form, or lemma, identifies a word, and is the one normally found
in an ordinary dictionary, e.g. bare infinitives for verbs. The citation form
is typically the word form considered as most characteristic, or the least
marked, i.e. the word form with the least number of inflectional affixes.

A paradigm is an abstraction of an inflection table, which describes how
a set of words is inflected.

A lexical resource is a computational description of the words of a lan-
guage.

A morphology1 is a lexical resource consisting of an inflection engine

1Note that we use the word ’morphology’ ambiguously: it may refer to either the

3

and a lexicon. A lexicon is a list of citation forms annotated with paradigm
names. An inflection engine is a computational device that translates a
paradigm name together with a list of citation forms to a dictionary entry.

1.3 Contributions

The research contributions of the author of this thesis:

• The implementer of the major part of the Haskell generation, the first
target language of BNF Converter, and together with A. Ranta, the
designer of BNFC. The Java, C and C++ generation was developed
by M. Pellauer, Java 1.5 by B. Bringert, Objective Caml by K. Johan-
nisson and C# by J. Broberg.

• The main implementer of Functional Morphology and Extract.

• The author of the technical reports of Functional Morphology and
Extract, in Chapter 5 and 7.

• The main author of the FM paper, together with A. Ranta, in Chapter
4.

• The main author of the BNF Converter paper, in Chapter 2.

• Co-author of the Extract paper, together with H. Hammarström and
A. Ranta, in Chapter 6, where all authors contributed equally.

• Co-author of the technical report of BNF Converter, in Chapter 3,
where M. Pellauer was the main author and A. Ranta co-authored.

1.4 Introduction to BNF Converter

BNF Converter, abbreviated BNFC, is a tool for defining formal languages,
in particular programming languages. The idea was to construct a grammar
tool for defining formal languages that was as declarative as possible, and
from this tool generate necessary components for the front end of the target
language, such as a lexical analyzer and a parser.

It started as an experimental study into what extent the Grammatical
Framework tool (GF) [18] could be used as a compiler front end genera-
tor. Though it was possible, it was soon realized that some extra notation

linguistic object or to a morphology implementation.

4

was necessary to get a front end comparable to what a programmer would
normally expect. For example, comments are usually something treated as
white-spaces, instead of having them represented in the abstract syntax,
and this requires some special notation. Hence, the BNF Converter tool
was born.

Since the paper in Chapter 2 was written, substantial development has
been carried out on BNFC, partly described in the technical report of BNFC
in Chapter 3. In particular, multi-lingual support has been added and, due
to the declarative nature of BNFC and because the back end tools used by
BNFC have similar syntax and functionality, this was a relatively easy task.
Support has been added for C, C++, C++ with Standard Template Library
(STL), Java 1.4, Java 1.5, C# and Objective Caml.

Other functionalities added, since the papers included in this thesis were
written, are XML generation, GF to BNFC translation, GADT support,
layout support, generalized LR parsing [15], among others.

BNFC is currently part of the stable version of Linux distribution De-
bian2 and its derivatives (e.g. Gentoo3 and Ubuntu4). This shows that the
tool has been accepted by the open source community.

1.4.1 Overview of BNFC

The grammar format of BNFC is LBNF, an abbreviation of Labelled BNF.
The files that are generated in all target languages by BNFC from an LBNF
grammar are: an abstract syntax, a lexer, a parser, a pretty-printer, a case-
skeleton that recursively traverses the abstract syntax, a test bench that
puts everything together in an executable, and a language document.

Let us look at a grammar for Lambda calculus defined in LBNF. An
example of a Lambda calculus expression is (\x -> x x) (\y -> y y).

Lambda . Exp ::= "\\" Ident "->" Exp ;

App . Exp1 ::= Exp1 Exp2 ;

Id . Exp2 ::= Ident ;

coercions Exp 2 ;

The basic structure is a BNF grammar, consisting of three rules, aug-
mented with labels (Lambda, App and Id). The labels corresponds to the
constructors of the abstract syntax. The category Ident is a built-in token
type for identifiers.

2http://www.debian.org
3http://www.gentoo.org
4http://www.ubuntu.com

5

The statement coercions Exp 2 is a macro for the following conversion
rules. The wild card label means that the use of the rule will not be visible
in the abstract syntax.

_ . Exp ::= Exp1 ;

_ . Exp1 ::= Exp2 ;

_ . Exp2 ::= "(" Exp ")" ;

BNFC avoids cluttering the abstract syntax with the categories that
expresses associativity and precedence by the convention that indexed cat-
egories are variants of the same category. The abstract syntax of our gram-
mar, generated by the Haskell back end, is the following, index-free, data
types.

newtype Ident = Ident String

data Exp =

Lambda Ident Exp

| App Exp Exp

| Id Ident

Given that our grammar is in the file lambda.cf, we can now compile
it with BNFC. Here we use the flag -m to also generate a makefile. Since
we have not stated which programming language back end to use, BNFC
defaults to the Haskell back end. Typing make produces an executable binary
Testlambda, which is used as a test bench for our grammar.

$ bnfc -m lambda.cf

...

$ make

...

If we try parsing the Lambda calculus expression
(\x -> x x) (\y -> y y)

with Testlambda, then we are successful, and the program prints the raw
abstract syntax of the expression together with its pretty-printed version.

$ echo "(\\x -> x x) (\\y -> y y)" | ./Testlambda

Parse Successful!

[Abstract Syntax]

6

App (Lambda (Ident "x") (App (Id (Ident "x")) (Id (Ident "x"))))

(Lambda (Ident "y") (App (Id (Ident "y")) (Id (Ident "y"))))

[Linearized tree]

(\ x -> x x)(\ y -> y y)

The approach taken in BNFC is to generate code for a set of tools, e.g.
parser and lexer generators. This approach has a couple of advantages —
first it avoids redoing work already done, such as implementing parsing al-
gorithms, and therefore saves a lot of work. However, there is yet another,
more important, motivation: that of maintenance. Bug fixes and develop-
ment come for free by using existing tools.

The multilinguality of BNFC provides a convenient way of data transfer
between different programming languages. A language that describes the
data is created in BNFC. The transfer takes place by pretty-printing the
data from a program written in one language, which is later parsed by a
program written in another language.

1.4.2 Requirements of BNF Converter

Some requirements are put on the languages implemented in BNFC, to be
able to generate all the mentioned modules. The requirements follow the
guidelines of any modern compiler construction book, and most of today’s
programming languages have at least a well-defined subset that fulfills all
requirements. The requirements are:

The modules in the front end are sequentialized. This means that every
task, such as lexing or parsing, is performed as a separate step — the result
of one process is fed into the next step in the process.

The lexical structure can be described by a regular expression. This may
seem trivially fulfilled since the engine in a lexer is a finite state automaton,
equivalent to a regular expression. However, it is possible to execute arbi-
trary code in the semantic action of a lexer rule, i.e. non-regular phenomena
such as nested comments can be defined with a lexer tool.

The only semantic action allowed in the parser is the building of abstract
syntax trees. Even though this is highly recommended in the literature, some
front end implementations also perform additional tasks in the parser, such
as type checking.

White spaces carry no meaning, except for layout information. That is,
white spaces are safely removed in the tokenization process. The layout

7

information is handled in a preprocessing step, where the block structures
described by the layout information are made explicit with curly braces.

The grammar must, except for the Haskell generation with GLR support,
be LALR(1) parsable. This requirement is not something inherent in BNFC,
but rather in the tools that are used to produce the parser. For example,
the Happy parser generator has been generalized with the Tomita algorithm
[24, 15] so that it will produce a forest of parse trees, instead of a single tree.

1.5 Introduction to Functional Morphology

Functional Morphology (FM) is a computational tool for defining a lexical
resource, i.e. a systematic description of the words in a language. The aim
of FM has been to create a language-independent tool, in the sense that
no unnecessary restrictions should be built in that limit the tool to a par-
ticular type of language. Naturally, language independence cannot be fully
achieved, since a tool like this implements a model that necessarily fits some
languages better than others. The lexical resource model of FM is word-
and-paradigm, a concept coined by Hockett [8], where a paradigm can be
understood as an abstraction of an inflection table. A grammar book for
Latin illustrates this model, since it is organized around inflection tables.
This is true for many grammar books, but Latin is the school example.

The inflection tables in a grammar define not only the inflection of the
words in the tables but whole classes of words, i.e. they are paradigms. It is
the job of the reader of the grammar to extract the inflection pattern from
the table. This process must be made explicit in a computer, and this is
done in FM through a function that encodes the paradigm.

A lexicon in FM consists of words annotated with paradigm names. An
paradigm name carries information about the word, for example how it
inflects and its part of speech. The inflection engine assigns the paradigm
name’s meaning by computing words into inflection tables. As a concrete
example, consider the Latin word rosa (Eng. ’rose’). It is a feminine noun in
the first declension. This fact can be encoded by annotating the word with
an name: nn1 f puella rosa. Even though the name is just an name, it
uses a mnemonic encoding: nn1 stands for ’noun in the first declension’, f
stands for its gender, feminine, and puella is the paradigm’s example word
form.

The inflection engine for a Latin morphology translates the word with
its paradigm name into an inflection table. The information generated is
exemplified in Fig. 1.1. It includes, besides the word forms, the inflectional

8

nn1 f puella rosa ⇒

Dictionary form rosa
Word class nn
Gender f
Number Case Word form
sg nom rosa
sg voc rosa
sg acc rosam
sg gen rosae
sg dat rosae
sg abl rosa
pl nom rosae
pl voc rosae
pl acc rosas
pl gen rosarum
pl dat rosis
pl abl rosis

Figure 1.1: The inflection table of rosa.

parameters, number and case, the inherent parameter, feminine gender, the
part of speech, noun, and the citation form, rosa.

1.6 Lexical Resources in FM

The definition of a paradigm in FM, i.e. the addition of a paradigm to the in-
flection engine, requires a predefined type system, describing the parameters
of the paradigm, an inflection function and a paradigm name.

An inflection function will correctly generate the inflection table for a
class of words, and it is the lexicographer’s task to annotate the words of
the lexicon with the correct paradigm name. An inflection function assumes
that one or more word forms of a particular shape is supplied — typically
the citation forms in an ordinary dictionary.

When defining paradigm functions there are, at least, three considera-
tions: the productivity of the paradigm function, i.e. that the set of words it
covers is as large as possible; that it requires as little information as possible,
since a paradigm function that requires almost all word forms would be of
little use; and that it is predictable, to simplify the task of the lexicographer.

9

1.7 Why Functional Morphology?

1.7.1 FM is an Embedded Domain-specific Language

FM is an embedded domain-specific language in the programming language
Haskell, a functional programming language. This means that higher-order
functions, types and abstract data types are available, which allows the defi-
nition of the lexical resource on a higher level, compared to, for example, the
programming language of XFST [2], which is untyped and its only support
for abstraction is the possibility to give names to expressions.

1.7.2 FM is Typed

FM uses algebraic data types for defining its type system, i.e. the param-
eters of the target language. Besides being a convenient way of describing
parameters in an exact and concise way, it also gives guarantees: we know
that we cannot create a spurious parameter configuration, since that would
give rise to a type error; and we also get a check that we have defined
all cases, since inflection tables are created by enumerating all parameter
configurations and a missing case will be captured at compile time.

1.7.3 The Runtime System of FM

The runtime system of FM provides support for analysis of input text and
synthesis of word forms into inflection tables. Furthermore, the inflection
engine of FM is usable in batch mode, i.e. other programs can call FM
with paradigm names together with citation forms, and it will compute the
inflection tables and output them on standard output.

1.7.4 FM is a Compiler

FM is a compiler, acknowledging that one who are ready to invest time in
developing a lexical resource wants to maximize its usefulness. One way of
achieving this is to generate the resource in as many formats as possible. A
lexical resource in FM can be translated to many other formats: fullform,
LexC, XFST, SQL, GF (gives a direct connection to syntax) etc.

1.7.5 FM is Open Source

FM is open source software available under GPL. It allows rewriting of those
parts of FM that do not fit the present purposes for one reason or another,

10

or it could be that there is a need for adding a new resource translation
format.

1.7.6 FM is Reusable

It is easy to reuse parts of an FM implementation, in particular the type
system, for closely related languages, especially if the implementation is
created with this in mind. The module system of Haskell together with the
clearly separated parts of an FM implementation are the main reasons why
reuse is a simple task.

1.7.7 FM supports Compound Analysis

The definition of a lexical resource in FM may include a specification of
compound analysis, which is supported by the runtime system of FM. Com-
pound analysis is performed by associating all word forms5 with an integer,
and by a compound function that describes which sequences of integers are
valid. The compound analysis divides an input word form into all possible
sequences of word forms and filters out all that are not valid according to
the compound function.

1.8 FM and the Languages of the World

Morphologies can be classified in one of the following categories [3, 6]. Note
that the classification is in no way clear cut — a language may involve
many different types, so the classification is rather the main tendency of a
language.

• Analytic languages
Example: Chinese

• Synthetic languages

– Agglutinative languages
Example: Turkish

– Flexive languages
Example: Latin

5Actually, it is the objects of the dictionary types, i.e. the inflectional parameters,
which are associated with integers, a subtle difference discussed later on.

11

– Non-linear (templatic) languages
Example: Arabic

• Polysynthetic languages
Example: Inuktitut

Analytic languages have essentially no morphology, and because of that
it may not be very interesting to define a lexicon in FM. However, one
potential benefit of defining an analytical language in FM is that the lexicon
can be generated in many formats. Many of the analytical languages have
a non-separating writing system, a property discussed in Sec. 1.9.5.

Agglutinative and flexive languages are examples of concatenative mor-
phology, where the inflectional affixes are glued to the word in question.
The difference between the two categories is: in agglutinative languages, a
grammatical function is typically realized by a specific affix; in flexive lan-
guages, on the other hand, an affix can express many functions. An example
of agglutination is the Turkish word el-ler-in (Eng. ‘hand-PL-GEN’), where
every morpheme expresses one function. An example of flexivity is the Latin
word amo (Eng. ’I love’), where the suffix ’-o’ expresses many functions, i.e.
that the word is in indicative, first person, singular, present active form.

Non-linear languages, or templatic languages, are languages where the af-
fixes are not necessary a consecutive sequence of characters. E.g. in Modern
Hebrew [3], the consonant template g-d-r (Eng. ’enclose’) can be inflected
as: gadar (Eng. ’he enclosed’) or gdor (Eng. ’enclose it!’). FM has a rich
type system, where the templates can be represented with a more complex
type than a simple string. A possible choice for Modern Hebrew would be
to represent the consonant templates with 3-tuples. An example of this for
the language Temiar is given in Sec. 1.9.2.

Polysynthetic languages are highly concatenative languages where a word
can correspond to a complete sentence in an other, more analytic, language.
The language typically mentioned is Inuktitut, where, e.g. the two word
sentence [6] Paasinngilluinnarpara ilaajumasutit means I didn’t understand
at all that you wanted to come along. It is mainly for the morphologies
of the synthetic languages that FM is intended for, where the language’s
morphology is naturally expressed in terms of inflection tables. Polysyn-
thetic languages are more problematic since the inflection tables are infinite.
Polysynthetic languages will be discussed further in Sec. 1.9.3.

12

1.9 Morphological Phenomena in FM

Since a paradigm function is an ordinary function in the programming lan-
guage Haskell, all morphological phenomena that are computable are ex-
pressible with it. However, it may still be interesting to study some of the
trickier, non-concatenative, cases to see how they can be handled in FM.

1.9.1 Vowel harmony

Vowel harmony appears in languages such as Turkish and Finnish, a phe-
nomenon where the stem vowel affects the realization of the vowels in the
suffixes. There are also other kinds of vowel harmony, but they will not be
discussed here.

Karlsson [11] describes the vowel harmony of Finnish as follows: if the
stem contains any of the back vowels u, o, a, then the suffixes should only
contain back vowels, otherwise the suffixes should only have front vowels.
The translation between back and front vowels can be described with three
vowel pairs: (a,ä), (o,ö) and (u,y). A consequence of this is that all suffixes
containing back vowels also have a corresponding version containing front
vowels and vice versa.

We have two choices for how to treat vowel harmony. We could treat
it paradigmatically, i.e. that vowel harmony is a part of the specification
of the paradigms. Or, since vowel harmony is rather regular, we can write
an auxiliary function for it. The latter is more natural and productive.
The function is given below, where we simplify the function to only use
front vowels in the suffixes. This simplification follows the convention of
Finnish dictionaries. Example of usage is given in the partial definition of
the function decl1.

vowel_harmony :: String -> String -> String

vowel_harmony stem suffix

| or [elem c "aou" | c <- stem] = stem ++ suffix

| otherwise = stem ++ map vh suffix

where vh c = maybe c id (lookup c (zip "aou" "äöy"))

decl1 stem nf =

case nf of

... -> vowel_harmony stem "lla"

...

Compounds in Finnish require something more, since it is only the last
stem in the compound that dictates the vowel harmony. An example is

13

the word kitaristi, which is either the word kitaristi (Eng. ’guitarist’) or the
compound word kita-risti (Eng. ’mouth cross’), where the single word would
get the partitive ending -a and the compound -ä. There are a number of
possible solutions for handling the compounds in Finnish: we could remove
them from the lexicon and treat compounds with the compound analysis;
we could require that the lexicographer marks the compound boundaries in
the lexicon; we could supply the paradigm functions with information to
specify the vowel harmony.

1.9.2 Reduplication

Reduplication occurs when the stem, or part of it, of a word is in some
way repeated. A more complicated instance of reduplication is internal
reduplication [5] where parts of the stem are repeated in the stem itself.
Verbal inflection with internal reduplication in the Austroasiatic language
Temiar is presented here with the example word k Ōw (Eng. ’to call’). The
table is taken from Broselow and MacCarthy [5].

Active Causative
Perfective kŌw trkŌw
Simulfactive kakŌw trakŌw
Continuative kwkŌw trwkŌw

The interesting case is Active Continuative: the last consonant is redu-
plicated at second position, and the first consonant is duplicated in the third
position.

The implementation of this paradigm is given below, where the conso-
nant pattern, including the medial vowel, is represented with a 3-tuple. The
result of applying biconsonantal with a pattern is a function in the type
Verb, a function type from a parameter configuration to a string. The in-
flection table is produced by generating all parameter configurations and
applying them consecutively to the function.

biconsonantal :: (String, String, String) -> Verb

biconsonantal (k,o,w) (VF v p) =

case v of

Active ->

case p of

Perfective -> concat [k,o,w]

Simulfactive -> concat [k,"a",k,o,w]

Continuative -> concat [k,w,k,o,w]

Causative ->

14

case p of

Perfective -> concat ["tr",k,o,w]

Simulfactive -> concat ["tra",k,o,w]

Continuative -> concat ["tr",w,k,o,w]

Temiar’s verbal inflection only reduplicates consonants, but it is worth
noting that the function would look exactly the same for syllables.

1.9.3 Polysynthetic Languages

Polysynthetic languages are interesting since it is no longer natural to talk
about words and inflection tables. Instead we have a lexicon of allomorphs
and a description of how allomorphs can be assembled.

Inuktitut is a nice example since not only is the language polysynthetic,
it also has a rich morphophonology. M. Mallon [14] describes the mor-
phophonology in Inuktitut. The exact details are not interesting in this
setting, but rather that the morphophonology is quite complicated, and
more importantly, that it is realized in the spelling of words.

• Consonant deleters A deleter deletes the consonants in the affix
before. Example:
umiaq+ksaq → umiaksaq

• Vowel deleters As a consonant deleter, with the additional rule that
three vowels may not appear in a row. In that case, an epenthetic
element is be inserted. Example (’ra’ is the epenthetic element):
qallunaaq+aluk → qallunaaraaluk

• Regressive assimilation

– Neutral If a consonant is voiceless after an affix boundary, then
the consonant before the affix boundary is left unaffected.

– Nasalization If the consonant is nasalized after an affix bound-
ary, then the consonant before the affix boundary becomes nasal-
ized. Example, where ’r’ is a voiced nasalized sound:
umiaq+mut → umiarmut.

– Voiced If the consonant after an affix boundary is voiced, then
the consonant before the affix boundary will become voiced. Ex-
ample, where ’r’ is a voiced, but here not nasalized, sound:
niuviq+vik → niuvirvik

15

Mallon presents two additional morphophonological phenomena, namely
consonant variation and uvular variation. They will, however, not be dis-
cussed here, since they are a bit more complicated and contribute nothing
further to the discussion.

How do we deal with the rich morphophonology of Inuktitut in FM, could
it be solved with compound analysis? Huet [9] deals with external sandhi
in Sanskrit, a similar problem, through rewrite rules of the form u|v → w,
where u,v and w are strings. Huet reports that since these rules are so
concrete (note that u,v and w are strings, not regular expressions), they
actually amount to as many as 2790 rules6. These rules are later compiled
into a segmentation automation.

To use the compound analysis of FM we need to take into account that
the morphemes not only affect their environment, but are also affected by
it. Both of these properties need to be encoded in the compound param-
eter. The current compound parameters of FM are encoded with integers.
However, a small and natural extension would be to allow arbitrary types
for describing compounding. So, instead of having to encode the properties
with a complicated integer encoding, we could use a pair of objects of an
algebraic data type that reflects their meaning. We can define a type P,
which is used for both stating how a morpheme affects its environment and
how it is affected by it, e.g. the pair (CD,CD) associated to a morpheme form
states that it is a consonant deleter which, in turn, has been affected by a
consonant deleter.

data P = CD | -- consonant deleter

VD | -- vowel deleter

NA | -- nasalizer

V | -- voicer

NEU | -- neutral

...

type CompP = (Param,Param)

The compounding model of FM associates compound parameters to the
inflectional parameters, i.e. the objects of the dictionary types, not to the
actual word forms. That is, if a word form has a variant, there is no way to
assign a different compound parameter to that variant. This choice may be
unsuitable in the case of rich morphophonology, since it requires that the
morphophonology is represented by inflectional types.

6The rules were generated from a more abstract specification.

16

1.9.4 Clitics

Clitic elements are often problematic to deal with. For example, some clitics
are unbounded with respect to the syntactic categories they attach to. For
example the element ne in Latin, which can be attached to any word to
express a questioning of that particular word. Clitics cannot be handled
in the same way as derived words, i.e. just adding cliticized words to the
lexicon, since a clitic such as ne would double the size of the lexicon, and
more, clitics are not only applied to words but sometimes to phrases, as the
’s in English: the men who knit’s house.

Clitics can be handled cleanly with compound analysis in FM. The clitics
are represented in the lexicon as word forms, which may only appear in
compounds. There is no way to decide that a clitic is an element for a whole
phrase in FM, which is unsurprising since FM does not include any syntactic
analysis.

1.9.5 Non-Separating Writing Systems

Non-separating writing systems do not use whitespaces to separate words.
Examples of languages that uses such systems are Chinese, Korean, Japanese
and Thai. These systems require a word segmentation phase, in a sense
adding whitespaces to the input, before a morphological analysis can be
performed.

What simplifies matters, from a computational point of view, is that
some non-separating writing systems, such as Chinese, use typographical
symbols such as full stop and comma to delimit sentences and phrases,
which greatly simplifies the segmentation task, since it is enough to perform
segmentation on the sentence level.

Is segmentation a task that could be solved by compound analysis in FM?
The compound analysis can be used to retrieve all possible segmentations,
which is the first step, but to select the correct segmentation then we are,
in general, required to go beyond the lexicon and the text at hand, i.e. we
need some kind of semantic knowledge to retrieve the correct result. Even
though it would be possible to add semantic annotations in FM, an FM
module would rather be a component in a larger system instead of being
able to deal with semantics itself.

1.9.6 Portmanteau and Fixed Phrases

A Portmanteau expresses more than one word, and at the same time, the
categories expressed exist as independent words. E.g. the French du that

17

corresponds to de (of) and le (the). Conceptually, it is not clear how Port-
manteaus should be treated, i.e. represented in the lexicon. However, they
are quite rare even in languages that have them, so maybe we can accept
that they appear in the lexicon? A natural treatment of a portmanteau in
the morphological analysis would be as a compound.

Fixed phrases are phrases that appear in a dictionary, such as idioms or
stagnated phrases containing word forms that do not appear in modern use
outside the phrase. They are problematic since the degree of fixation might
vary — adding totally fixed phrases poses no problem but some fixed phrases
are more loose in the sense that some kind of phrases may be inserted in
them such as adverbial phrases.

It is not possible to give a final solution for how to deal with fixed phrases,
since they lie on the border of morphology and syntax, but they must, at
least, be considered carefully when creating a natural language system.

1.10 Lexical Resources in FM

A number of languages have been implemented in FM to date, and we will
shortly present some of them.

1.10.1 Latin

A small resource for Latin has been developed by M. Forsberg, to be used
as a tutorial language for FM. Latin is a good choice for illustrating FM
since: it is the school example of word-and-paradigm; its grammar is well-
documented; it is a good example why types is a good idea (see FM:s tech-
nical report for details); and finally, it has a clitic ne, a question particle,
whose implementation is a nice demonstration of FM’s compound analysis.

The Latin Morphology is distributed with the Functional Morphology
library at the FM homepage.

1.10.2 Modern and Old Swedish

L. Borin and M. Forsberg are working on adding morphological information
to a lexical resource named SAL (Swedish Association Lexicon) developed by
Lennart Lönngren. SAL is a rather large resource, comprising 71752 entries.
The starting point is an FM implementation for Swedish, implemented by
M. Forsberg and A. Ranta, but further developed, based on Hellberg’s [7]
rather complete description of Swedish paradigms. The goal of the project

18

is twofold: first, to enrich SAL with morphological information, and second,
to make a large, unrestricted morphological lexicon available to the public.

L. Borin, R. Johnsson, M. Forsberg have been working on a project for
Old Swedish, where the goal is to connect three Old Swedish dictionaries
with real text. The connection will be done by a morphological unit that
also deal with the spelling variation of the word forms. The dictionaries are
Söderwall [22], Söderwall supplement [23] and Schlyter [19], available in elec-
tronic form at Spr̊akbanken7. These dictionaries are the main authoritative
material for old Swedish.

The main challenge of Old Swedish is to cope with the enormous varia-
tion in spelling. There are two reasons why there is such a variation: first,
because there were no prescriptive standard on how to spell; second, be-
cause the time period covered is 300 years and many natural changes of
spelling/pronouncing occur during such a long time.

1.10.3 Master Thesis Projects

There have been three Master’s thesis projects to date concerned with de-
veloping a lexical resource in FM. I. Andersson and T. Söderberg defined a
lexical resource for Spanish [1], L. Bogavac a Russian resource [4], and M.
Humayoun a resource for Urdu [10]. The work on Urdu has subsequently
been published [13, 12].

Our experiences have been good — all students were able to create sub-
stantial resources. This has led us to believe that the development and
documentation of a lexical resource is in the scope of a Master’s thesis.

1.10.4 Other Implementations

O. Smrz has implemented an extension of FM, which he refers to as ElixirFM
[20], for Arabic. This work is the main part of his thesis [21].

A. Ranta [17] implemented the first morphology in FM, a nearly complete
paradigm system for Italian nouns and verbs.

M. Pellauer [16] has developed a morphology for Estonian.

1.11 Extended Example: Swedish

We will now give some detailed information taken from the FM implemen-
tation of modern Swedish morphology. We will focus on nouns since they

7Dictionaries accessible at: http://spraakbanken.gu.se/fsvldb/

19

provide a balance between being complex enough to be interesting, but sim-
ple enough to allow a full presentation.

1.11.1 Type System

The type system defines the language model. There are three kinds of types:
inflectional, inherent and dictionary types. The inflectional types describes
the parameters that govern the inflection, the inherent types concern with
parameters not involved in the inflection, such as gender or subcategorization
information. The dictionary type stands typically for a word class.

The inflection of Swedish nouns depends on three parameters: number,
definiteness and case. These are implemented as data type definitions in
Haskell:

data Number = Sg | Pl

data Definiteness = Indef | Def

data Case = Nom | Gen

Nouns in Swedish also have a inherent parameter: Gender. Nouns in
Swedish have a gender, they are not inflected in gender. The Gender type
has two values, Uter and Neuter, with their obvious meanings.

data Gender = Uter | Neuter

The inflectional types are combined in one type, a dictionary type, typ-
ically corresponding to a word class. Besides the inflectional types, there is
also another constructor, Comp, corresponding to the compound word forms.

data NounForm = NF Number Definiteness Case | Comp

1.11.2 Paradigm System

The paradigm system of nouns in Swedish looks deceptively simple, consist-
ing of five declensions, all distinguished by their plural form. However, if we
aim for completeness and exactness then there are many small differences
which give rise to many more paradigms. See Hellberg’s description of the
Swedish paradigm system [7] for details.

A noun paradigm creates a Noun, a function from the dictionary type
NounForm to a Str.

type Noun = NounForm -> Str

20

A Noun is translated into an inflection table by enumerating all values
of NounForm and applying it to the Noun.

A Str is not a single word form, but a list of word forms. The abstract
type Str, defined in the FM library API, is given below, together with three
of its methods: mkStr creates a Str from a word form; strings creates a
Str from a list of word forms; and nonExist is a Str describing a missing
word form.

type Str = [String]

mkStr :: String -> Str

mkStr = (:[])

strings :: [String] -> Str

strings = id

nonExist :: Str

nonExist = []

The use of Str enables us to describe missing forms, such as in the
Swedish word lat (Eng. ’lazy’), which is missing its neuter form, and free
variants, such as köps and köpes (Eng. passive of ’buy’).

Swedish has two cases, nominative and genitive, which is uniformly
defined for all noun paradigms, i.e. the case inflection is not part of the
paradigm specification. Hence, we can define it as an auxiliary function.
The operator +?, which is part of the FM library, is a conditional concate-
nation that concatenate the input string with a string s if and only if it does
not already end with the string s.

mkCase :: Case → String → String

mkCase c w = case c of

Nom → w

Gen → w +? "s"

The next step is to define a convenient worst-case function. In the worst
case, since we could abstract out the case inflection, we need to supply five
word forms. The last word form is a Str, corresponding to the compound
word form, since it is not all of the paradigms that have a special compound
word form.

mkNoun :: String → String → String → String → Str → Noun

mkNoun apa apan apor aporna ap f = case f of

NounForm n s c -> mkStr $ mkCase c $ case (n,s) of

21

(Sg,Indef) → apa

(Sg,Def) → apan

(Pl,Indef) → apor

(Pl,Def) → aporna

Comp → ap

We can now define a paradigm function for the declensions of Swedish by
using our worst-case function. The function init takes all characters except
the last one, the function last takes the last character and the operator +?
avoid duplication of adjacent characters.

decl1 :: String -> Noun

decl1 apa = mkNoun apa (ap ++ "an") (ap++"or") (ap++"orna") (mkStr ap)

where ap = init apa

decl2 :: String -> Noun

decl2 pojke = mkNoun pojke pojken (pojk ++ "ar") (pojk ++ "arna")

(pojkC)

where

pojk = dropEndIfE pojke

pojkC = if (last pojke == ’e’) then mkStr pojk else nonExist

pojken = pojke +? "en"

decl3 :: String -> Noun

decl3 sak = mkNoun sak (sak ++ "en") (sak ++ "er") (sak++"erna")

nonExist

decl4 :: String -> Noun

decl4 jojo = mkNoun jojo (jojo ++ "n") (jojo ++ "r") (jojo++"rna")

nonExist

decl5 :: String -> Noun

decl5 rike = mkNoun rike (rike +? "et") (rike ++ "n") (rike ++ "na")

nonExist

decl6 :: String -> Noun

decl6 lik = mkNoun lik (lik ++ "et") lik (lik ++ "en")

nonExist

Many compound forms of the first declension have variants. The variants
are word forms from old Swedish still used in modern Swedish. For example,
the word gata (Eng. ’street’) has not only the compound word form gat
but also gatu. We can express this with a higher-order function variants,
which is part of the FM library. The paradigm function for words like gata
is defined in terms of decl1.

22

decl1gata :: String → Noun

decl1gata gata = (decl1 gata) ‘variants‘ [(Comp, gat++"u")]

where gat = init gata

1.11.3 Dictionary Functions

The next step is to create dictionary functions, which translate paradigm
functions into dictionary entries. We start with a general function noun,
which translates a Noun into a dictionary entry. The translation is done with
the function entryI, and the translation is possible since the dictionary type
NounForm is an instance of the Dict class.

It is at this stage the inherent types enter, since they are a property
associated to the whole dictionary entry, not a particular word form.

We can now define the dictionary functions for the two paradigm func-
tions we defined before, with the help of noun.

noun :: Noun → Gender → Entry

noun n g = entryI n [prValue g]

d1 :: String → Entry

d1 s = noun (decl1 s) Uter

d2 :: String → Entry

d2 s = noun (decl2 s) Uter

d3 :: String → Entry

d3 s = noun (decl3 s) Uter

d4 :: String → Entry

d4 s = noun (decl4 s) Uter

d5 :: String → Entry

d5 s = noun (decl5 s) Neuter

d6 :: String → Entry

d6 s = noun (decl6 s) Neuter

d1gata :: String → Entry

d1gata s = noun (decl1gata s) Utr

The dictionary functions are assigned paradigm names (details omitted),
typically the same as the dictionary function names, which connects the
dictionary functions with the external lexicon. The lexicon consists of a
listing of words annotated with their paradigm names.

23

We can now start developing our lexicon, here with only 5 entries. This
lexicon is expanded to 43 word forms by the inflection machinery we just
defined.

d1 flicka

d1 smula

d2 stolpe

d2 al

d6 fik

1.12 Introduction to Lexicon Extraction

Given that we have defined an inflection engine, how should we go about
building the lexicon? There are usually some trickier cases that are best
treated manually, such as irregularly inflected words, but for the regular
ones, could we employ some automatic methods?

Our first approach was to create a CGI script that enabled registered
users to extend the lexicon. This script was generated from FM, but required
some manual work (translation of the written content and the addition of
host information). A screen shot of the CGI script is given below.

24

The idea with the CGI script was to use the Internet community as an
automatic method to extend the lexicon. This resulted in only 360 words
and the quality was not that great. We realized that no-one was going to
do the work for us.

After realizing that we had to do our own spade work, we wrote some
scripts that applied a word guessing strategy on the word forms of some text,
i.e. to use the inflectional and derivational affixes of word forms to try to
identify citation forms tagged with paradigm names. It worked reasonably
well, but it was only based on a single word form and it was in no way
systematic. The Extract tool came as a sudden idea, first tested on the
Language Technology course in 2004 and then at a morphology course for
computational linguists.

1.13 Swedish Nouns in Extract

The tool Extract is essentially a powerful search tool that uses a combination
of regular expressions containing variables and propositional logic to form
search templates. Extract takes either unprocessed or preprocessed text
data as input together with a file containing lexicon extraction rules. A rule
describes how citation forms tagged with identifiers can be identified based
on the word forms in the text data. The identifiers encode some linguistic
information about the words the citation forms represent, e.g. regN cat

would indicate that cat is inflected as a regular noun in English.
Let us now write a rule for Swedish first declension nouns to extract

words to the lexicon of our FM implementation defined in Sec. 1.11. We
will use a collection of 94k unique word forms as input data, collected from
raw text data.

The rule can be read as follows: if a substring, denoted by stick,
can be found for one of the singular word forms stick+"a", stick+"an",
stick+"as", stick+"ans" and one of the plural word forms stick+"or",
stick+"orna", stick+"ors", stick+"ornas", then we output d1 stick+"a".
E.g. if the input data contains the word forms strumpas and strumporna,
then the tool would output d1 strumpa.

rule d1

=

stick+"a"

{

(stick+"a" | stick+"an" | stick+"as" | stick+"ans") &

(stick+"or" | stick+"orna" | stick+"ors" | stick+"ornas")

} ;

25

This rule contains no reference to the context of the word forms, i.e.
the input data is treated as a set. Extract supports the possibility to refer
to the context and also to any additional information that word forms been
augmented with, through so called Constraint Grammar constructs, but this
will not be discussed further here.

When we run Extract with the rule on our data set, we end up with 530
words hypothesized to be nouns in the first declension. An examination of
the output reveals a couple of spurious short words appearing in the list,
e.g. d1 bra, which is a hypothesis based, erroneously, on the word forms bra
(Eng. ’good’) and bror (Eng. ’brother’). These false positives are caused by
the stem variable stick being unconstrained, and to improve the extraction
we need to require that the substring associated to stick, at least, contains
one (stem) vowel.

The stem variable is constrained by associating a regular expression to
it. This is done by defining a couple of regular expressions and by a small
modification in our rule. The regular expression Stem states that the variable
stick can only be associated to a substring consisting of alphabetic letters
with at least one vowel.

regexp Consonant = ["bcdfghjklmnpqrstvwxz"] ;

regexp Vowel = ["aeiouyåäö"] ;

regexp Letter = Consonant | Vowel ;

regexp Stem = Letter* Vowel Letter* ;

rule d1 [stick:Stem]

=

stick+"a"

{

(stick+"a" | stick+"an" | stick+"as" | stick+"ans") &

(stick+"or" | stick+"orna" | stick+"ors" | stick+"ornas")

} ;

If we rerun Extract with the new rule, we get 505 words instead, of
which 14 are still false positives. The false positives originate mostly from
verbs in infinitive: +"a" or +"as" (passive infinitive). Amusingly, we get the
false positive d1 halvbra, originating from halvbra (Eng. ’half good’) and
halvbror (Eng. ’half brother’), the word forms we wanted to get rid of, now
appearing in compound word forms.

26

Bibliography

[1] I. Andersson and T. Söderberg. Spanish Morphology – implemented in
a functional programming language. Master’s Thesis, Computational
Linguistics, Gothenburg University, 2003.

[2] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Pub-
lications, Stanford University, United States, 2003.

[3] B. Bickel and J. Nichols. Inflectional morphology. In T. Shopen, editor,
Complex Constructions, volume 2 of Language Typology and Syntactic
Description. 2 edition, 2007.

[4] L. Bogavac. Functional Morphology for Russian. Master’s Thesis, De-
partment of Computing Science, Chalmers University of Technology,
2004.

[5] E. Broselow and J. McCarthy. A theory of internal reduplication. The
Linguistic Review, 3:25–98, 1983.

[6] M. Haspelmath. Understanding Morphology. Oxford University Press
Inc., Upper Saddle River, New Jersey 07458, 2002.

[7] S. Hellberg. The Morphology of Present-Day Swedish. Almqvist &
Wiksell International, Stockholm, Sweden, 1978.

[8] C. F. Hockett. Two models of grammatical description. Word, 10:210–
234, 1954.

[9] G. Huet. A functional toolkit for morphological and phonological pro-
cessing, application to a Sanskrit tagger. J. Functional Programming,
15,4:573–614, 2005. http://yquem.inria.fr/∼huet/PUBLIC/tagger.
pdf.

[10] M. Humayoun. Urdu Language Morphology in Functional Morphology
Toolkit. Master’s Thesis, Department of Computing Science, Chalmers
University of Technology, 2006.

[11] F. Karlsson. Finsk Grammatik. Suomalaisen Kirjallisuuden Seura, 2005.

[12] M. Humayoun, H. Hammarström, and A. Ranta. Implementing Urdu
Grammar as Open Source Software - extented abstract. Conference on
Language and Technology, University of Peshawar, Pakistan, 2007.

27

[13] M. Humayoun, H. Hammarström, and A. Ranta. Urdu Morphology,
Orthography and Lexicon Extraction. CAASL-2: The Second Work-
shop on Computational Approaches to Arabic Script-based Languages,
LSA 2007 Linguistic Institute, Stanford University, 2007.

[14] M. Mallon. Inuktitut Linguistics for Technocrats, 2000. http://www.

inuktitutcomputing.ca/Technocrats, accessed 1 Jan 2007.

[15] P. Callaghan. Ambiguous Parsing with Happy, 2007. Under Consid-
eration for Publication in J. Functional Programming. Available at:
www.dur.ac.uk/p.c.callaghan/happy-glr/callaghan-glr.ps.gz.

[16] M. Pellauer. A Functional Morphology for Estonian. Term Paper, MIT,
2005.

[17] A. Ranta. 1+n representations of Italian morphology. Essays dedicated
to Jan von Plato on the occasion of his 50th birthday, http://www.

valt.helsinki.fi/kfil/jvp50.htm, 2001.

[18] A. Ranta. Grammatical Framework: A Type-theoretical Grammar For-
malism. The Journal of Functional Programming, 14(2):145–189, 2004.

[19] C. Schlyter. Ordbok till Samlingen af Sweriges Gamla Lagar. (Saml. af
Sweriges Gamla Lagar 13.). Lund, Sweden, 1887.

[20] O. Smrz. Elixirfm - implementation of functional arabic morphology.
ACL 2007 Workshop on Computational Approaches to Semitic Lan-
guages, 2007.

[21] O. Smrz. Functional Arabic Morphology. Formal System and Imple-
mentation. PhD thesis, Charles University in Prague, 2007.

[22] K. Söderwall. Ordbok Öfver svenska medeltids-spr̊aket. Vol I-III. Lund,
Sweden, 1884-1918.

[23] K. Söderwall. Ordbok Öfver svenska medeltids-spr̊aket. Supplement. Vol
IV—V. Lund, Sweden, 1953—1973.

[24] M. Tomita. Efficient Parsing of Natural Language. Kluwer Academic
Press, 1986.

28

Part I

BNF Converter

29

Chapter 2

Labelled BNF: A High-Level

Formalism for Defining

Well-Behaved Programming

Languages

Markus Forsberg and Aarne Ranta
Department of Computing Science

Chalmers University of Technology and the University of Göteborg
SE-412 96 Göteborg, Sweden
{markus,aarne}@cs.chalmers.se

Paper published:
NWPT’03, Proceedings of the Estonian Academy of Sciences: Physics and
Mathematics, Special issue on programming theory edited by J. Vain and

T. Uustalu, 2003, volume 52, p. 356–377

abstract

This paper introduces the grammar formalism Labelled BNF (LBNF), and
the compiler construction tool BNF Converter. Given a grammar written
in LBNF, the BNF Converter produces a complete compiler front end (up
to, but excluding, type checking), i.e. a lexer, a parser, and an abstract
syntax definition. Moreover, it produces a pretty-printer and a language
specification in LATEX, as well as a template file for the compiler back end.

31

A language specification in LBNF is completely declarative and therefore
portable. It reduces dramatically the effort of implementing a language. The
price to pay is that the language must be “well-behaved”, i.e. that its lexical
structure must be describable by a regular expression and its syntax by a
context-free grammar.

Keywords

compiler construction, parser generator, grammar, labelled BNF, abstract
syntax, pretty printer, document automation

2.1 Introduction

This paper defends an old idea: a programming language is defined by a
BNF grammar [12]. This idea is usually not followed for two reasons. One
reason is that a language may require more powerful methods (consider, for
example, languages with layout rules). The other reason is that, when pars-
ing, one wants to do other things already (such as type checking etc). Hence
the idea of extending pure BNF with semantic actions, written in a general-
purpose programming language. However, such actions destroy declarativity
and portability. To describe the language, it becomes necessary to write a
separate document, since the BNF no longer defines the language. Also
the problem of synchronization arises: how to guarantee that the different
modules—the lexer, the parser, and the document, etc.—describe the same
language and that they fit together?

The idea in LBNF is to use BNF, with construction of syntax trees as the
only semantic action. This gives an unique source for all language-related
modules, and it also solves the problem of synchronization. Thereby it
dramatically reduces the effort of implementing a new language. Generating
syntax trees instead of using more complex semantic actions is a natural
phase of multi-phase compilation, which is recommended by most modern-
day text books about compiler construction (e.g. Appel [1]). BNF grammars
are an ingredient of all modern compilers. When designing LBNF, we tried
to keep it so simple and intuitive that it can be learnt in a few minutes by
anyone who knows ordinary BNF.

Of course, the are some drawbacks with our approach. Not all lan-
guages can be completely defined, although surprisingly many can (see Sec-
tion 2.5.1). Another drawback is that the modules generated are not quite
as good as handwritten. But this is a general problem when generating code

32

instead of handwriting it: a problem shared by all compilers, including the
standard parser and lexer generation tools.

To use LBNF descriptions as implementations, we have built the BNF
Converter [4]. Given an input LBNF grammar, the BNF Converter produces
a lexer, a parser, and an abstract syntax definition. Moreover, it produces
a pretty-printer and a language specification in LATEX. Since all this is
generated from a single source, we can be sure that the documentation
corresponds to the actual language, and that the lexer, parser and abstract
syntax fit seamlessly together.

The BNF Converter is written in the functional programming language
Haskell[14], and its target languages are presently Haskell, the associated
compiler tools Happy[10] and Alex[2], and LATEX. Happy is a parser gen-
erator tool, similar to YACC[7], which from a BNF-like description builds
an LALR(1) parser. Alex is a lexer generator tool, similar to Lex[9], which
converts a regular expression into a finite-state automaton. Over the years,
Haskell and these tools have proven to be excellent devices for compiler con-
struction, to a large extent because of Haskell’s algebraic data types and a
convenient method of syntax-directed translation via pattern matching; yet
they do not quite remove the need for repetitive and low-level coding. The
BNF Converter can be seen as a high-level front end to these tools. How-
ever, due to its declarative nature, LBNF does not crucially depend on the
target language, and it is therefore possible to redirect the BNF Converter
as a front end to another set of compiler tools. This has in fact recently
been done for Java, CUP [6], and JLex [3]1. The only essential difference
between Haskell/Happy/Alex and Java/CUP/JLex or C/YACC/Lex is the
target language included in the parser and lexer description.

2.2 The LBNF Grammar Formalism

As the first example of LBNF, consider a triple of rules defining addition
expressions with “1”:

EPlus. Exp ::= Exp "+" Num ;

ENum. Exp ::= Num ;

NOne. Num ::= "1" ;

Apart from the labels, EPlus, ENum, and NOne, the rules are ordinary BNF
rules, with terminal symbols enclosed in double quotes and nonterminals
written without quotes. The labels serve as constructors for syntax trees.

1Work by Michael Pellauer at Chalmers

33

From an LBNF grammar, the BNF Converter extracts an abstract syntax
and a concrete syntax. The abstract syntax is implemented, in Haskell, as
a system of data type definitions

data Exp = EPlus Exp Exp | ENum Num

data Num = NOne

(For other languages, including C and Java, an equivalent representation
can be given in the same way as in the Zephyr abstract syntax specification
tool [16]). The concrete syntax is implemented by the lexer, parser and
pretty-printer algorithms, which are defined in other generated program
modules.

2.2.1 LBNF in a nutshell

Briefly, an LBNF grammar is a BNF grammar where every rule is given a
label. The label is used for constructing a syntax tree whose subtrees are
given by the nonterminals of the rule, in the same order.

More formally, an LBNF grammar consists of a collection of rules, which
have the following form (expressed by a regular expression; Appendix A
gives a complete BNF definition of the notation):

Ident ”.” Ident ”::=” (Ident | String)* ”;” ;

The first identifier is the rule label, followed by the value category. On
the right-hand side of the production arrow (::=) is the list of production
items. An item is either a quoted string (terminal) or a category symbol
(non-terminal). A rule whose value category is C is also called a production
for C.

Identifiers, that is, rule names and category symbols, can be chosen ad
libitum, with the restrictions imposed by the target language. To satisfy
Haskell, and C and Java as well, the following rule is imposed

An identifier is a nonempty sequence of letters, starting with a
capital letter.

LBNF is clearly sufficient for defining any context-free language. How-
ever, the abstract syntax that it generates may often become too detailed.
Without destroying the declarative nature and the simplicity of LBNF, we
have added to it four ad hoc conventions, which are described in the following
subsection.

34

2.2.2 LBNF conventions

Predefined basic types

The first convention are predefined basic types. Basic types, such as integer
and character, can of course be defined in a labelled BNF, for example:

Char_a. Char ::= "a" ;

Char_b. Char ::= "b" ;

This is, however, cumbersome and inefficient. Instead, we have decided
to extend our formalism with predefined basic types, and represent their
grammar as a part of lexical structure. These types are the following, as
defined by LBNF regular expressions (see 2.3.3 for the regular expression
syntax):

Integer of integers, defined
digit+

Double of floating point numbers, defined
digit+ ’.’ digit+ (’e’ ’-’? digit+)?

Char of characters (in single quotes), defined
’\’’ ((char - ["’\\"]) | (’\\’ ["’\\nt"])) ’\’’

String of strings (in double quotes), defined
’"’ ((char - ["\"\\"]) | (’\\’ ["\"\\nt"]))* ’"’

Ident of identifiers, defined
letter (letter | digit | ’_’ | ’\’’)*

In the abstract syntax, these types are represented as corresponding types.
In Haskell, we also need to define a new type for Ident:

newtype Ident = Ident String

For example, the LBNF rules

EVar. Exp ::= Ident ;

EInt. Exp ::= Integer ;

EStr. Exp ::= String ;

generate the abstract syntax

data Exp = EVar Ident | EInt Integer | EStr String

35

where Integer and String have their standard Haskell meanings. The
lexer only produces the high-precision variants of integers and floats; authors
of applications can truncate these numbers later if they want to have low
precision instead.

Predefined categories may not have explicit productions in the grammar,
since this would violate their predefined meanings.

Semantic dummies

Sometimes the concrete syntax of a language includes rules that make no
semantic difference. An example is a BNF rule making the parser accept
extra semicolons after statements:

Stm ::= Stm ";" ;

As this rule is semantically dummy, we do not want to represent it by a
constructors in the abstract syntax. Instead, we introduce the following
convention:

A rule label can be an underscore , which does not add anything
to the syntax tree.

Thus we can write the following rule in LBNF:

_ . Stm ::= Stm ";" ;

Underscores are of course only meaningful as replacements of one-argument
constructors where the value type is the same as the argument type. Se-
mantic dummies leave no trace in the pretty-printer. Thus, for instance, the
pretty-printer “normalizes away” extra semicolons.

Precedence levels

A common idiom in (ordinary) BNF is to use indexed variants of categories
to express precedence levels:

Exp3 ::= Integer ;

Exp2 ::= Exp2 "*" Exp3 ;

Exp ::= Exp "+" Exp2 ;

Exp ::= Exp2 ;

Exp2 ::= Exp3 ;

Exp3 ::= "(" Exp ")" ;

36

The precedence level regulates the order of parsing, including associativity.
Parentheses lift an expression of any level to the highest level.

A straightforward labelling of the above rules creates a grammar that
does have the desired recognition behavior, as the abstract syntax is clut-
tered with type distinctions (between Exp, Exp2, and Exp3) and constructors
(from the last three rules) with no semantic content. The BNF Converter so-
lution is to distinguish among category symbols those that are just indexed
variants of each other:

A category symbol can end with an integer index (i.e. a sequence
of digits), and is then treated as a type synonym of the corre-
sponding non-indexed symbol.

Thus Exp2 and Exp3 are indexed variants of Exp.
Transitions between indexed variants are semantically dummy, and we

do not want to represent them by constructors in the abstract syntax. To
do this, we extend the use of underscores to indexed variants. The example
grammar above can now be labelled as follows:

EInt. Exp3 ::= Integer ;

ETimes. Exp2 ::= Exp2 "*" Exp3 ;

EPlus. Exp ::= Exp "+" Exp2 ;

_. Exp ::= Exp2 ;

_. Exp2 ::= Exp3 ;

_. Exp3 ::= "(" Exp ")" ;

Thus the data type of expressions becomes simply

data Exp = EInt Integer | ETimes Exp Exp | EPlus Exp Exp

and the syntax tree for 2*(3+1) is

ETimes (EInt 2) (EPlus (EInt 3) (EInt 1))

Indexed categories can be used for other purposes than precedence, since
the only thing we can formally check is the type skeleton (see the section
2.2.3). The parser does not need to know that the indices mean precedence,
but only that indexed variants have values of the same type. The pretty-
printer, however, assumes that indexed categories are used for precedence,
and may produce strange results if they are used in some other way.

37

Polymorphic lists

It is easy to define monomorphic list types in LBNF:

NilDef. ListDef ::= ;

ConsDef. ListDef ::= Def ";" ListDef ;

However, compiler writers in languages like Haskell may want to use
predefined polymorphic lists, because of the language support for these con-
structs. LBNF permits the use of Haskell’s list constructors as labels, and
list brackets in category names:

[]. [Def] ::= ;

(:). [Def] ::= Def ";" [Def] ;

As the general rule, we have

[C], the category of lists of type C,

[] and (:), the Nil and Cons rule labels,

(:[]), the rule label for one-element lists.

The third rule label is used to place an at-least-one restriction, but also to
permit special treatment of one-element lists in the concrete syntax.

In the LATEX document (for stylistic reasons) and in the Happy file (for
syntactic reasons), the category name [X] is replaced by ListX. In order for
this not to cause clashes, ListX may not be at the same time used explicitly
in the grammar.

The list category constructor can be iterated: [[X]], [[[X]]], etc be-
have in the expected way.

The list notation can also be seen as a variant of the Kleene star and
plus, and hence as an ingredient from Extended BNF.

2.2.3 The type-correctness of LBNF rules

It is customary in parser generators to delegate the checking of certain er-
rors to the target language. For instance, a Happy source file that Happy
processes without complaints can still produce a Haskell file that is rejected
by Haskell. In the same way, the BNF converter delegates some checking to
Happy and Haskell (for instance, the parser conflict check). However, since
it is always the easiest for the programmer to understand error messages
related to the source, the BNF Converter performs some checks, which are
mostly connected with the sanity of the abstract syntax.

38

The type checker uses a notion of the category skeleton of a rule, which
is a pair

(C,A . . . B)

where C is the unindexed left-hand-side non-terminal and A . . . B is the
sequence of unindexed right-hand-side non-terminals of the rule. In other
words, the category skeleton of a rule expresses the abstract-syntax type of
the semantic action associated to that rule.

We also need the notions of a regular category and a regular rule label.
Briefly, regular labels and categories are the user-defined ones. More for-
mally, a regular category is none of [C],Integer, Double, Char, String
and Ident. A regular rule label is none of , [], (:), and (:[]).

The type checking rules are now the following:

A rule labelled by must have a category skeleton of form (C,C).

A rule labelled by [] must have a category skeleton of form
([C],).

A rule labelled by (:) must have a category skeleton of form
([C], C[C]).

A rule labelled by (:[]) must have a category skeleton of form
([C], C).

Only regular categories may have productions with regular rule
labels.

Every regular category occurring in the grammar must have at
least one production with a regular rule label.

All rules with the same regular rule label must have the same
category skeleton.

The second-last rule corresponds to the absence of empty data types in
Haskell. The last rule could be strengthened so as to require that all regular
rule labels be unique: this is needed to guarantee error-free pretty-printing.
Violating this strengthened rule currently generates only a warning, not a
type error.

2.3 LBNF Pragmas

Even well-behaved languages have features that cannot be expressed nat-
urally in its BNF grammar. To take care of them, while preserving the
single-source nature of the BNF Converter, we extend the notation with

39

what we call pragmas. All these pragmas are completely declarative, and
the pragmas are also reflected in the documentation.

2.3.1 Comment pragmas

The first pragma tells what kinds of comments the language has. Normally
we do not want comments to appear in the abstract syntax, but treat them in
the lexical analysis. The comment pragma instructs the lexer generator (and
the document generator!) to treat certain pieces of text as comments and
thus to ignore them (except for their contribution to the position information
used in parser error messages).

The simplest solution to the comment problem would be to use some
default comments that are hard-coded into the system, e.g. Haskell’s com-
ments. But this definition can hardly be stated as a condition for a language
to be well-behaved, and we could not even define C or Java or ML then. So
we have added a comment pragma, whose regular-expression syntax is

”comment” String String? ”;”

The first string tells how a comment begins. The second, optional, string
marks the end of a comment: if it is not given, then the comment expects a
newline to end. For instance, to describe the Haskell comment convention,
we write the following lines in our LBNF source file:

comment "--" ;

comment "{-" "-}" ;

Since comments are treated in the lexical analyzer, they must be recognized
by a finite state automaton. This excludes the use of nested comments unless
defined in the grammar itself. Discarding nested comments is one aspect of
what we call well-behaved languages.

The length of comment end markers is restricted to two characters, due
to the complexities in the lexer caused by longer end markers.

2.3.2 Internal pragmas

Sometimes we want to include in the abstract syntax structures that are
not part of the concrete syntax, and hence not parsable. They can be, for
instance, syntax trees that are produced by a type-annotating type checker.
Even though they are not parsable, we may want to pretty-print them, for
instance, in the type checker’s error messages. To define such an internal
constructor, we use a pragma

"internal" Rule ";"

40

where Rule is a normal LBNF rule. For instance,

internal EVarT. Exp ::= "(" Ident ":" Type ")";

introduces a type-annotated variant of a variable expression.

2.3.3 Token pragmas

The predefined lexical types are sufficient in most cases, but sometimes we
would like to have more control over the lexer. This is provided by token
pragmas. They use regular expressions to define new token types.

If we, for example, want to make a finer distinction for identifiers, a
distinction between lower- and upper-case letters, we can introduce two new
token types, UIdent and LIdent, as follows.

token UIdent (upper (letter | digit | ’_’)*) ;

token LIdent (lower (letter | digit | ’_’)*) ;

The regular expression syntax of LBNF is specified in the Appendix.
The abbreviations with strings in brackets need a word of explanation:

["abc7%"] denotes the union of the characters ’a’ ’b’ ’c’ ’7’ ’%’

{"abc7%"} denotes the sequence of the characters ’a’ ’b’ ’c’ ’7’ ’%’

The atomic expressions upper, lower, letter, and digit denote the charac-
ter classes suggested by their names (letters are isolatin1). The expression
char matches any character in the 8-bit ASCII range, and the “epsilon”
expression eps matches the empty string.2

2.3.4 Entry point pragmas

The BNF Converter generates, by default, a parser for every category in the
grammar. This is unnecessarily rich in most cases, and makes the parser
larger than needed. If the size of the parser becomes critical, the entry
points pragma enables the user to define which of the parsers are actually
exported:

entrypoints (Ident ",")* Ident ;

For instance, the following pragma defines Stm and Exp to be the only entry
points:

entrypoints Stm, Exp ;

2If we want to describe full Java, we must extend the character set to Unicode. This
is currently not supported by Alex, however.

41

2.4 BNF Converter code generation

2.4.1 The files

Given an LBNF source file Foo.cf, the BNF Converter generates the fol-
lowing files:

• AbsFoo.hs: The abstract syntax (Haskell source file)

• LexFoo.x: The lexer (Alex source file)

• ParFoo.y: The parser (Happy source file)

• PrintFoo.hs: The pretty printer (Haskell source file)

• SkelFoo.hs: The case Skeleton (Haskell source file)

• TestFoo.hs: A test bench file for the parser and pretty printer (Haskell
source file)

• DocFoo.tex: The language document (LATEXsource file)

• makefile: A makefile for the lexer, the parser, and the document

In addition to these files, the user needs the Alex runtime file Alex.hs and
the error monad definition file ErrM.hs, both included in the BNF Converter
distribution.

2.4.2 Example: JavaletteLight.cf

The following LBNF grammar defines a small C-like language, Javalette
Light3.

Fun. Prog ::= Typ Ident "(" ")" "{" [Stm] "}" ;

SDecl. Stm ::= Typ Ident ";" ;

SAss. Stm ::= Ident "=" Exp ";" ;

SIncr. Stm ::= Ident "++" ";" ;

SWhile. Stm ::= "while" "(" Exp ")" "{" [Stm] "}" ;

ELt. Exp0 ::= Exp1 "<" Exp1 ;

EPlus. Exp1 ::= Exp1 "+" Exp2 ;

ETimes. Exp2 ::= Exp2 "*" Exp3 ;

EVar. Exp3 ::= Ident ;

EInt. Exp3 ::= Integer ;

3It is a fragment of the language Javalette used at compiler construction courses at
Chalmers University

42

EDouble. Exp3 ::= Double ;

TInt. Typ ::= "int" ;

TDouble. Typ ::= "double" ;

[]. [Stm] ::= ;

(:). [Stm] ::= Stm [Stm] ;

-- coercions

_. Stm ::= Stm ";" ;

_. Exp ::= Exp0 ;

_. Exp0 ::= Exp1 ;

_. Exp1 ::= Exp2 ;

_. Exp2 ::= Exp3 ;

_. Exp3 ::= "(" Exp ")" ;

-- pragmas

internal ExpT. Exp ::= Typ Exp ;

comment "/*" "*/" ;

comment "//" ;

entrypoints Prog, Stm, Exp ;

The abstract syntax AbsJavaletteLight.hs

The abstract syntax of Javalette generated by the BNF Converter is essen-
tially what a Haskell programmer would write by hand:

data Prog =

Fun Typ Ident [Stm]

deriving (Eq,Show)

data Stm =

SDecl Typ Ident

| SAss Ident Exp

| SIncr Ident

| SWhile Exp [Stm]

deriving (Eq,Show)

data Exp =

ELt Exp Exp

| EPlus Exp Exp

| ETimes Exp Exp

| EVar Ident

| EInt Integer

| EDouble Double

| ExpT Typ Exp

deriving (Eq,Show)

43

data Typ =

TInt

| TDouble

deriving (Eq,Show)

The lexer LexJavaletteLight.x

The lexer file (in Alex) consists mostly of standard rules for literals and
identifiers, but has rules added for reserved words and symbols (i.e. terminals
occurring in the grammar) and for comments. Here is a fragment with the
definitions characteristic of Javalette.

{ %s = ^(| ^) | ^{ | ^} | ^; | ^= | ^+ ^+ | ^< | ^+ | ^*}

"tokens_lx"/"tokens_acts":-

<> ::= ^/^/ [.]* ^n

<> ::= ^/ ^* ([^u # ^*] | ^* [^u # ^/])* (^*)+ ^/

<> ::= ^w+

<pTSpec> ::= %s %{ pTSpec p = PT p . TS %}

<ident> ::= ^l ^i* %{ ident p = PT p . eitherResIdent TV %}

<int> ::= ^d+ %{ int p = PT p . TI %}

<double> ::= ^d+ ^. ^d+ (e (^-)? ^d+)? %{ double p = PT p . TD %}

eitherResIdent :: (String -> Tok) -> String -> Tok

eitherResIdent tv s = if isResWord s then (TS s) else (tv s) where

isResWord s = elem s ["double","int","while"]

The lexer file moreover defines the token type Tok used by the lexer and the
parser.

The parser ParJavaletteLight.y

The parser file (in Happy) has a large number of token definitions (which we
find it extremely valuable to generate automatically), followed by parsing
rules corresponding closely to the source BNF rules. Here is a fragment
containing examples of both parts:

%token

’(’ { PT _ (TS "(") }

’)’ { PT _ (TS ")") }

’double’ { PT _ (TS "double") }

’int’ { PT _ (TS "int") }

’while’ { PT _ (TS "while") }

44

L_integ { PT _ (TI $$) }

L_doubl { PT _ (TD $$) }

%%

Integer : L_integ { (read $1) :: Integer }

Double : L_doubl { (read $1) :: Double }

Stm :: { Stm }

Stm : Typ Ident ’;’ { SDecl $1 $2 }

| Ident ’=’ Exp ’;’ { SAss $1 $3 }

| Ident ’++’ ’;’ { SIncr $1 }

| ’while’ ’(’ Exp ’)’ ’{’ ListStm ’}’ { SWhile $3 (reverse $6) }

| Stm ’;’ { $1 }

Exp0 :: { Exp }

Exp0 : Exp1 ’<’ Exp1 { ELt $1 $3 }

| Exp1 { $1 }

The exported parsers have types of the following form, for any abstract
syntax type T,

[Tok] -> Err T

returning either a value of type T or an error message, using a simple error
monad. The input is a token list received from the lexer.

The pretty-printer PrintJavaletteLight.hs

The pretty-printer consists of a Haskell class Print with instances for all
generated data types, taking precedence into account. The class method
prt generates a list of strings for a syntax tree of any type.

instance Print Exp where

prt i e = case e of

ELt exp0 exp ->

prPrec i 0 (concat [prt 1 exp0 , ["<"] , prt 1 exp])

EPlus exp0 exp ->

prPrec i 1 (concat [prt 1 exp0 , ["+"] , prt 2 exp])

ETimes exp0 exp ->

prPrec i 2 (concat [prt 2 exp0 , ["*"] , prt 3 exp])

The list is then put in layout (identation, newlines) by a rendering function,
which is generated independently of the grammar, but written with easy
modification in mind.

45

The case skeleton SkelJavaletteLight.hs

The case skeleton can be used as a basis when defining the compiler back
end, e.g. type checker and code generator. The same skeleton is actually also
used in the pretty printer. The case branches in the skeleton are initialized
to show error messages saying that the case is undefined.

transExp :: Exp -> Result

transExp x = case x of

ELt exp0 exp -> failure x

EPlus exp0 exp -> failure x

ETimes exp0 exp -> failure x

The language document DocJavaletteLight.tex

We show the main parts of the generated JavaletteLight document in a
typeset form. The grammar symbols in the document are produced by
LATEX macros, with easy modification in mind.

The lexical structure of JavaletteLight

Identifiers

Identifiers 〈Ident 〉 are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters ’, reserved words
excluded.

Literals

Integer literals 〈Int 〉 are nonempty sequences of digits.
Double-precision float literals 〈Double 〉 have the structure indicated by the
regular expression 〈digit 〉+ ‘.’〈digit 〉+ (‘e’‘-’?〈digit 〉+)? i.e. two sequences
of digits separated by a decimal point, optionally followed by an unsigned
or negative exponent.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.
The reserved words used in JavaletteLight are the following:

double int while

46

The symbols used in JavaletteLight are the following:

() {
} ; =

++ < +
*

Comments

Single-line comments begin with //.
Multiple-line comments are enclosed with /* and */.

The syntactic structure of JavaletteLight

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production),
| (union) and ǫ (empty rule) belong to the BNF notation. All other symbols
are terminals.

〈Prog 〉 ::= 〈Typ 〉 〈Ident 〉 () { 〈ListStm 〉 }

〈Stm 〉 ::= 〈Typ 〉 〈Ident 〉 ;
| 〈Ident 〉 = 〈Exp 〉 ;
| 〈Ident 〉 ++ ;

| while (〈Exp 〉) { 〈ListStm 〉 }
| 〈Stm 〉 ;

〈Exp0 〉 ::= 〈Exp1 〉 < 〈Exp1 〉
| 〈Exp1 〉

〈Exp1 〉 ::= 〈Exp1 〉 + 〈Exp2 〉
| 〈Exp2 〉

〈Exp2 〉 ::= 〈Exp2 〉 * 〈Exp3 〉
| 〈Exp3 〉

〈Exp3 〉 ::= 〈Ident 〉
| 〈Integer 〉
| 〈Double 〉
| (〈Exp 〉)

〈ListStm 〉 ::= ǫ

| 〈Stm 〉 〈ListStm 〉

〈Exp 〉 ::= 〈Exp0 〉

〈Typ 〉 ::= int

| double

47

The makefile

The makefile is used to run Alex on the lexer, Happy on the parser, and
LATEX on the document, by simply typing make. The make clean command
removes the generated files.

The test bench file TestJavaletteLight.hs

The test bench file can be loaded in the Haskell interpreter hugs to run the
parser and the pretty-printer on terminal or file input. The test functions
display a syntax tree (or an error message) and the pretty-printer result
from the same tree.

2.4.3 An optimization: left-recursive lists

The BNF representation of lists is right-recursive, following Haskell’s list
constructor. Right-recursive lists, however, are an inefficient way of parsing
lists in an LALR parser. The smart programmer would implement a pair of
rules such as JavaletteLight’s

[]. [Stm] ::= ;

(:). [Stm] ::= Stm [Stm] ;

not in the direct way,

ListStm : {- empty -} { [] }

| Stm ListStm { (:) $1 $3 }

but under a left-recursive transformation:

ListStm : {- empty -} { [] }

| ListStm Stm { flip (:) $1 $2 }

Then the smart programmer would also be careful to reverse the list when
it is used:

Prog : Typ Ident ’(’ ’)’ ’{’ ListStm ’}’ { Fun $1 $2 (reverse $6) }

As reported in the Happy manual, this transformation is vital to avoid
running out of stack space with long lists. Thus we have implemented the
transformation in the BNF Converter for pairs of rules of the form

[]. [C] ::= ;

(:). [C] ::= C x [C] ;

48

where C is any category and x is any sequence of terminals (possibly empty).

There is another important parsing technique, recursive descent, which
cannot live with left recursion at all, but loops infinitely with left-recursive
grammars (cf. e.g. [1]). The question sometimes arises if, when designing a
grammar, one should take into account what method will be used for parsing
it. The view we are advocating is that the designer of the grammar should
in the first place think of the abstract syntax, and let the parser generator
perform automatic grammar transformations that are needed by the parsing
method.

2.5 Discussion

2.5.1 Results

LBNF and the BNF Converter[4] were introduced as a teaching tool at the
fourth-year compiler course in Spring 2003 at Chalmers. The goal was, on
the one hand, to advocate the use of declarative and portable language defi-
nitions, and on the other hand, to leave more time for back-end construction
in a compiler course. The students of the course had as a project to build
a compiler in small groups, and grading was based on how much (faultless)
functionality the compiler had, e.g. how many language features and how
many back ends. The first results were encouraging: a majority (12/20) of
the groups that finished their compiler used the BNF Converter. They all
were able to produce faultless front ends and, in average, more advanced
back ends than the participants of the previous year’s edition of the course.
In fact, the lexer+parser part of the compiler was estimated only to be 25
% of the work at the lowest grade, and 10 % at the highest grade—far from
the old times when the parser was more than 50 % of a student compiler.

One worry about using the LBNF in teaching was that students would
not really learn parsing, but just to write grammars. We found that this
concern is not relevant when comparing LBNF with a parser tool like Happy
and YACC: students writing their parsers in YACC are equally isolated from
the internals of LR parsing as those writing in LBNF. In fact, as learning
the formalism takes less time in the case of LBNF, the teacher can allocate
more time for explaining how the LR parser works. The lexer was a bigger
concern, though: since all of the token types needed for the project were
predefined types in LBNF, the students did not need to write a single regular
expression to finish their compiler! An obvious solution to this is to add some
more exotic token types to the project specification.

The main conclusion drawn from the teaching experiment was that the

49

tool should be ported to C and Java, so that the students who don’t use
Haskell would have the same facilities as those who do.

Students in a compiler class usually implement toy languages. What
about real-world languages? As an experiment, a complete LBNF definition
of ANSI C, with [8] as reference, has been written4. The length of the LBNF
source file is approximately the same as the length of the specification. Here
is a word count comparison between the source file and what is generated:

$ wc C.cf

288 1248 10203 C.cf

$ wc ?*C.* makefile

287 707 5635 AbsC.hs

518 1795 23062 DocC.tex

72 501 2600 LexC.x

477 2675 13761 ParC.y

423 3270 18114 PrintC.hs

336 1345 9178 SkelC.hs

22 103 677 TestC.hs

7 22 320 makefile

2142 10418 73347 total

Another real-world example is the object-oriented specification language
OCL [17]5. And of course, the BNF Converter has been implemented by
using modules generated from an LBNF grammar of LBNF (see the Ap-
pendix).

2.5.2 Well-behaved languages

A language that can be defined in LBNF is one whose syntax is context-free.6

Its lexical structure can be described by a regular expression. Modern lan-
guages, like Java and C, are close to this ideal; Haskell, with its layout syntax
and infix declarations, is a little farther. To rescue the maximum of existing
Haskell or some other language would be a matter of detail handwork rather
than general principles; and we have opted for keeping the LBNF formalism
simple, sacrificing completeness.

We do not need to sacrifice semantic completeness, however: languages
usually have a well-behaved subset that is enough for expressing everything
that is expressible in the language. When designing new languages—and

4Work by Ulf Persson at Chalmers
5Work by Kristofer Johannisson at Chalmers
6Due to the parser tool used by the BNF converter, it moreover has to be LALR(1)-

parsable; but this is a limitation not concerning LBNF as such.

50

even when using old ones—we find it a virtue to avoid exotic features. Such
features are often included in the name of user-friendliness, but for new
users, they are more often an obstacle than a help, since they violate the
users’ expectations gained from other languages.

2.5.3 Related work

The BNF Converter belongs largely to the YACC [7] tradition of compiler
compilers, since it compiles a higher-level notation into the YACC-like nota-
tion of Happy, and since the parser is the most demanding part of a language
front-end implementation. Another system on this level up from YACC is
Cactus [11], which uses an EBNF-like notation to generate a Happy parser,
an Alex lexer, and a data type definition for abstract syntax. Cactus, unlike
the BNF Converter, aims for completeness, and it is indeed possible to de-
fine Haskell 98 (without layout rules) in it [5]. The price to pay is that the
notation is less simple than LBNF. Moreover, because of Cactus’s higher
level of generality, it is no longer possible to extract a pretty-printer from a
grammar. Nor does Cactus generate documentation.

For abstract syntax alone, the Zephyr definition language [16] defines
a portable format and translations into program code in SML, Haskell, C,
C++, Java, and SGML. Zephyr also generates functions for displaying syn-
tax trees in these languages. But it does not support the definition of con-
crete syntax.

A survey of compiler tools on the web and in the literature tells that their
authors almost invariably opt for expressivity rather than declarativity. The
situation is different with grammar tools used in linguistic: there the declar-
ativity and reversibility (i.e. usability for both parsing and generation) of
grammar formalisms is highly valued. A major example of this philosophy
are Definite Clause Grammars (DCG) [13]. In practice, DCGs are imple-
mented as an embedded language in Prolog, and thereby some features of
full Prolog are sometimes smuggled into grammars to improve expressivity;
but this is usually considered harmful since it destroys declarativity and
reversibility.

2.5.4 Future work

In addition to the obvious task of writing LBNF back ends to other languages
than Haskell, there are many imaginable ways to extend the formalism itself.
One direction is to connect LBNF with the Grammatical Framework GF
[15]. GF is a rich grammar formalism originally designed to describe natural
languages. LBNF was originally a spin-off of GF, customizing a subset of GF

51

to combine with standard compiler tools. The connection between LBNF
and GF is close, with the difference that GF makes an explicit distinction
between abstract and concrete syntax. Consider an LBNF rule describing
multiplication:

Mult. Exp2 ::= Exp2 "*" Exp3 ;

This rule is in GF divided into two judgements: an abstract syntax function
definition, and a concrete syntax linearization rule,

fun Mult : Exp -> Exp -> Exp ;

lin Mult e1 e2 =

{s = parIf P2 e1 ++ "*" ++ parIf P3 e2 ; p = P2} ;

Precedence is treated as a parameter that regulates the uses of parentheses.
In GF, the user can define new parameter types, and thus the precedences
P2 and P3, as well as the function parIf, are defined in the source code
instead of being built in into the system, as in LBNF. GF moreover includes
higher-order abstract syntax and dependent types, and a GF grammar can
therefore define the type system of a language.

2.6 Conclusion

We see Labelled BNF as a natural step to a yet higher level in the de-
velopment that led machine programmers to create assemblers, assembler
programmers to create Fortran and C, and C programmers to create YACC
and Lex. A high-level notation always hides details that can be considered
well-understood and therefore uninteresting; this lets the users of the new
notation to concentrate on new things. At the same time, it creates qual-
ity by eliminating certain errors. Inevitably, it also precludes some smart
decisions that a human would make if hand-writing the generated code.

It would be too big a claim to say that LBNF can replace tools like
YACC and Happy. It can only replace them if the language to be imple-
mented is simple enough. Even though this is not always the case with
legacy programming languages, there is a visible trend towards simple and
standardized, “well-behaved” languages, and LBNF has proved useful in
reducing the effort in implementing such languages.

2.7 Appendix: LBNF Specification

This document was automatically generated by the BNF-Converter. It was gen-
erated together with the lexer, the parser, and the abstract syntax module, which

52

guarantees that the document matches with the implementation of the language
(provided no hand-hacking has taken place).

The lexical structure of LBNF

Identifiers

Identifiers 〈Ident 〉 are unquoted strings beginning with a letter, followed by any
combination of letters, digits, and the characters ’, reserved words excluded.

Literals

String literals 〈String 〉 have the form "x", where x is any sequence of characters.

Character literals 〈Char 〉 have the form ’c’, where c is any single character.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar. Those
reserved words that consist of non-letter characters are called symbols, and they
are treated in a different way from those that are similar to identifiers. The lexer
follows rules familiar from languages like Haskell, C, and Java, including longest
match and spacing conventions.

The reserved words used in LBNF are the following:

char comment digit

entrypoints eps internal

letter lower token

upper

The symbols used in LBNF are the following:

; . ::=
[]

(:)

| − *

+ ? {
} ,

Comments

Single-line comments begin with −−.
Multiple-line comments are enclosed with { − and − } .

53

The syntactic structure of LBNF

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production), |
(union) and ǫ (empty rule) belong to the BNF notation. All other symbols are
terminals.

〈Grammar 〉 ::= 〈ListDef 〉

〈ListDef 〉 ::= ǫ
| 〈Def 〉 ; 〈ListDef 〉

〈ListItem 〉 ::= ǫ
| 〈Item 〉 〈ListItem 〉

〈Def 〉 ::= 〈Label 〉 . 〈Cat 〉 ::= 〈ListItem 〉
| comment 〈String 〉
| comment 〈String 〉 〈String 〉
| internal 〈Label 〉 . 〈Cat 〉 ::= 〈ListItem 〉
| token 〈Ident 〉 〈Reg 〉
| entrypoints 〈ListIdent 〉

〈Item 〉 ::= 〈String 〉
| 〈Cat 〉

〈Cat 〉 ::= [〈Cat 〉]
| 〈Ident 〉

〈Label 〉 ::= 〈Ident 〉
|
| []

| (:)

| (: [])

〈Reg2 〉 ::= 〈Reg2 〉 〈Reg3 〉
| 〈Reg3 〉

〈Reg1 〉 ::= 〈Reg1 〉 | 〈Reg2 〉
| 〈Reg2 〉 − 〈Reg2 〉
| 〈Reg2 〉

54

〈Reg3 〉 ::= 〈Reg3 〉 *
| 〈Reg3 〉 +
| 〈Reg3 〉 ?
| eps

| 〈Char 〉
| [〈String 〉]
| { 〈String 〉 }
| digit

| letter

| upper

| lower

| char

| (〈Reg 〉)

〈Reg 〉 ::= 〈Reg1 〉

〈ListIdent 〉 ::= 〈Ident 〉
| 〈Ident 〉 , 〈ListIdent 〉

Bibliography

[1] A. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

[2] C. Dornan. Alex: a Lex for Haskell Programmers, 1997. http://www.cs.ucc.
ie/dornan/alex.html.

[3] C. Dornan. JLex: A Lexical Analyzer Generator for Java, 2000. http://www.
cs.princeton.edu/∼appel/modern/java/JLex/.

[4] M. Forsberg and A. Ranta. Labelled BNF: a high-level formalism for defining
well-behaved programming languages. Proceedings of the Estonian Academy
of Sciences: Physics and Mathematics, 52:356–377, 2003. Special issue on
programming theory edited by J. Vain and T. Uustalu.

[5] T. Hallgren. The Haskell 98 grammar in Cactus, 2001. http://www.cs.

chalmers.se/∼hallgren/CactusExample/.

[6] S. E. Hudson. CUP Parser Generator for Java, 1999. http://www.cs.

princeton.edu/∼appel/modern/java/CUP/.

[7] S. C. Johnson. Yacc — yet another compiler compiler. Technical Report
CSTR-32, AT & T Bell Laboratories, Murray Hill, NJ, 1975.

[8] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1988. 2nd edition.

55

[9] M. E. Lesk. Lex — a lexical analyzer generator. Technical Report 39, Bell
Laboratories, Murray Hill, N.J., 1975.

[10] S. Marlow. Happy, The Parser Generator for Haskell, 2001. http://www.

haskell.org/happy/.

[11] N. Martinsson. Cactus (Concrete- to Abstract-syntax Conversion Tool with
Userfriendly Syntax) . Master’s Thesis in Computer Science, 2001. http:

//www.mdstud.chalmers.se/∼md6nm/cactus/.

[12] P. Naur. Revised Report of the Algorithmic Language Algol 60. Comm. ACM,
6:1–17, 1963.

[13] F. Pereira and D. Warren. Definite clause grammars for language analysis—a
survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence, 13:231–278, 1980.

[14] S. Peyton Jones and J. Hughes. Report on the Programming Language
Haskell 98, a Non-strict, Purely Functional Language. Available at http:

//www.haskell.org, February 1999.

[15] A. Ranta. Grammatical Framework: A Type-Theoretical Grammar Formal-
ism. Journal of Functional Programming, 2004.

[16] D. C. Wang, A. W. A. J. L. Korn, and C. S. Serra. The Zephyr abstract
syntax description language. Proceedings of the Conference on Domain-Specific
Languages, 1997.

[17] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling
with UML. Addison-Wesley, 1999.

56

Chapter 3

Multilingual Front-End

Generation from Labelled

BNF Grammars

Michael Pellauer, Markus Forsberg, and Aarne Ranta
Chalmers University of Technology
Department of Computing Science

SE-412 96 Göteborg, Sweden
{pellauer, markus, aarne}@cs.chalmers.se

Paper published:
Technical Report no. 2004-09 in Computing Science at Chalmers University of

Technology and Göteborg University

The paper has been updated by M. Forsberg with Sec. 3.10 that gives a brief
up-to-date view of the tool since this report was written.

Abstract

The BNF Converter is a compiler-construction tool that uses a Labelled BNF gram-
mar as the single source of definition to extract the abstract syntax, lexer, parser
and pretty printer of a language. The added layer of abstraction allows it to per-
form multilingual code generation. As of version 2.0 it is able to output front ends
in Haskell, Java, C or C++.

57

3.1 Introduction

Language implementors have long used generative techniques to implement parsers.
However, with advances in language design the focus of the compiler front end has
shifted from the parsing of difficult languages to the definition of a complex abstract-
syntax-tree data structure. It is the common practise for modern implementors to
use one tool to generate an abstract syntax tree, another to generate a lexer, and
a third to generate a parser.

Yet this requires that the implementor learn three separate configuration syn-
taxes, and maintain disparate source files across changes to the language definition.
The BNF Converter1 is a compiler-construction tool based on the idea that from
a single source grammar it is possible to generate both an abstract syntax tree
definition, including a traversal function, and a concrete syntax, including lexer,
parser and pretty printer.

The decoupling of the grammar description from the implementation language
allows our tool to perform multilingual code generation. As of version 2.0 the
BNF Converter is able to generate a front end in Haskell, Java, C, or C++. This
continues the tradition of Andrew Appel [1, 2, 3], whose textbooks apply the same
compiler methodology across three widely different target languages.

The BNF Converter Approach

With the BNF Converter the user specifies a grammar using an enhanced version
of Backus Naur Form called Labelled BNF (LBNF), described in Section 3.2. This
grammar is language independent and serves as a single source for all language def-
inition changes, increasing maintainability. After the user selects a target language
it is used generate the following:

• Abstract syntax tree data structure

• Lexer and parser specification

• Pretty printer and traversal skeleton

• Test bench and Makefile

• Language documentation

This unified approach to generation offers many advantages. First of all, the
increased level of abstraction allows our tool to check the grammar for problems,
rather than attempting to check code written directly in an implementation lan-
guage like C. Secondly, the components are generated to interoperate correctly
together with no additional work from the user. Packages such as the abstract
syntax and pretty printer can be supplied as development frameworks to encourage
applications to make use of the new language.

1Available from the BNF Converter website [8]

58

Combined with BNF Converter 2.0’s multiingual generation this facilitates in-
teresting possibilities, such as using a server application written in C++ to pretty-
print output that will be parsed by a Java application running on a PDA. The lan-
guage maintainers themselves can experiment with implementing the same method-
ology over multiple languages, even creating a prototype language implementation
in Haskell, then switching to C for development once the language definition has
been finalized.

This paper gives an overview of the LBNF grammar formalism. We then com-
pare the methodology the BNF Converter uses to produce code in Haskell, Java,
C++, and C, highlighting some of the differences of generating a compiler in these
languages. Finally, we conclude with a discussion of our practical experiences using
the tool in education and language prototyping.

Language Describability

The requirements that the BNF Converter puts on a language in order to describe
it are simple and widely accepted: the syntax must be definable by a context-free
grammar and the lexical structure by a regular expression. The parser’s semantic
actions are only used for constructing abstract syntax trees and can therefore not
contribute to the definition of the language. Toy languages in compiler text books
are usually designed to meet these criteria, and the trend in real languages is to
become closer to this ideal.

Often it is possible to use preprocessing to turn a language that almost meets
the criteria into one that meets them completely. Features such as layout syntax,
for example, can be handled by adding a processing level between the lexer and the
parser. Our experiences with real-world languages are discussed in Section 3.8.

3.2 The LBNF Grammar Formalism

The input to the BNF Converter is a specification file written in the LBNF gram-
mar formalism. LBNF is an entirely declarative language designed to combine the
simplicity and readability of Backus Naur Form with a handful of features to hasten
the development of a compiler front-end.

Besides declarativity, we find it important that LBNF has its own semantics,
instead of only getting its meaning through translations to Haskell, Java, C, etc.
This means, among other things, that LBNF grammars are type checked on the
source, so that semantic errors do not appear unexpectedly in the generated code.
Full details on LBNF syntax and semantics are given in [9], as well as on the BNF
Converter homepage [8].

3.2.1 Rules and Labels

At the most basic level, an LBNF grammar is a BNF grammar where every rule
is given a label. The label is an identifier used as the constructor of syntax trees
whose subtrees are given by the non-terminals of the rule; the terminals are just

59

ignored. As a first example, consider a rule defining assignment statements in C-like
languages:

SAssign. STM ::= Ident "=" EXP ;

Apart from the label SAssign, the rule is an ordinary BNF rule, with ter-
minal symbols enclosed in double quotes and non-terminals written without
quotes. A small, though complete example of a grammar is given in Section
3.2.4.

Some aspects of the language belong to its lexical structure rather than
its grammar, and are described by regular expressions rather than by BNF
rules. We have therefore added to LBNF two rule formats to define the
lexical structure: tokens and comments (Section 3.2.2).

Creating an abstract syntax by adding a node type for every BNF rule
may sometimes become too detailed, or cluttered with extra structures. To
remedy this, we have identified the most common problem cases, and added
to LBNF some extra conventions to handle them (Section 3.2.3).

Finally, we have added some macros, which are syntactic sugar for po-
tentially large groups of rules and help to write grammars concisely, and
some pragmas, such as the possibility to limit the entrypoints of the parser
to a subset of nonterminals.

3.2.2 Lexer Definitions

The token definition format

The token definition form enables the LBNF programmer to define new
lexical types using a simple regular expression notation. For instance, the
following defines the type of identifiers beginning with upper-case letters.

token UIdent (upper (letter | digit | ’_’)*) ;

The type UIdent becomes usable as an LBNF nonterminal and as a type
in the abstract syntax. Each token type is implemented by a newtype in
Haskell, as a String in Java, and as a typedef to char* in C/C++.

Predefined token types

To cover the most common cases, LBNF provides five predefined token types:

Integer, Double, Char, String, Ident

These types have predefined lexer rules, but could also be defined using the
regular expressions of LBNF (see [9]). In the abstract syntax, the types are
represented as corresponding types in the implementation language; Ident

60

is treated like user-defined token types. Only those predefined types that
are actually used in the grammar are included in the lexer and the abstract
syntax.

The comment definition format

Comments are segments of source code that include free text and are not
passed to the parser. The natural place to deal with them is in the lexer.
A comment definition instructs the lexer generator to treat certain pieces of
text as comments.

The comment definition takes one or two string arguments. The first
string defines how a comment begins. The second, optional string marks
the end of a comment; if it is not given then the comment is ended by a
newline. For instance, the Java comment convention is defined as follows:

comment "//" ;

comment "/*" "*/" ;

3.2.3 Abstract Syntax Conventions

Semantic dummies

Sometimes the concrete syntax of a language includes rules that make no
semantic difference. For instance, the C language accepts extra semicolons
after statements. We do not want to represent these extra semicolons in the
abstract syntax. Instead, we use the following convention:

If a rule has only one non-terminal on the right-hand-side, and
this non-terminal is the same as the value type, then it can have
as its label an underscore (), which does not add anything to
the syntax tree.

Thus, we can write the following rule in LBNF:

_ . STM ::= STM ";" ;

Precedence levels

A common idiom in (ordinary) BNF is to use indexed variants of categories
to express precedence levels, e.g. EXP, EXP2, EXP3. The precedence level
regulates the order of parsing, including associativity. An expression be-
longing to a level n can be used on any level < n as well. Parentheses lift
an expression of any level to the highest level.

61

Distinctions between precedence levels and moving expressions between
them can be defined by BNF rules, but we do not want these rules to clutter
the abstract syntax. Therefore, we can use semantic dummies (_) for the
transitions, together with the following convention:

A category symbol indexed with a sequence of digits is treated
as a type synonym of the corresponding non-indexed symbol.

A non-indexed symbol is treated as having the level 0. The following gram-
mar shows how the convention works in a familiar example with arithmetic
sums and products:

EPlus. EXP ::= EXP "+" EXP2 ;

ETimes. EXP2 ::= EXP2 "*" EXP3 ;

EInt. EXP3 ::= Integer ;

_. EXP ::= EXP2 ;

_. EXP2 ::= EXP3 ;

_. EXP3 ::= "(" EXP ")" ;

The indices also guide the pretty-printer to generate a correct, minimal
number of parentheses.

The coercions macro provides a shorthand for generating the dummy
transition rules concisely. It takes as its arguments the unindexed cate-
gory and the highest precedence level. So the final three rules in the above
example could be replaced with:

coercions EXP 3 ;

Polymorphic lists

It is easy to define monomorphic list types in LBNF:

NilDEF. ListDEF ::= ;

ConsDEF. ListDEF ::= DEF ";" ListDEF ;

But LBNF also has a polymorphic list notation. It follows the Haskell syntax
but is automatically translated to native representations in Java, C++, and
C.

[]. [DEF] ::= ;

(:). [DEF] ::= DEF ";" [DEF] ;

The basic ingredients of this notation are

[C], the category of lists of type C,

[] and (:), the Nil and Cons rule labels,

(:[]), the rule label for one-element lists.

62

The list notation can also be seen as a variant of the Kleene star and plus,
and hence as an ingredient from Extended BNF in LBNF.

Using the polymorphic list type makes BNF Converter perform an au-
tomatic optimization: left-recursive lists. Standard lists in languages like
Haskell are right-recursive, but LR parsers favor left-recursive lists because
they save stack space. BNF Converter allows programmers to define famil-
iar right-recursive lists, but translates them into left-recursive variants in
parser generation. When used in another construction, the list is automat-
ically reversed. The code examples below, generated from the grammar in
Section 3.2.4, show how this works in the different parser tools.

The terminator and separator macros

The terminator macro defines a pair of list rules by what token terminates
each element in the list. For instance,

terminator STM ";" ;

is shorthand for the pair of rules

[]. [STM] ::= ;

(:). [STM] ::= STM ";" [STM] ;

The separator macro is similar, except that the separating token is not
expected after the last element of the list. The qualifier nonempty can be
used in both macros to make the one-element list the base case.

3.2.4 Example Grammar

A small example LBNF grammar is given in Figure 3.1. It describes a lan-
guage of boolean expressions, perhaps written as part of a larger grammar.
In this small language a PROGRAM is simply a list of expressions termi-
nated by semicolons. The expressions themselves are just logical AND and
OR of true, false, or variable names represented by the LBNF built-in type
Ident.

This example, though small, is representative because it uses both poly-
morphic lists and precedence levels (the AND operator having higher prece-
dence than OR). We will use this single source example to explore BNF Con-
verter’s generation methodology across multiple implementation languages.

63

PROGRAM. PROGRAM ::= [EXP] ;

EOr. EXP ::=

EXP "||" EXP1 ;

EAnd. EXP1 ::=

EXP1 "&&" EXP2 ;

ETrue. EXP2 ::= "true" ;

EFalse. EXP2 ::= "false" ;

EVar. EXP2 ::= Ident ;

terminator EXP ";" ;

coercions EXP 2 ;

Figure 3.1: LBNF Source code for all examples

3.3 Haskell Code Generation

The process the BNF Converter uses to generate Haskell code is quite
straightforward. Here we will only present an overview of this process, for
comparison with the methods used for Java and C. For a more complete look
at this process see the documentation on the BNF Converter Homepage [8].

The Abstract Syntax

Consider the example grammar given in Section 3.2.4.

The Haskell abstract syntax generated by the BNF Converter, shown in
Figure 3.2A, is essentially what a Haskell programmer would write by hand,
given the close relationship between a declarative grammar and Haskell’s
algebraic data types.

The Lexer and Parser

The BNF Converter generates lexer and parser specifications for the Alex [6]
and Happy [17] tools. The lexer file (omitted for space considerations) con-
sists mostly of standard rules for literals and identifiers, but has rules added
for reserved words and symbols (i.e. terminals occurring in the grammar),
regular expressions defined in token definitions, and comments.

The Happy specification (Figure 3.2B) has a large number of token def-
initions, followed by parsing rules corresponding closely to the source BNF
rules. Note the left-recursive list transformation, as defined in Section 3.2.3.

64

The Pretty Printer and Case Skeleton

The pretty printer consists of a Haskell class Print with instances for all
generated data types, taking precedence into account. The class method
prt generates a list of strings for a syntax tree of any type (Figure 3.2C).

The list of strings is then put in layout (indentation, newlines) by a
rendering heuristic, which is generated independently of the grammar. This
function is designed to make C-like languages look good by default, but it
is written with easy modification in mind.

The case skeleton (Figure 3.2D) is a simple traversal of the abstract
syntax tree representation that can be used as a template when defining
the compiler back end, e.g. type checker and code generator. The same
methodology is also used to generate the pretty printer. The case branches
in the skeleton are initialized to fail, and the user can simply replace them
with something more interesting.

The Makefile and Test Bench

The generated test bench file can be loaded in the Haskell interpreter hugs
to run the parser and the pretty printer on terminal or file input. If parsing
succeeds the test functions display a syntax tree, and the pretty printer
linearization. Otherwise an error message is displayed.

A simple makefile is created to run Alex on the lexer, Happy on the
parser, and LaTeX on the document, by simply typing make. The make

clean command removes the generated files.

Translation Summary

Overall, it is easy to represent an LBNF grammar as a Haskell data type—a
straightforward translation between source productions and algebraic data
types. Language implementors have long known that the similarities be-
tween algebraic data types and grammar specifications make functional pro-
gramming a good choice for compilers.

3.4 Java Code Generation

Translating an LBNF grammar into an object-oriented language is less
straightforward. Appel outlines two possible approaches to abstract syn-
tax representation in Modern Compiler Implementation in Java [2].

In the first method, which Appel refers to as the “Object-Oriented
method,” there is one Java class for each rule in the language grammar.

65

A. Abstract Syntax

data PROGRAM = PROGRAM [EXP]

deriving (Eq, Show)

data EXP =

EOr EXP EXP

| EAnd EXP EXP

| ETrue

| EFalse

| EVar

deriving (Eq, Show)

B. Happy Parser

PROGRAM :: { PROGRAM }

PROGRAM : ListEXP { PROGRAM (reverse $1) }

EXP :: { EXP }

EXP : EXP ’||’ EXP1 { EOr $1 $3 }

| EXP1 { $1 }

EXP1 :: { EXP }

EXP1 : EXP1 ’&&’ EXP2 { EAnd $1 $3 }

| EXP2 { $1 }

EXP2 :: { EXP }

EXP2 : ’true’ { ETrue }

| ’false’ { EFalse }

| Ident { EVar $1 }

| ’(’ EXP ’)’ { $2 }

ListEXP :: { [EXP] }

ListEXP : {- empty -} { [] }

| ListEXP EXP ’;’ { flip (:) $1 $2 }

C. Pretty Printer

instance Print PROGRAM where

prt i e = case e of

PROGRAM exp -> prPrec i 0

(concat [prt 0 exp])

instance Print EXP where

prt i e = case e of

EOr exp0 exp -> prPrec i 0

(concat

[prt 0 exp0 , ["||"] , prt 1 exp])

EAnd exp0 exp -> prPrec i 1

(concat

[prt 1 exp0 , ["&&"] , prt 2 exp])

ETrue -> prPrec i 2

(concat [["true"]])

EFalse -> prPrec i 2

(concat [["false"]])

EVar id -> prPrec i 2

(concat [prt 0 id])

prtList es = case es of

[] -> (concat [])

x:xs ->

(concat

[prt 0 x , [";"] ,

prt 0 xs])

D. Case Skeleton

transPROGRAM :: PROGRAM -> Result

transPROGRAM x = case x of

PROGRAM exp -> failure x

transEXP :: EXP -> Result

transEXP x = case x of

EOr exp0 exp -> failure x

EAnd exp0 exp -> failure x

ETrue -> failure x

EFalse -> failure x

EVar id -> failure x

Figure 3.2: Haskell source code fragments generated from Figure 3.1

66

Each class inherits from a single superclass, and each class defines operations
on itself. For instance, if our compiler were to translate to SPARC and Intel
assembly code each class would have a method toSPARC() and toIntel()

that would translate itself to the appropriate representation. The advantage
of this method is that it is easy to add new language categories. The user
may add new classes containing the appropriate methods without altering
existing definitions. The disadvantage is that it can be hard to add new syn-
tax tree traversals. Adding a function toAlpha() for instance, could result
in editing hundreds of classes.

In the second “syntax separate from interpretations” method, there is
still one Java class for each grammar rule, but now classes are simply empty
data structures with no methods aside from a constructor. Translation
functions are removed from the data structure, and traverse the tree by
straightforward manner. With this method it is easy to add new traversals,
and these functions can make better use of context information than single
objects’ methods. The disadvantage is that adding new language constructs
requires editing all existing traversal functions to handle the new cases.

However, the BNF Converter, which makes the grammar the central
point of all language changes, lessens this disadvantage. Additionally, since
translation functions are now traversals, it is easy for our tool to generate
skeleton functions as we do in Haskell and for the user to reuse the template
in all transformations.2 Therefore the BNF Converter uses this method in
generating Java (and C++) abstract syntax.

Java Abstract Syntax Generation

Let us return to our example of Boolean Expressions from earlier (Section
3.2.4). Given this grammar, the BNF Converter will generate the abstract
syntax found in Figure 3.3A, following Appel’s method.

There are several differences between this transformation and the Haskell
version that should be highlighted. First, experienced Java programmers
will quickly notice that all the generated classes are public, and in Java
public classes must go into their own .java file, with class name matching
the file name. Since it common to have hundreds of productions in an
LBNF grammar, the user’s source directory can quickly become cluttered,
so Abstract Syntax classes are placed into a sub-package called Absyn, and

2Of course, if the user implements a translation and then modifies the language defini-
tion they must still change the implemented code to reflect the modifications. However,
they can refer to the template function in order to locate the differences.

67

thus must be kept in a file-system subdirectory of the same name, which the
tool creates.

There is a second difference in the code in Figure 3.3A: names. Classes in
Java have instance variables and parameters, and all of these require unique
names (whereas in Haskell data structures the names are only optional).
First, we realize that parameter names generally are not important—we can
simply give them the name “p” plus a unique number. The names of instance
variables, on the other hand, do matter. The BNF Converter converts the
type name to lowercase and adds an underscore to prevent conflicts with
reserved words. If there is more than one variable of a type then they are
numbered. Thus, the classes EPlus and ETimes have members exp 1 and
exp 2.

Notice that Appel’s method uses public instance variables, which may
be regarded as bad style by object-oriented programmers today. We have
chosen to remain with the original method, both to keep a higher correspon-
dence to the textbook, and to ease the generation of the pretty printer and
other traversals.

Finally recall that Java 1.4 does not support polymorphic lists. Generic
types is supported in the Java 2 Platform, Standard Edition 1.5 release, also
implemented in BNF Converter (see section 3.5). The BNF Converter Java
1.4 backend generates simple null-terminated linked lists for each list that
the grammar uses. These special classes are prefixed with “List,” such as
the class ListEXP above, which takes the place of Haskell’s [EXP].

The Lexer and Parser

The BNF Converter generates specification files for the JLex [7] and CUP
[13] tools which create a lexer and parser in a manner similar to the Haskell
version. The difference between the tools is mainly a matter of syntax.
For example, CUP cannot work with strings directly but requires terminal
symbols be defined for each language symbol or reserved word. Also, CUP
does not refer to variables with $ variables like Bison, but rather by assigning
names to all possibly-used values. Specifications equivalent to the Happy
code in Figure 3.2B is shown in Figures 3.3B.

The Java Pretty Printer and Skeleton Function

Similar to the Haskell version, the Java pretty printer linearizes the abstract
syntax tree using some easily-modifiable heuristics. It follows the method
Appel outlines, using Java’s instanceof operator to determine which sub-

68

class it is dealing with, then down-casting and working with the public
variables. For example, the code to pretty-print an EXP is found in Figure
3.3D.

However, the pretty printer alone is not enough to test the correctness of
a parse. In the Haskell version the built-in show function is used to print out
the abstract syntax tree so that the programmer can confirm its correctness.
We could use Java’s toString() method in a similar role, but this is not
satisfying, as it is generally used for debugging purposes. Instead, the BNF
Converter adds a second method to the pretty printer, similar to Haskell’s
show function, shown in Figure 3.3E.

Throughout both methods the generated code makes use of Java’s
StringBuffer class to efficiently build the result of the linearization.

This instanceof method is also used to generate a code skeleton. How-
ever, this method may seem awkward to many object-oriented programmers,
who are often taught to avoid instanceof wherever possible.

Much more familiar is the Visitor Design Pattern [12]. In it each member
of the abstract syntax tree implements an accept method, which then calls
the appropriate method in the visiting class (double-dispatch).

There is no reason that these two methods cannot live side by side.
Therefore the BNF Converter generates code skeletons using both Appel’s
method and a Visitor interface and skeleton (Figure 3.3F).

Most familiar Visitor Design Patterns use a Visitee-traversal algorithm.
That is to say, visiting the top member of a list will automatically visit
all the members of the list. However, the BNF Converter-generated pat-
tern uses Visitor-traversal. This means that it is the Visitor’s responsibility,
when visiting a list, to visit all the members in turn. This is because certain
algorithms that compilers want to implement are not compositional, so per-
forming a transformation on a single member may be quite different than
performing that transformation on a certain pattern of nodes. For exam-
ple, during peephole analysis a compiler may wish to merge to subsequent
additions into a single operation, but may want to leave single additions
unchanged. In our experience, these types of algorithms are easier to imple-
ment if the Visitor itself is in control of the traversal.

The Test Bench and Makefile

With the pretty printer defined it is trivial to define a test bench and makefile
to compile the code. However, the lack of an interactive environment such
as Haskell’s hugs means that the user is not able to specify which parser is
used. Instead the first-defined entry-point of the grammar is used by default.

69

A. Abstract Syntax

public class PROGRAM {

public ListEXP listexp_;

public PROGRAM(ListEXP p1)

{ listexp_ = p1; }

}

public abstract class EXP {}

public class EAnd extends EXP {

public EXP exp_1, exp_2;

public EAnd(EXP p1, EXP p2)

{ exp_1 = p1; exp_2 = p2; }

}

public class EOr extends EXP {

public EXP exp_1, exp_2;

public EOr(EXP p1, EXP p2)

{ exp_1 = p1; exp_2 = p2; }

}

public class ETrue extends EXP {

public ETrue() { }

}

public class EFalse extends EXP {

public EFalse() { }

}

public class EVar extends EXP {

public String ident_;

public EVar(String p1)

{ ident_ = p1; }

}

public class ListEXP {

public EXP exp_;

public ListEXP listexp_;

public ListEXP(EXP p1, ListEXP p2)

{ exp_ = p1; listexp_ = p2; }

}

B. CUP Parser

terminal _SYMB_0; // ||

terminal _SYMB_1; // &&

terminal _SYMB_2; // ;

terminal _SYMB_3; // (

terminal _SYMB_4; //)

terminal _SYMB_5; // false

terminal _SYMB_6; // true

terminal String _IDENT_;

PROGRAM ::= ListEXP:p_1 {:

if (p_1 != null) p_1 = p_1.reverse();

RESULT = new Absyn.PROGRAM(p_1); :}

;

EXP ::= EXP:p_1 _SYMB_0 EXP1:p_3 {:

RESULT = new Absyn.EOr(p_1, p_3); :}

| EXP1:p_1 {: RESULT = (p_1); :}

;

EXP1 ::= EXP1:p_1 _SYMB_1 EXP2:p_3 {:

RESULT = new Absyn.EAnd(p_1, p_3); :}

| EXP2:p_1 {: RESULT = (p_1); :}

;

EXP2 ::= _SYMB_6 {:

RESULT = new Absyn.ETrue(); :}

| _SYMB_5 {:

RESULT = new Absyn.EFalse(); :}

| _IDENT_:p_1 {:

RESULT = new Absyn.EVar(p_1); :}

CUP Parser (continued)

| _SYMB_3 EXP:p_2 _SYMB_4 {:

RESULT = (p_2); :}

;

ListEXP ::= /*empty*/{: RESULT = null; :}

| ListEXP:p_1 EXP:p_2 _SYMB_2 {:

RESULT = new Absyn.ListEXP(p_2, p_1); :}

;

C. Pretty Printer

private static void

pp(Absyn.EXP exp, int _i_) {

if (exp instanceof Absyn.EOr) {

Absyn.EOr eor = (Absyn.EOr) exp;

if (_i_ > 0) render(_L_PAREN);

pp(eor.exp_1, 0);

render("||");

pp(eor.exp_2, 1);

if (_i_ > 0) render(_R_PAREN);

}

if (exp instanceof Absyn.EAnd) {

Absyn.EAnd eand = (Absyn.EAnd) exp;

if (_i_ > 1) render(_L_PAREN);

pp(eand.exp_1, 1);

render("&&");

...

D. Abstract Syntax Viewer

private static void sh(Absyn.EXP exp)

{

if (exp instanceof Absyn.EOr) {

Absyn.EOr eor = (Absyn.EOr) exp;

render("(");

render("EOr");

sh(eor.exp_1);

sh(eor.exp_2);

render(")");

}

if (exp instanceof Absyn.EAnd) {

Absyn.EAnd eand = (Absyn.EAnd) exp;

render("(");

render("EAnd");

...

E. Visitor Design Pattern

public void visitEOr(Absyn.EOr eor) {

/* Code For EOr Goes Here */

eor.exp_1.accept(this);

eor.exp_2.accept(this);

}

public void visitEAnd(Absyn.EAnd eand) {

/* Code For EAnd Goes Here */

...

public void

visitListEXP(Absyn.ListEXP listexp) {

while(listexp!= null) {

/* Code For ListEXP Goes Here */

listexp.listexp_.accept(this);

listexp = listexp.listexp_;

...

Figure 3.3: Java source code fragments generated from Figure 3.1

70

However it is easy for the user to specify another entry point directly in the
test bench source code.

Translation Summary

Overall, translating from a declarative grammar to an object-oriented ab-
stract syntax definition is possible, however the translation introduces a
number of new complications such as the names of instance variables. A
comparison of Figure 3.2A and Figure 3.3A emphasizes the challenges of
implementing a compiler in Java.

The BNF Converter tries to deal with these complications in a consis-
tent way to ease the implementation of the rest of the compiler. Appel’s
syntax-separate-from-interpretations method introduces several conventions
that object-oriented programmers may find confusing at first. However, in
practice the ease of using the generated transformation templates should
help users to quickly overcome these difficulties.

3.5 Java 1.5 Generation

The Java backend has been adapted to Java 1.5 by Björn Bringert at Com-
puting Science, Chalmers. The main difference is generic types. Generic
types ensure type safety without having to resort to monomorphic types.
For example, the container types in Java 1.5 are parameterized by a type
T. Compare this with Java 1.4 where all objects in a container are of type
Object. Furthermore, some adaptions were needed to reflect these changes,
in particular in the syntax tree traversal.

3.6 C++ Code Generation

With the Java version implemented it was straightforward to add support for
C++ generation, using Flex [11] and Bison [10]. This translation is similar
to the Java version—the main difference being the additional complications
of destructors and the separation of interface (.H) and implementation (.cpp)
files. The details of this translation have been omitted for space considera-
tions but may be found on the BNF Converter homepage [8].

71

3.7 C Code Generation

The Abstract Syntax

The translation to C code is quite different than the other languages. It
follows the methodology used by Appel in the C Version of his textbook [1].

In this methodology, each grammar category is represented by a C
struct. Each struct has an enumerated type indicating which LBNF la-
bel it represents, and a union of pointers to all corresponding non-terminal
categories. Our boolean-expressions example generates the structs shown in
Figure 3.4A. Structs are originally named with an underscore, and typdef

declarations clean up the code by making the original grammar name refer
to a pointer to that struct.

Data structure instances are created by using constructor functions,
which are generated for each struct (Figure 3.4B). These functions are
straightforward to generate and take the place of the new operator and
constructors in an object-oriented language.

The Lexer and Parser

The BNF Converter also generates a lexer specification file for Flex and
a parser specification file for Bison. Figure 3.4C shows specification code
equivalent to the examples in Figures 3.2B and 3.3B.

One complication is that there is no way to access the result of the parse
without storing a global pointer to it. This means that every potential entry
point production must store a pointer to the parse (the YY RESULT variables
in Figure 3.4C), in case they are the final successful category. Users can
limit the performance impact of this by using the entrypoints pragma.

The Pretty Printer and Case Skeleton

Any algorithm that wishes to traverse the tree must switch on the kind field
of each node, then recurse to the appropriate members. For example, Figure
3.4E shows the pretty-printer traversal. The abstract syntax tree viewer and
skeleton template are similar traversals.

Translation Summary

While it is straightforward to generate a parser and a data structure to
represent the results of a parse in C, the combination of pointers and unions
(seen in Figures 3.4B and 3.4D) results in code that can be sometimes hard

72

A. Abstract Syntax

struct PROG_ {

enum {is_PROG} kind;

union {

struct { ListEXP listexp_; } prog_;

} u;

};

typedef struct PROG_ *PROG;

struct EXP_ {

enum { is_EOr, is_EAnd, is_ETrue,

is_EFalse, is_EVar } kind;

union {

struct { EXP exp_1, exp_2; } eor_;

struct { EXP exp_1, exp_2; } eand_;

struct { Ident ident_; } evar_;

} u;

};

typedef struct EXP_ *EXP;

struct ListEXP_ {

EXP exp_;

ListEXP listexp_;

};

typedef struct ListEXP_ *ListEXP;

B. Constructor Functions

EXP make_EOr(EXP p1, EXP p2) {

EXP tmp = (EXP) malloc(sizeof(*tmp));

if (!tmp) {

fprintf(stderr,

"Error: out of memory!\n");

exit(1);

}

tmp->kind = is_EOr;

tmp->u.eor_.exp_1 = p1;

tmp->u.eor_.exp_2 = p2;

return tmp;

}

EXP make_EAnd(EXP p1, EXP p2)

{

...

C. Bison Parser

PROGRAM YY_RESULT_PROGRAM_ = 0;

PROGRAM pPROGRAM(FILE *inp) {

initialize_lexer(inp);

if (yyparse()) /* Failure */

return 0;

else /* Success */

return YY_RESULT_PROGRAM_;

}

...

%token _ERROR_ /* Terminal */

%token _SYMB_0 /* || */

%token _SYMB_1 /* && */

%token _SYMB_2 /* ; */

%token _SYMB_3 /* (*/

%token _SYMB_4 /*) */

%token _SYMB_5 /* false */

%token _SYMB_6 /* true */

...

Bison Parser Continued

%%

PROGRAM : ListEXP {

$$ = make_PROGRAM(reverseListEXP($1));

YY_RESULT_PROGRAM_= $$; }

;

EXP : EXP _SYMB_0 EXP1 {

$$ = make_EOr($1, $3);

YY_RESULT_EXP_= $$; }

| EXP1 { $$ = $1; YY_RESULT_EXP_= $$; }

;

EXP1 : EXP1 _SYMB_1 EXP2 {

$$ = make_EAnd($1, $3);

YY_RESULT_EXP_= $$; }

| EXP2 { $$ = $1; YY_RESULT_EXP_= $$; }

;

EXP2 : _SYMB_6 { $$ = make_ETrue();

YY_RESULT_EXP_= $$; }

| _SYMB_5 { $$ = make_EFalse();

YY_RESULT_EXP_= $$; }

| _IDENT_ { $$ = make_EVar($1);

YY_RESULT_EXP_= $$; }

| _SYMB_3 EXP _SYMB_4 { $$ = $2;

YY_RESULT_EXP_= $$; }

;

ListEXP : /* empty */ { $$ = 0;

YY_RESULT_ListEXP_= $$; }

| ListEXP EXP _SYMB_2 {

$$ = make_ListEXP($2, $1);

YY_RESULT_ListEXP_= $$; }

;

D. Pretty Printer

...

void ppEXP(EXP _p_, int _i_) {

switch(_p_->kind) {

case is_EOr:

if (_i_ > 0) renderC(_L_PAREN);

ppEXP(_p_->u.eor_.exp_1, 0);

renderS("||");

ppEXP(_p_->u.eor_.exp_2, 1);

if (_i_ > 0) renderC(_R_PAREN);

break;

case is_EAnd:

if (_i_ > 1) renderC(_L_PAREN);

ppEXP(_p_->u.eand_.exp_1, 1);

renderS("&&");

...

void ppListEXP(ListEXP listexp, int i) {

while(listexp!= 0) {

if (listexp->listexp_ == 0) {

ppEXP(listexp->exp_, 0);

renderC(’;’);

listexp = 0;

} else {

ppEXP(listexp->exp_, 0);

renderC(’;’);

listexp = listexp->listexp_;

}

}

}

Figure 3.4: C source code fragments generated from Figure 3.1

73

for the user to work with. We are currently looking into ways to make the
generated code more friendly through the use of macros or other methods.

3.8 Discussion

Productivity Gains

The source code of the Boolean expression grammar in Section 3.2.4 is 8
lines. The size of the generated code varies from 425 lines of Haskell/Happy/Alex
to 1112 lines of C++/Bison/Flex. The generated code is not superfluously
verbose, but similar to what would be written by hand by a programmer
following Appel’s methodology [1, 2, 3]. This amounts to a gain of coding
effort by a factor of 50–100, which is comparable to the effort saved by,
for instance, writing an LR parser in Bison instead of directly in C.3 In
addition to decreasing the number of lines, the single-source approach alle-
viates synchronization problems, both when creating and when maintaining
a language.

The BNF Converter as a Teaching Tool

The BNF Converter has been used as a teaching tool in a fourth-year com-
piler course at Chalmers University in 2003 and 2004. The goal is, on the
one hand, to advocate the use of declarative and portable language defini-
tions, and on the other hand, to leave more time for back-end construction.
The generated code follows the format recommended in Appel’s text books
[1, 2, 3], which makes is coherent to use the tool as a companion to those
books. The results are encouraging: the lexer/parser part of the compiler
was estimated only to be 25 % of the work at the lowest grade, and 10 %
at the highest grade—at which point the student compiler had to include
several back ends. This was far from the times when the parser was more
than 50 % of a student compiler. About 50 % of the laboration groups
use Haskell as implementation language, the rest using Java, C, or C++.
In 2004, when the BNF Converter was available for all these languages, 16
groups of the 19 accepted ones used it in their assignment. The main dis-
couraging factor were initial problems with Bison versions: older versions
than 1.875 do compile the generated Bison file, but the parser fails with all
input.

3In the present example, the Flex and Bison code generated by the BNF Converter is
172 lines, from which these tools generate 2600 line of C.

74

In Autumn 2003, the BNF Converter was also used in a second-year
Chalmers course on Programming Languages. It is replacing the previously-
used parser combinator libraries in Haskell. The main motivation at this
level is to teach the correspondence between parsers and grammars, and
to provide a high-level parser tool also for programmers who do not know
Haskell.

One concern about using the BNF Converter was that students would
not really learn parsing, but just to write grammars. However, students
writing their parsers in YACC are equally isolated from the internals of
LR parsing as those writing in LBNF. In fact, as learning the formalism
takes less time in the case of LBNF, the teacher can allocate more time for
explaining how an LR parser works.

Real-World Languages

Students in a compiler class usually implement toy languages. What about
real-world languages? As an experiment, a complete LBNF definition of
ANSI C, with [15] as reference, was written.4 The result was a complete
front-end processor for ANSI C, with the exception, mentioned in [15] of type
definitions, which have to be treated with a preprocessor. The grammar has
229 LBNF rules and 15 token definitions (to deal with different numeral
literals, such as octals and hexadecimals).

The BNF Converter has also been applied in an industrial application
producing a compiler for a telecommunications protocol description lan-
guage. [5]

Another real-world example is the object-oriented specification language
OCL [24].5 Finally, the BNF Converter itself is implemented by using mod-
ules generated from an LBNF grammar of the LBNF formalism.

A Case Study in Language Prototyping

A strong case for BNF Converter is the prototyping of new languages. It is
easy to add and remove language features, and to test the updated language
immediately. Since standard tools are used, the step from the prototype
to a production-quality front end is small, typically involving some fine-
tuning of the abstract syntax and the pretty printer. We have a large-scale
experience of this in creating a new version of the language GF (Grammatical
Framework, [21]).

4BSc thesis of Ulf Persson at Chalmers.
5Work by Kristofer Johannisson at Chalmers (private communication).

75

The main novelties added to GF were a module system added on top
of the old GF language, and a lower-level language GFC, playing the role
of “object code” generated by the GF compiler. The GF language has
constructions mostly familiar from functional programming languages, and
the size of the full grammar is similar to ANSI C; GFC is about half this size.
We wrote the LBNF grammar from scratch, one motivation being to obtain
reliable documentation of GF. This work took a few hours. We then used
the skeleton file to translate the generated abstract syntax into the existing
hand-written Haskell datatypes; in this way, we did not need to change the
later phases of the existing compiler (apart from the changes due to new
language features). In a couple of days, we had a new parser accepting all
old GF files as well as files with the new language features. Working with
later compilation phases suggested some changes in the new features, such as
adding and removing type annotations. Putting the changes in place never
required changing other things than the LBNF grammar and some clauses
in the skeleton-based translator.

The development of GFC was different, since the language was com-
pletely new. The crucial feature was the symmetry between the parser and
the pretty printer. The GF compiler generates GFC, but it also needs to
parse GFC, so that it can use precompiled modules instead of source files.
It was reassuring to know that the parser and the pretty printer completely
matched. As a last step, we modified the rendering function of the GFC
pretty printer so that it did not generate unnecessary spaces; GFC code is
not supposed to be read by humans. This step initially created unparsable
code (due to some necessary spaces having been omitted), which was another
proof of the value of automatically generated pretty-printers.

In addition to the GF compiler written in Haskell, we have been working
on GF-based applets (“gramlets”) written in Java. These applications use
precompiled GF. With the Java parser generated by the BNF Converter, we
can guarantee that the GFC code generated by the Haskell pretty-printer
can be read in by the Java application.

Related Work

The BNF Converter adds a level of abstraction to the YACC [14] tradition
of compiler compilers, since it compiles a yet higher-level notation into no-
tations on the level of YACC. Another system on this level up from YACC
is Cactus [18], which uses an EBNF-like notation to generate front ends in
Haskell and C. Unlike the BNF Converter, Cactus aims for completeness,
and the notation is therefore more complex than LBNF. It is not possible

76

to extract a pretty printer from a Cactus grammar, and Cactus does not
generate documentation.

The Zephyr definition language [23] defines a portable format for abstract
syntax and translates it into SML, Haskell, C, C++, Java, and SGML,
together with functions for displaying syntax trees. It does not support the
definition of concrete syntax.

In general, compiler tools almost invariably opt for expressive power
rather than declarativity and simplicity. The situation is different in linguis-
tics, where the declarativity and reversibility (i.e. usability for both parsing
and generation) of grammar formalisms are highly valued. A major example
of this philosophy are Definite Clause Grammars (DCG) [20]. Since DCGs
are usually implemented as an embedded language in Prolog, features of
full Prolog are sometimes smuggled into DCG grammars; but this is usually
considered harmful since it destroys declarativity.

3.9 Conclusions and Future Work

BNF Converter is a tool implementing the Labelled BNF grammar formal-
ism (LBNF). Given that a programming language is “well-behaved”, in a
rather intuitive sense, an LBNF grammar is the only source that is needed
to implement a front end for the language, together with matching LaTeX
documentation. Since LBNF is purely declarative, the implementation can
be generated in different languages: these currently include Haskell, Java,
C++, and C, each with their standard parser and lexer tools. Depending
on the tools, the size of the generated code is typically 50–100 times the size
of the LBNF source.

The approach has proven to be useful both in teaching and in language
prototyping. As for legacy real-world languages, complete definitions have
so far been written for C and OCL. Often a language is almost definable,
but has some exotic features that would require stronger tools. We have,
however, opted to keep LBNF simple, at the expense of expressivity; and
we believe that there are many good reasons behind a trend toward more
and more well-behaved programming languages.

One frequent request has been a possibility to retain some of the position
information in the abstract syntax tree, so that error messages from later
compiler phases can be linked to the source code. This has been partly
solved by extending the token pragma with the keyword position that
enable position information to be retained in that particular token. However,
further generalizations are needed at this point. Other requests are increased

77

control of the generated abstract syntax and some means of controlling the
output of the pretty-printing.

3.10 BNF Converter in Year 2007

Since this technical report has been written, BNFC has been actively de-
veloped and many people have contributed. This section will give a brief
overview of what is new.

3.10.1 New Back Ends

• Kristofer Johannisson has added a back end for Objective Caml.

• Johan Broberg has added a back end for C#.

• Björn Bringert has updated the Java back end to support Java 1.5.
The old Java back end is still available.

• Aarne Ranta has updated the C++ back end with STL support. The
old C++ back end is still available.

3.10.2 Natural Language Support

Two new features have been added to BNFC that support the treatment of
natural languages.

The first new feature is ambiguous parsing in the Haskell back end,
which has been added by Paul Callaghan through his work on generalized
LR parsing in Happy [19]. Since natural language is know to be ambiguous,
this has been an important addition to allow processing of natural languages.

The second new feature is profiles in the Haskell back end, added by
Aarne Ranta. Profiles allow a grammar written in Grammatical Framework
(GF) [22], a much more powerful grammar formalism, to be translated into
a LBNF grammar augmented with profiles. This translation allows the
creation of a stand-alone program from a GF grammar. For more details,
see the LBNF report [16].

3.10.3 Layout Support

Aarne Ranta has added support for layout in the Haskell back end, i.e. the
language feature where the indentation of a program is used for grouping.
The details of the layout support is given in the LBNF report [16].

78

3.10.4 Support for Definitions

Ulf Norell has added support for a feature that we refer to as defines. Defines
are used to add syntactic sugar to a language without it being represented
in the abstract syntax.

Define Example

Here we provide an example6 of the use of defines in a fragment of an
imperative language. We start with the core statement language, expressed
in normal LBNF.

Assign. Stm ::= Ident "=" Exp ;

Block. Stm ::= "{" [Stm] "}" ;

While. Stm ::= "while" "(" Exp ")" Stm ;

If. Stm ::= "if" "(" Exp ")" Stm "else" Stm "endif" ;

We now want to have some syntactic sugar. Note that the labels for
these rules all start with a lowercase letter, indicating that they correspond
to defined functions rather than nodes in the abstract syntax tree.

if. Stm ::= "if" "(" Exp ")" Stm "endif" ;

for. Stm ::= "for" "(" Stm ";" Exp ";" Stm ")" Stm ;

inc. Stm ::= Ident "++" ;

Functions are defined using the ’define’ keyword. Definitions have the
form ’define f x1 .. xn = e’ where e is an expression on applicative
form using labels, other defined functions, lists and literals.

define if e s = If e s (Block []) ;

define for i c s b = Block [i, While c (Block [b, s])] ;

define inc x = Assign x (EOp (EVar x) Plus (EInt 1)) ;

3.10.5 Multi Views

A multi view7 in BNFC is an experimental feature in the Haskell back end
that allows languages to be defined in parallel, sharing abstract syntax.

An example of the syntax for multi views is provided here.

6The example together with the explanations is provided by U. Norell.
7Multi views have been designed by M. Forsberg, B. Nordström, and A. Ranta, and

implemented by A. Ranta.

79

views C, JVM ;

C: EAdd. Exp ::= Exp "+" Exp1 ;

C: EMul. Exp1 ::= Exp1 "*" Exp2 ;

C: EInt. Exp2 ::= Integer ;

C: coercions Exp 2 ;

JVM: EAdd. Exp ::= Exp Exp "iadd" ";" ;

JVM: EMul. Exp ::= Exp Exp "imul" ";" ;

JVM: EInt. Exp ::= "bipush" Integer ";" ;

There are a new keyword views, which is used to declare the language
names. Furthermore, the rules of the LBNF are prefixed with a language
name followed by a colon (LANG:), which defines syntax of the languages in
a multi view. A multi view is correct if all languages in the multi view have
identical abstract syntax.

3.10.6 Haskell GADT Support

Björn Bringert and Aarne Ranta have implemented support for generalized
algebraic data types (GADT) in the Haskell back end. The details can be
found in their article A Pattern for Almost Compositional Functions [4].

Bibliography

[1] A. Appel. Modern Compiler Implementation in C. Cambridge Univer-
sity Press, 1998.

[2] A. Appel. Modern Compiler Implementation in Java. Cambridge Uni-
versity Press, 1998.

[3] A. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

[4] Björn Bringert and Aarne Ranta. A pattern for almost compositional
functions. In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN
international conference on Functional programming, pages 216–226,
New York, NY, USA, 2006. ACM Press.

[5] C. Däldborg and O. Noreklint. ASN.1 Compiler. Master’s Thesis,
Department of Computing Science, Chalmers University of Technology,
2004.

80

[6] C. Dornan. Alex: a Lex for Haskell Programmers, 1997. http://www.

cs.ucc.ie/dornan/alex.html.

[7] C. Dornan. JLex: A Lexical Analyzer Generator for Java, 2000. http:
//www.cs.princeton.edu/∼appel/modern/java/JLex/.

[8] M. Forsberg, P. Gammie, M. Pellauer, and A. Ranta. BNF Con-
verter site. Program and documentation, http://www.cs.chalmers.
se/∼markus/BNFC/, 2004.

[9] M. Forsberg and A. Ranta. Labelled BNF: a high-level formalism for
defining well-behaved programming languages. Proceedings of the Es-
tonian Academy of Sciences: Physics and Mathematics, 52:356–377,
2003. Special issue on programming theory edited by J. Vain and T.
Uustalu.

[10] Free Software Foundation. Bison - GNU Project, 2003. http://www.

gnu.org/software/bison/bison.html.

[11] Free Software Foundation. Flex - GNU Project, 2003. http://www.

gnu.org/software/flex/flex.html.

[12] E. Gamma, R. Hehn, R. Johnson, and J. Viissides. Design Patterns.
Addison Wesley, 1995.

[13] Scott E. Hudson. CUP Parser Generator for Java, 1999. http://www.
cs.princeton.edu/∼appel/modern/java/CUP/.

[14] S. C. Johnson. Yacc — yet another compiler compiler. Technical Report
CSTR-32, AT & T Bell Laboratories, Murray Hill, NJ, 1975.

[15] B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1988. 2nd edition.

[16] M. Forsberg and A. Ranta. The Labelled BNF Grammar Formal-
ism, For BNF Converter Version 2.2, Feb. 11, 2005. http://www.cs.

chalmers.se/∼markus/BNFC/LBNF-report.pdf.

[17] S. Marlow. Happy, The Parser Generator for Haskell, 2001. http:

//www.haskell.org/happy/.

[18] N. Martinsson. Cactus (Concrete- to Abstract-syntax Conversion Tool
with Userfriendly Syntax) . Master’s Thesis in Computer Science, 2001.
http://www.mdstud.chalmers.se/∼md6nm/cactus/.

81

[19] P. Callaghan. Ambiguous Parsing with Happy, 2007. Under Consid-
eration for Publication in J. Functional Programming. Available at:
www.dur.ac.uk/p.c.callaghan/happy-glr/callaghan-glr.ps.gz.

[20] F. Pereira and D. Warren. Definite clause grammars for language
analysis—a survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13:231–278, 1980.

[21] A. Ranta. Grammatical Framework: A Type-Theoretical Grammar
Formalism. Journal of Functional Programming, 2004.

[22] A. Ranta. Grammatical Framework: A Type-theoretical Grammar For-
malism. The Journal of Functional Programming, 14(2):145–189, 2004.

[23] Daniel C. Wang, Andrew W. Appel Jeff L. Korn, and Christopher S.
Serra. The Zephyr abstract syntax description language. Proceedings
of the Conference on Domain-Specific Languages, 1997.

[24] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modelling with UML. Addison-Wesley, 1999.

82

Part II

Functional Morphology

83

Chapter 4

Functional Morphology

Authors:
Markus Forsberg and Aarne Ranta
Department of Computing Science
Chalmers University of Technology
and the University of Gothenburg
{markus, aarne}@cs.chalmers.se

Paper published:
ICFP’04, Proceedings of the Ninth ACM SIGPLAN International

Conference of Functional Programming, September 19-21, 2004, Snowbird,
Utah

Abstract

This paper presents a methodology for implementing natural language mor-
phology in the functional language Haskell. The main idea behind is simple:
instead of working with untyped regular expressions, which is the state of
the art of morphology in computational linguistics, we use finite functions
over hereditarily finite algebraic data types. The definitions of these data
types and functions are the language-dependent part of the morphology. The
language-independent part consists of an untyped dictionary format which
is used for synthesis of word forms, and a decorated trie, which is used for
analysis.

Functional Morphology builds on ideas introduced by Huet in his com-
putational linguistics toolkit Zen, which he has used to implement the mor-
phology of Sanskrit. The goal has been to make it easy for linguists, who are

85

not trained as functional programmers, to apply the ideas to new languages.
As a proof of the productivity of the method, morphologies for Swedish,
Italian, Russian, Spanish, and Latin have already been implemented using
the library. The Latin morphology is used as a running example in this
article.

4.1 Introduction

This paper presents a systematic way of developing natural language mor-
phologies in a functional language. We think of functions and linguistic
abstractions as strongly related in the sense that given a linguistic abstrac-
tion, it is, in most cases, natural and elegant to express it as a function. We
feel that the methodology presented is yet another proof of this view.

An implementation of the methodology is presented, named Functional
Morphology [9]. It can be viewed as an embedded domain-specific language
in Haskell. Its basis are two type classes: Param, which formalizes the
notion of a parameter type, and Dict, which formalizes the notion of a
part of speech as represented in a dictionary. For these classes, Functional
Morphology gives generic Haskell functions for morphological analysis and
synthesis, as well as generation of code that presents the morphology in
other formats, including Xerox Finite State Tools and relational databases.

The outline of the paper is the following: The morphology task is de-
scribed in section 4.2, and then the contemporary approaches are discussed
in section 4.3. The main part of the paper, section 4.4, focuses on describing
the Functional Morphology library. We conclude in sections 4.5 and 4.6 with
some results and a discussion.

4.2 Morphology

A morphology is a systematic description of words in a natural language. It
describes a set of relations between words’ surface forms and lexical forms.
A word’s surface form is its graphical or spoken form, and the lexical form
is an analysis of the word into its lemma (also known as its dictionary
form) and its grammatical description. This task is more precisely called
inflectional morphology.

Yet another task, which is outside the scope of this paper, is derivational
morphology, which describes how to construct new words in a language.

A clarifying example is the English word functions’. The graphical form
functions’ corresponds to the surface form of the word. A possible lexical

86

form for the word functions’ is function +N +Pl +Gen. From the analysis
it can be read that the word can be analyzed into the lemma function, and
the grammatical description noun, in plural, genitive case.

A morphological description has many applications, to mention a few:
machine translation, information retrieval, spelling and grammar checking
and language learning.

A morphology is a key component in machine translation, assuming that
the aim is something more sophisticated than string to string translation.
The grammatical properties of words are needed to handle linguistic phe-
nomena such as agreement. Consider, for example, the subject-verb agree-
ment in English — Colorless green ideas sleep furiously, not *Colorless
green ideas sleeps furiously.

In information retrieval, the use of a morphology is most easily explained
through an example. Consider the case when you perform a search in a text
for the word car. In the search result, you would also like to find informa-
tion about cars and car’s, but no information about carts and careers. A
morphology is useful to do this kind of distinctions.

4.3 Implementations of Morphology

4.3.1 Finite State Technology

The main contemporary approach within computational morphology is finite
state technology - the morphology is described with a regular expression
[18, 26, 16, 2] that is compiled to a finite state transducer, using a finite
state tool. Some of the tools available are: the commercial tool XFST [29],
developed at Xerox, van Noord’s [28] finite state automata utilities, AT&T’s
[19] FSM library and Forsberg’s [7] FST Studio.

Finite state technology is a popular choice since finite state transducers
provide a compact representation of the implemented morphology, and the
lookup time is close to constant in the size of the lexicon.

Finite state technology is based on the notion of a regular relation. A
regular relation is a set of n-tuples of words. Regular languages are a spe-
cial case, with n = 1. Morphology tools such as XFST work with 2-place
relations. They come with an extended regular expression notation for easy
manipulation of symbol and word pairs. Such expressions are compiled into
finite-state transducers, which are like finite-state automata, but their arcs
are labelled by pairs of symbols rather than just symbols. Strings consist-
ing of the first components of these pairs are called the upper language of
the transducer, and strings consisting of the second components are called

87

the lower language. A transducer is typically used so that the upper lan-
guage contains structural descriptions of word forms and the lower language
contains the forms themselves.

A trivial example of a regular relation is the description of the inflection
of three English nouns in number. The code is XFST source code, where
the | is the union operator, and .x. is the cross product of the strings.
Concatenation is expressed by juxtaposition.

NOUN = "table" | "horse" | "cat"

INFL = NOUN .x. "Sg" | NOUN "s" .x. "Pl"

If a transducer is compiled from this regular relation, and applied upward
with the string "tables", it will return {”Pl”}. If the built transducer is
applied downward with the string "Sg", it will return {”table”, ”horse”,
”cat”}.

One problem with finite-state tranducers is that cycles (corresponding
to Kleene stars in regular expressions), can appear anywhere in them. This
increases the complexity of compilation so that it can be exponential. Com-
piling a morphological description to a transducer has been reported to last
several days, and sometimes small changes in the source code can make a
huge difference. Another problem is that transducers cannot generally be
made deterministic for sequences of symbols (they are of course determinis-
tic for sequences of symbol pairs). This means that analysis and synthesis
can be worse than linear in the size of the input.

4.3.2 The Zen Linguistic Toolkit

Huet has used the functional language Caml to build a Sanskrit dictionary
and morphological analysis and synthesis. [13]. He has generalized the
ideas used for Sanskrit to a toolkit for computational linguistics, Zen [14].
The key idea is to exploit the expressive power of a functional language to
define a morphology on a high level, higher than regular expressions. Such
definitions are moreover safe, in the sense that the type checker guarantees
that all words are defined correctly as required by the definitions of different
parts of speech.

The analysis of words in Zen is performed by using tries. A trie is a spe-
cial case of a finite-state automaton, which has no cycles. As Huet points
out, the extra power added by cycles is not needed for the morphological
description inside words, but, at most, between words. This extra power is
needed in languages like Sanskrit where word boundaries are not visible and
adjacent words can affect each other (this phenomenon is known as sandhi).

88

It is also needed in languages like Swedish where compound words can be
formed almost ad libitum, and words often have special forms used in com-
pounds. Compositions of tries, with cycles possible only on word boundaries,
have a much nicer computational behaviour than full-scale transducers.

4.3.3 Grammatical Framework

The Grammatical Framework GF [25] is a special-purpose functional lan-
guage for defining grammars, including ones for natural languages. One
part of a grammar is a morphology, and therefore GF has to be capable of
defining morphology. In a sense, this is trivial, since morphology requires
strictly less expressive power than syntax (regular languages as opposed to
context-free languages and beyond). At the same time, using a grammar
formalism for morphology is overkill, and may result in severely suboptimal
implementations.

One way to see the Functional Morphology library described in this pa-
per is as a fragment of GF embedded in Haskell. The Param and Dict

classes correspond to constructs that are hard-wired in GF: parameter types
and linearization types, respectively. Given this close correspondence, it
is no wonder that it is very easy to generate GF code from a Functional
Morphology description. On the other hand, the way morphological anal-
ysis is implemented efficiently using tries has later been adopted in GF, so
that the argument on efficiency is no longer so important. Thus one can
see the morphology fragment of GF as an instance of the methodology of
Functional Morphology. However, complicated morphological rules (such as
stem-internal vowel changes) are easier to write in Haskell than in GF, since
Haskell provides more powerful list and string processing than GF.

4.4 Functional morphology

4.4.1 Background

The goal of our work is to provide a freely available open-source library that
provides a high level of abstraction for defining natural language morpholo-
gies. The examples used in this article are collected from Latin morphology.
Our Latin morphology is based on the descriptions provided by [20, 6, 17, 3].

Our work is heavily influenced by Huet’s functional description of San-
skrit [13] and his Zen Toolkit [14]. The analyzer provided by Functional
Morphology can be seen as a Haskell version of Huet’s “reference imple-
mentation” in Caml. At the same time, we aim to provide a language-

89

independent high-level front-end to those tools that makes it possible to
define a morphology with modest training in functional programming.

The idea of using an embedded language with a support for code gener-
ation is related to Claessen’s hardware description language Lava [5], which
is compiled into VHDL. For the same reasons as it is important for Lava
to generate VHDL—the needs of the main stream community—we generate
regular expressions in the XFST and LEXC formats.

Functional Morphology is based on an old idea, which has been around
for over 2000 years, that of inflection tables. An inflection table captures an
inflectional regularity in a language. A morphology is a set of tables and
a dictionary. A dictionary consists of lemmas, or dictionary forms, tagged
with pointers to tables.

An inflection table displaying the inflection of regular nouns in English,
illustrated with the lemma function, is shown below.

Case

Number Nominative Genitive

Singular function function’s

Plural functions functions’

Different ways of describing morphologies were identified by Hockett [10]
in 1950’s. The view of a morphology as a set of inflection tables he calls
word and paradigm. The paradigm is an inflection table, and the word is
an example word that represents a group of words with the same inflection
table.

In a sense, the research problem of describing inflectional morphologies
is already solved: how to fully describe a language’s inflectional morphology
in the languages we studied is already known. But the are still problematic
issues which are related to the size of a typical morphology. A morphology
covering a dictionary of a language, if written out in full form lexicon format,
can be as large as 1-10 million words, each tagged with their grammatical
description.

The size of the morphology demands two things: first, we need an ef-
ficient way of describing the words in the morphology, generalize as much
as possible to minimize the effort of implementing the morphology, and sec-
ondly, we need a compact representation of the morphology that has an
efficient lookup function.

90

Analyzer

Synthesizer

Translators

Dictionary format

Functional Morphology
API

Morphology

Language
Language

IndependentDependent

Figure 4.1: Functional Morphology system overview

4.4.2 Methodology

The methodology suggests that paradigms, i.e. inflection tables, should be
defined as finite functions over an enumerable, hereditarily finite, algebraic
data type describing the parameters of the paradigm. These functions are
later translated to a dictionary, which is a language-independent datastruc-
ture designed to support analyzers, synthesizers, and generation of code in
other formats than Haskell.

All parameter types are instances of the Param class, which is an exten-
sion of the built-in Enum and Bounded class, to be able to define enumerable,
finite types over hierarchical data types.

Parts of speech are modelled by instances of the class Dict, which auto-
mate the translation from a paradigm to the Dictionary type.

4.4.3 System overview

A Functional Morphology system consists of two parts, one language depen-
dent part, and one language independent part, illustrated in figure 4.1.

The language dependent part is what the morphology implementor has
to provide, and it consists of a type system, an inflection engine and a
dictionary. The type system gives all word classes and their inflection and
inherent parameters, and instances of the Param class and the Dict class.
The inflection machinery defines all valid inflection tables, i.e. all paradigms,
as finite functions. The dictionary lists all words in dictionary form with its
paradigm in the language.

Defining the type system and the inflection machinery can be a demand-
ing task, where you not only need to be knowledgeable about the language
in question, but also have to have some understanding about functional pro-
gramming. The libraries provided by Functional Morphology simplifies this
step.

91

However, when the general framework has been defined, which is actually
a new library built on top of ours, it is easy for a lexicographer to add new
words, and this can be done with limited or no knowledge about functional
programming. The lexicographer does not even have to be knowledgeable
about the inner workings of a morphology, it is sufficient that she knows the
inflectional patterns of words in the target language.

4.4.4 Technical details

Parameter types

In grammars, words are divided into classes according to similarity, such as
having similar inflection patterns, and where they can occur and what role
they play in a sentence. Examples of classes, the part of speech, are nouns,
verbs, adjectives and pronouns.

Words in a class are attributed with a set of parameters that can be
divided into two different kinds of categories: inflectional parameters and
inherent parameters.

Parameters are best explain with an example. Consider the Latin noun
causa (Eng. cause). It is inflected in number and case, i.e. number and case
are the inflectional parameters. It also has a gender, which is an inherent
parameter. The inflection of causa in plural nominative is causae, but it has
feminine gender.

These parameters are described with the help of Haskell’s data types.
For example, to describe the parameters for Latin noun, the types Gender,
Case and Number are introduced.

data Gender = Feminine |

Masculine |

Neuter

deriving (Show,Eq,Enum,Ord,Bounded)

data Case = Nominative |

Genitive |

Dative |

Accusative |

Ablative |

Vocative

deriving (Show,Eq,Enum,Ord,Bounded)

data Number = Singular |

Plural

deriving (Show,Eq,Enum,Ord,Bounded)

92

The inflectional parameter types Case and Number are combined into
one type, NounForm, that describes all the inflection forms of a noun. Note
that Gender is not part of the inflection types, it is an inherent parameter.

data NounForm = NounForm Number Case

deriving (Show,Eq)

The parameter types of a language are language-dependent. A class
Param for parameters has been defined, to make it possible to define language
independent methods, i.e. implement generic algorithms.

class (Eq a, Show a) ⇒ Param a where

values :: [a]

value :: Int → a

value0 :: a

prValue :: a → String

value n = values !! n

value0 = value 0

prValue = show

The most important method — the only one not defined by default — is
values, giving the complete list of all objects in a Param type. The parame-
ter types are, in a word, hereditarily finite data types: not only enumerated
types but also types whose constructors have arguments of parameter types.

An instance of Param is easy to define for bounded enumerated types by
the function enum.

enum :: (Enum a, Bounded a) ⇒ [a]

enum = [minBound .. maxBound]

The parameters of Latin nouns are made an instance of Param by the
following definitions:

instance Param Gender where values = enum

instance Param Case where values = enum

instance Param Number where values = enum

instance Param NounForm where

values =

[NounForm n c | n <- values ,

c <- values]

prValue (NounForm n c) =

unwords $ [prValue n, prValue c]

93

The default definition for prValue has been redefined for NounForm to
remove the NounForm constructor. Usually, a more sophisticated printing
scheme is preferred, using a particular tag set, i.e. adopting a standard for
describing the parameters of words.

Latin nouns can now be defined as a finite function, from a NounForm
to a String. The choice of String as a return type will be problematized
in section 4.4.4 and another type, Str, will be introduced.

type Noun = NounForm -> String

More generally, a finite function in Functional Morphology, is a function
f from a parameter type P to strings.

f :: P -> String

Note that the finite functions have a single argument. This is, however,
not a limitation, because we can construct arbitrarily complex single types
with tuple-like constructors.

Type hierarchy

A naive way of describing a class of words is by using the cross product of all
parameters. This would in many languages lead to a serious over-generation
of cases that do not exist in the language.

An example is the Latin verbs, where the cross product of the inflection
parameters generates 1260 forms (three persons, two numbers, six tenses,
seven moods and five cases1), but only 147 forms actually exist, which is
just about a ninth of 1260.

This problem is easily avoided in a language like Haskell that has al-
gebraic data types, where data types are not only enumerated, but also
complex types with constructors that have type parameters as arguments.

The type system for Latin verbs can be defined with the data types
below, that exactly describes the 147 forms that exist in Latin verb conju-
gation:

data VerbForm =

Indicative Person Number Tense Voice |

Infinitive TenseI Voice |

ParticiplesFuture Voice |

1The verb inflection in case only appears in the gerund and supine mood, and only
some of the six cases are possible.

94

ParticiplesPresent |

ParticiplesPerfect |

Subjunctive Person Number TenseS Voice |

ImperativePresent Number Voice |

ImperativeFutureActive Number PersonI |

ImperativeFuturePassiveSing PersonI |

ImperativeFuturePassivePl |

GerundGenitive |

GerundDative |

GerundAcc |

GerundAbl |

SupineAcc |

SupineAblative

This representation gives a correct description of what forms exist, and
it is hence linguistically more satisfying than a cross-product of features.
The type system moreover enables a completeness check to be performed.

Tables and finite functions

The concept of inflection tables corresponds intuitively, in a programming
language, to a list of pairs. Instead of using list of pairs, a functional coun-
terpart of a table — a finite function could be used, i.e. a finite set of pairs
defined as a function.

To illustrate the convenience with using finite functions instead of tables,
consider the inflection table of the Latin word rosa (Eng. rose):

Singular Plural
Nominative rosa rosae
Vocative rosa rosae
Accusative rosam rosas
Genitive rosae rosarum
Dative rosae rosis
Ablative rosa rosis

The word has two inflection parameters, case and number, that, as dis-
cussed in section 4.4.4, can be described in Haskell with algebraic data types.

data Case = Nominative | Vocative |

Accusative | Genitive |

Dative | Ablative

data Number = Singular | Plural

data NounForm = NounForm Case Number

95

The inflection table can be viewed as a list of pairs, where the first
component of a pair is an inflection parameter, and the second component is
an inflected word. The inflection table of rosa is described, in the definition
of rosa below, as a list of pairs.

rosa :: [(NounForm,String)]

rosa =

[

(NounForm Singular Nominative,"rosa"),

(NounForm Singular Vocative,"rosa"),

(NounForm Singular Accusative,"rosam"),

(NounForm Singular Genitive,"rosae"),

(NounForm Singular Dative,"rosae"),

(NounForm Singular Ablative,"rosa"),

(NounForm Plural Nominative,"rosae"),

(NounForm Plural Vocative,"rosae"),

(NounForm Plural Accusative,"rosas"),

(NounForm Plural Genitive,"rosarum"),

(NounForm Plural Dative,"rosis"),

(NounForm Plural Ablative,"rosis")

]

The type NounForm is finite, so instead of writing these kinds of tables,
we can write a finite function that describes this table more compactly. We
could even go a step further, and first define a function that describes all
nouns that inflects in the same way as the noun rosa, i.e. defining a paradigm.

rosaParadigm :: String → Noun

rosaParadigm rosa (NounForm n c) =

let rosae = rosa ++ "e"

rosis = init rosa ++ "is"

in

case n of

Singular → case c of

Accusative → rosa + "m"

Genitive → rosae

Dative → rosae

_ → rosa

Plural → case c of

Nominative → rosae

Vocative → rosae

Accusative → rosa ++ "s"

Genitive → rosa ++ "rum"

_ → rosis

96

It may seem that not much has been gained, except that the twelve cases
have been collapsed to nine, and we have achieved some sharing of rosa and
rosae.

However, the gain is clearer when defining the paradigm for dea (Eng.
goddess), that inflects in the same way, with the exception of two cases,
plural dative and ablative.

dea :: Noun

dea nf =

case nf of

NounForm Plural Dative → dea

NounForm Plural Ablative → dea

_ → rosaParadigm dea nf

where dea = "dea"

Given the paradigm of rosa, rosaParadigm, we can describe the inflec-
tion tables of other nouns in the same paradigm, such as causa (Eng. cause)
and barba (Eng. beard).

rosa, causa, barba :: Noun

rosa = rosaParadigm "rosa"

causa = rosaParadigm "causa"

barba = rosaParadigm "barba"

Turning a function into a table

The most important function of Functional Morphology is table, that trans-
lates a finite function into a list of pairs. This is done by ensuring that the
parameter type is of the Param class, which enables us to generate all forms
with the class function values.

table :: Param a ⇒ (a → Str) → [(a,Str)]

table f = [(v, f v) | v ← values]

A function would only be good for generating forms, but with table, the
function can be compiled into lookup tables and further to tries to perform
analysis as well.

String values

The use of a single string for representing a word is too restricted, because
words can have free variation, i.e. that two or more words have the same

97

morphological meaning, but are spelled differently. Yet another exception
is missing forms, some inflection tables may have missing cases.

Free variation exists in the Latin noun domus (Eng. home) in singular
dative, domui or domo, in plural accusative, domus or domos, and in plural
genitive, domuum or domorum.

Missing forms appear in the Latin noun vis (Eng. violence, force), a
noun that is defective in linguistic terms.

Singular Plural
Nominative vis vires
Vocative - vires
Accusative vim vires
Genitive - virium
Dative - viribus
Ablative vi viribus

These two observations lead us to represent a word with the abstract
type Str, which is simply a list of strings. The empty list corresponds to
the missing case.

type Str = [String]

The Str type is kept abstract, to enable a change of the representation.
The abstraction function is called strings.

strings :: [String] → Str

string = id

The normal case is singleton lists, and to avoid the increased complexity
of programming with lists of strings, we provide the mkStr function, that
promotes a String to a Str.

mkStr :: String → Str

mkStr = (:[])

The description of missing cases is handled with the constant nonExist,
which is defined as the empty list.

nonExist :: Str

nonExist = []

The inflection table of vis can be described with the function vis below.

98

vis :: Noun

vis (NounForm n c) =

case n of

Singular → case c of

Nominative → mkStr $ vi ++ "s"

Accusative → mkStr $ vi ++ "m"

Ablative → mkStr vi

_ → nonExist

Plural → mkStr $

case c of

Genitive → vir ++ "ium"

Dative → viribus

Ablative → viribus

_ → vir ++ "es"

where vi = "vi"

vir = vi ++ "r"

viribus = vir ++ "ibus"

String operations

Functional Morphology provides a set of string operation functions that
captures common phenomena in word inflections. Some of them are listed
below to serve as examples.

The string operations cannot be quite complete, and a morphology im-
plementer typically has to write some functions of her own, reflecting the
peculiarities of the target language. These new functions can be supplied
as an extended library, that will simplify the implementation of a similar
language. The goal is to make the library so complete that linguists with
little knowledge of Haskell can find it comfortable to write morphological
rules without recourse to full Haskell.

Here is a sample of string operations provided by the library.
The Haskell standard functions take and drop take and drop prefixes of

words. In morphology, it is much more common to consider suffixes. So the
library provides the following dual versions of the standard functions:

tk :: Int → String → String

tk i s = take (max 0 (length s - i)) s

dp :: Int → String → String

dp i s = drop (max 0 (length s - i)) s

It is a common phenomenon that, if the last letter of a word and the
first letter of an ending coincide, then one of them is dropped.

99

(+?) :: String → String → String

s +? e = case (s,e) of

(_:_,c:cs) | last s == c → s ++ cs

_ → s ++ e

More generally, a suffix of a word may be dependent of the last letter of
its stem.

ifEndThen :: (Char → Bool) → String → String

→ String → String

ifEndThen cond s a b = case s of

: | cond (last s) → a

_ → b

A more language dependent function, but interesting because it is dif-
ficult to define on this level of generality with a regular expression, is the
umlaut phenomenon in German, i.e. the transformation of a word’s stem
vowel when inflected in plural.

findStemVowel :: String → (String, String, String)

findStemVowel sprick =

(reverse rps, reverse i, reverse kc)

where (kc, irps) = break isVowel $ reverse sprick

(i, rps) = span isVowel $ irps

umlaut :: String → String

umlaut man = m ++ mkUm a ++ n

where

(m,a,n) = findStemVowel man

mkUm v = case v of

"a" → "ä"

"o" → "ö"

"u" → "u"

"au" → "äu"

_ → v

The plural form of Baum, can be describe with the function baumPl.

baumPl :: String → String

baumPl baum = umlaut baum ++ "e"

Applying the function baumPl with the string "Baum" computes to the
correct plural form "Bäume".

Obviously, the function umlaut is a special case of a more general vowel
alternation function, that is present in many language, for instance, in En-
glish in the thematic alternation of verbs such as drink-drank-drunk :

100

vowAltern :: [(String,String)] → String → String

vowAltern alts man = m ++ a’ ++ n

where

(m,a,n) = findStemVowel man

a’ = maybe a id $ lookup a alts

A general lesson from vowel alternations is that words are not just
strings, but data structures such as tuples.2 If regular expressions are used,
these data structures have to be encoded as strings with special characters
used as delimiters, which can give rise to strange errors since there is no
type checking.

Exceptions

Exceptions are used to describe paradigms that are similar to another paradigm,
with the exception of one or more case. That is, instead of defining a com-
pletely new paradigm, we use the old definition only marking what is dif-
ferent. This is not only linguistically more satisfying, it saves a lot of work.
Four different kinds of exceptions, excepts, missing, only and variants,
are listed below.

The exception excepts, takes a finite function, or a paradigm in other
words, and list of exceptions, and forms a new finite function with exceptions
included.

excepts :: Param a ⇒ (a → Str) → [(a,Str)] → (a → Str)

excepts f es p = maybe (f p) id $ lookup p es

The paradigm of dea defined in section 4.4.4 can be described with the
function dea using the exception excepts.

dea :: Noun

dea =

(rosaParadigm dea) ’excepts’

[(NounForm Plural c, dea) | c <- [Dative, Ablative]]

where dea = "dea"

The exception functions missing and only are used to express missing
cases in a table; missing enumerates the cases with missing forms, and only

is used for highly defective words, where it is easier to enumerate the cases
that actually exists.

2E.g. in Arabic, triples of consonants are a natural way to represent the so-called roots
of words.

101

missing :: Param a ⇒ (a → Str) → [a] → (a → Str)

missing f as = excepts f [(a,nonExist) | a ← as]

only :: Param a ⇒ (a → Str) → [a] → (a → Str)

only f as = missing f [a | a ← values, notElem a as]

The paradigm of vis described in section 4.4.4, can be described with
the only exception and the paradigm of hostis (Eng. enemy).

vis :: Noun

vis =

(hostisParadigm "vis") ’missing’

[

NounForm Singular c | c <- [Vocative, Genitive, Dative]

]

An often occurring exception is additional variants, expressed with the
function variants. That is, that a word is in a particular paradigm, but
have more than one variant in one or more forms.

variants :: Param a ⇒ (a → Str) → [(a,String)] →
(a → Str)

variants f es p =

maybe (f p) (reverse . (: f p)) $ lookup p es

Dictionary

The Dictionary type is the core of Functional Morphology, in the sense
that the morphology description denotes a Dictionary. The Dictionary

is a language-independent representation of a morphology, that is chosen to
make generation to other formats easy.

A Dictionary is a list of Entry, where an Entry corresponds to a specific
dictionary word.

type Dictionary = [Entry]

An Entry consists of the dictionary word, the part of speech (category)
symbol, a list of the inherent parameters, and the word’s, lacking a better
word, untyped inflection table.

type Dictionary = [Entry]

type Entry = (Dictionary_Word, Category,

[Inherent], Inflection_Table)

102

type Dictionary_Word = String

type Category = String

type Inherent = String

type Parameter = String

type Inflection_Table = [(Parameter,(Attr,Str))]

The Attr type and definitions containing this type concerns the handling
of composite forms, that will be explained later in section 4.4.6.

To be able to generate the Dictionary type automatically, a class Dict
has been defined. Only composite types, describing the inflection parameters
of a part of speech, should normally be an instance of the Dict class.

class Param a ⇒ Dict a where

dictword :: (a → Str) → String

category :: (a → Str) → String

defaultAttr :: (a → Str) → Attr

attrException :: (a → Str) → [(a,Attr)]

dictword f = concat $ take 1 $ f value0

category = const "Undefined"

defaultAttr = const atW

attrException = const []

Note that all class functions have a default definition, but usually we
have to at least give a definition of category, that gives the name of the
part of speech of a particular parameter type. It’s impossible to give a
reasonable default definition of category; it would require that we have
types as first class objects.

It may be surprising that category and defaultAttr are higher-order
functions. This is simply a type hack that forces the inference of the correct
class instance without the need to provide an object of the type. Normally,
the function argument is an inflection table (cf. the definition of entryI

below).

The most important function defined for types in Dict is entryI, which,
given a paradigm and a list of inherent features, creates an Entry. However,
most categories lack inherent features, so the function entry is used in most
cases, with an empty list of inherent features.

entryI :: Dict a ⇒ (a → Str) → [Inherent] → Entry

entryI f ihs = (dictword f, category f, ihs, infTable f)

entry :: Dict a ⇒ (a → Str) → Entry

entry f = entryI f []

103

Returning to the noun example, NounForm can be defined as an instance
of the class Dict by giving a definition of the category function.

instance Dict NounForm

where category _ = "Noun"

Given that NounForm is an instance of the Dict class, a function noun

can be defined, that translates a Noun into an dictionary entry, including
the inherent parameter Gender, and a function for every gender.

noun :: Noun → Gender → Entry

noun n g = entryI n [prValue g]

masculine :: Noun → Entry

masculine n = noun n Masculine

feminine :: Noun → Entry

feminine n = noun n Feminine

neuter :: Noun → Entry

neuter n = Noun n Neuter

Finally, we can define a set of interface functions that translates a dic-
tionary word into a dictionary entry: d2servus (Eng. servant, slave),
d1puella (Eng. girl) and d2donum (Eng. gift, present).

d2servus :: String -> Entry

d2servus = masculine . decl2servus

d1puella :: String -> Entry

d1puella = feminine . decl1puella

d2donum :: String -> Entry

d2donum s = neuter . decl2donum

Given these interface function, a dictionary with words can be cre-
ated. Note that the function dictionary is an abstraction function that
is presently defined as id.

latinDict :: Dictionary

latinDict =

dictionary $

[

d2servus "servus",

104

d2servus "somnus",

d2servus "amicus",

d2servus "animus",

d2servus "campus",

d2servus "cantus",

d2servus "caseus",

d2servus "cervus",

d2donum "donum",

feminine $ (d1puella "dea") ‘excepts‘

[(NounForm Plural c,"dea") | c <- [Dative, Ablative]]

]

The dictionary above consists of 11 dictionary entries, which defines a
lexicon of 132 full form words. Note that when using exceptions, the use of
interface functions has to be postponed. We could define exceptions on the
entry level, but we would then lose the type safety.

Even more productive are the interface functions for Latin verbs. Con-
sider the dictionary latinVerbs below, that uses the interface functions
v1amare (Eng. to love) and v2habere (Eng. to have).

latinVerbs :: Dictionary

latinVerbs =

dictionary $

[

v1amare "amare",

v1amare "portare",

v1amare "demonstrare",

v1amare "laborare",

v2habere "monere",

v2habere "admonere",

v2habere "habere"

]

The dictionary latinVerbs consists of 7 dictionary entries, that defines
a lexicon of as many as 1029 full form words.

External dictionary

When a set of interface functions have been defined, we don’t want to recom-
pile the system every time we add a new regular word. Instead, we define
an external dictionary format, with a translation function to the internal
Dictionary. The syntax of the external dictionary format is straightfor-
ward: just a listing of the words with their paradigms. The first entries of
the dictionary latinVerbs are written

105

v1amare amare

v1amare portare

v1amare demonstrare

v1amare laborare

Notice that the external dictionary format is a very simple special-purpose
language implemented on top of the morphology of one language. This is
the only language that a person extending a lexicon needs to learn.

Code generation

The Dictionary format, described in section 4.4.4, has been defined with
generation in mind. It is usually easy to define a translation to another for-
mat. Let us look at an example of how the LEXC source code is generated.
The size of the function prLEXC, not the details, is the interesting part. It is
just 18 lines. The functions not defined in the function, is part of Haskell’s
standard Prelude or the standard API of Functional Morphology.

prLEXC :: Dictionary → String

prLEXC = unlines . (["LEXICON Root",[]] ++) . (++ ["END",[]]) .

map (uncurry prLEXCRules) . classifyDict

prLEXCRules :: Ident → [Entry] → String

prLEXCRules cat entries =

unlines $ [[],"! category " ++ cat,[]] ++

(map (prEntry . noAttr) entries)

where

prEntry (stem,_,inhs,tbl) =

concat (map (prForm stem inhs) (existingForms tbl))

prForm stem inhs (a,b) =

unlines

[x ++ ":" ++ stem ++ prTags (a:inhs) ++ " # ;" | x <- b]

prTags ts =

concat

["+" ++ w | t <- ts, w <- words (prFlat t)]

altsLEXC cs =

unwords $ intersperse " # ;" [s | s <- cs]

Currently, the following formats are supported by Functional Morphol-
ogy.

Full form lexicon .A full form lexicon is a listing of all word forms with
their analyses, in alphabetical order, in the lexicon.

106

Inflection tables. Printer-quality tables typeset in LATEX

GF grammar source code. Translation to a Grammatical Framework gram-
mar.

XML. An XML[27] representation of the morphological lexicon.

XFST source code. Source code for a simple, non-cyclic transducer in the
Xerox notation.

LEXC source code. Source code for LEXC format, a version of XFST
that is optimized for morphological descriptions.

Relational database. A database described with SQL source code.

Decorated tries. An analyzer for the morphology as a decorated trie.

CGI. A web server for querying and updating the morphological lexicon.3

4.4.5 Trie analyzer

The analyzer is a key component in a morphology system — to analyze a
word into its lemma and its grammatical description. Synthesizers are also
interesting, that is, given an analysis, produce the word form. In a trivial
sense, an analyzer already exists through the XFST/LEXC formats, but
Functional Morphology also provides its own analyzer.

Decorated tries is currently used instead of transducers for analysis in our
implementation. Decorated tries can be considered as a specialized version
of one of the languages in a transducer, that is deterministic with respect
to that language, hence prefix-minimal. If we have an undecorated trie, we
can also achieve total minimality by sharing, as described by Huet [15]; full-
scale transducers can even achieve suffix sharing by using decorated edges.
This approach has been used by Huet [13], when defining a morphology for
Sanskrit. The trie is size-optimized by using a symbol table for the return
value (the grammatical description).

3In a previous version, a CGI morphology web server was generated. Meijer’s [21] CGI
library was used, further modified by Panne. There exists a prototype web server [8] for
Swedish. However, the CGI implementation scaled up poorly, so it is no longer generated.
This is to be replaced by a SQL database and PHP.

107

4.4.6 Composite forms

Some natural languages have compound words — words composed from
other words. A typical example is the (outdated) German word for a com-
puter, Datenverarbeitungsanlage, composed from Daten, Verarbeitung, and
Anlage. If such words are uncommon, they can be put to the lexicon, but
if they are a core feature of the language (as in German), this productivity
must be described in the morphology. Highly inspired by Huet’s glue func-
tion [15], we have solved the problem by tagging all words with a special
type Attr that is just a code for how a word can be combined with other
words. At the analysis phase, the trie is iterated, and words are decomposed
according to these parameters.

The Attr type is simply a integer. Together with a set of constants
atW, atP, atWP and atS, we can describe how a word can be combined with
another. The atW for stand-alone words, atP for words that can only be a
prefix of other words, atWP for words that can be a stand-alone word and a
prefix, and finally, atS, for words that can only be a suffix of other words.

type Attr = Int

atW, atP, atWP, atS :: Attr

(atW, atP, atWP, atS) = (0,1,2,3)

As an example, we will describe how to add the productive question
particle ne in Latin, that can be added as a suffix to any word in Latin, and
has the interrogative meaning of a questioning the word.

We begin by defining a type for the particle, and instantiate it in Param.
The Invariant type expresses that the particle is not inflected.

data ParticleForm = ParticleForm Invariant

deriving (Show,Eq)

type Particle = ParticleForm -> Str

instance Param ParticleForm where

values = [ParticleForm p | p <- values]

prValue _ = "Invariant"

We continue by instantiating ParticleForm in Dict, where we also give
a definition for defaultAttr with atS, that expresses that the words of this
form can only appear as a suffix to another word, not as a word on its own.

108

instance Dict ParticleForm

where category _ = "Particle"

defaultAttr _ = atS

We then define an interface function particle and add ne to our dic-
tionary.

makeParticle :: String -> Particle

makeParticle s _ = mkStr s

particle :: String -> Entry

particle = entry . makeParticle

dictLat :: Dictionary

dictLat = dictionary $

[

...

particle "ne"

]

Analyzing the word servumne, the questioning that the object in a phrase
is a slave or a servant, gives the following analysis in Functional Morphology:

[<servumne>

Composite:

servus Noun - Singular Accusative - Masculine

| # ne Particle - Invariant -]

4.5 Results

The following morphologies have been implemented in Functional Morphol-
ogy: a Swedish inflection machinery and a lexicon of 15,000 words [9]; a
Spanish inflection machinery + lexicon of 10,000 words [1]; major parts of
the inflection machinery + lexicon for Russian [4], Italian [24], and Latin [9].
Comprehensive inflection engines for Finnish and French have been written
following the same method but using GF as source language [23]

One interesting fact is that the Master students had very limited knowl-
edge of Haskell before they started their projects, but still managed to pro-
duce competitive morphology implementations.

An interface between morphology and syntax, through the Grammatical
Framework, exists. An implemented morphology can directly be used as a
resource for a grammatical description.

109

The analyzer tags words with a speed of 2k-50k words/second (depending
on how much compound analysis is involved), a speed that compares with
finite state transducers. The analyzer is often compiled faster than XFST’s
finite state transducers, because Kleene’s star is disallowed within a word
description.

4.6 Discussion

One way of viewing Functional Morphology is as a domain specific embedded
language [11, 12], with the functional programming language Haskell [22] as
host language.

There are a lot of features that make Haskell suitable as a host language,
to mention a few: a strong type system, polymorphism, class system, and
higher-order functions. Functional Morphology uses all of the mentioned
features.

One could wonder if the power and freedom provided by a general-
purpose programming language does not lead to problems, in terms of errors
and inconsistency. Functional Morphology avoids this by requiring from the
user that the definition denotes an object of a given type, i.e. the user has
full freedom to use the whole power of Haskell as long as she respects the
type system of Functional Morphology.

Embedding a language into another may also lead to efficiency issues
— an embedded language cannot usually compete with a DSL that has
been optimized for the given problem domain. This is avoided in Functional
Morphology by generating other formats which provide the efficiency needed.

A simple representation of the morphology in the core system has been
chosen, which enables easy generation of other formats. This approach
makes the framework more easily adaptable to future applications, which
may require new formats. It also enforces the single-source idea, i.e. a gen-
eral single format is used that generates the formats of interest. A single
source solves the problems of maintainability and inconsistency.

Programming constructs and features available in a functional framework
make it is easier to capture generalizations that may even transcend over
different languages. It is no coincidence that Spanish, French and Italian are
among the languages we have implemented: the languages’ morphology are
relatively close, so some of the type systems and function definitions could
be reused.

We believe that we provide a higher level of abstraction than the main-
stream tools using regular relations, which results in a faster development

110

and easier adaption. Not only does the morphology implementor have a nice
and flexible framework to work within, but she gets a lot for free through
the translators, and will also profit from further development of the system.

Bibliography

[1] I. Andersson and T. Söderberg. Spanish Morphology – implemented in
a functional programming language. Master’s Thesis in Computational
Linguistics, 2003. http://www.cling.gu.se/theses/finished.html.

[2] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Pub-
lications, Stanford University, United States, 2003.

[3] C. E. Bennett. A Latin Grammar. Allyn and Bacon, Boston and
Chicago, 1913.

[4] L. Bogavac. Functional Morphology for Russian. Master’s Thesis in
Computing Science, 2004.

[5] K. Claessen. An Embedded Language Approach to Hardware Description
and Verification. PhD thesis, Chalmers University of Technology, 2000.

[6] E. Conrad. Latin grammar. www.math.ohio-state.edu/∼econrad/

lang/latin.html, 2004.

[7] M. Forsberg. Fststudio. http://www.cs.chalmers.se/∼markus/

fstStudio.

[8] M. Forsberg and A. Ranta. Svenska ord. http://www.cs.chalmers.

se/∼markus/svenska, 2002.

[9] M. Forsberg and A. Ranta. Functional morphology. http://www.cs.

chalmers.se/∼markus/FM, 2007.

[10] C. F. Hockett. Two models of grammatical description. Word, 10:210–
234, 1954.

[11] P. Hudak. Building domain-specific embedded languages. ACM Com-
puting Surveys, 28(4), 1996.

[12] P. Hudak. Modular domain specific languages and tools. In P. Devanbu
and J. Poulin, editors, Proceedings: Fifth International Conference on
Software Reuse, pages 134–142. IEEE Computer Society Press, 1998.

111

[13] G. Huet. Sanskrit site. Program and documentation, http://

sanskrit.inria.fr/, 2000.

[14] G. Huet. The Zen Computational Linguistics Toolkit. http://

pauillac.inria.fr/∼huet/, 2002.

[15] G. Huet. Transducers as lexicon morphisms, phonemic segmentation by
euphony analysis, application to a Sanskrit tagger. Available: http:

// pauillac.inria.fr/∼huet/FREE/ , 2003.

[16] L. Karttunen, J.-P. Chanond, G. Grefenstette, and A. Schiller. Regular
expressions for language engineering. Natural Language Engineering,
2:305–328, 1996.

[17] G. Klyve. Latin Grammar. Hodder & Stoughton Ltd., London, 2002.

[18] K. Koskenniemi. Two-level morphology: a general computational model
for word-form recognition and production. PhD thesis, University of
Helsinki, 1983.

[19] A. Labs-Research. At&t fsm library. http://www.research.att.com/
sw/tools/fsm/.

[20] J. Lambek. A mathematician looks at the latin conjugation. Theoretical
Linguistics, 1977.

[21] E. Meijer and J. van Dijk. Perl for swine: Cgi programming in haskell.
Proc. First Workshop on Functional Programming, 1996.

[22] S. Peyton Jones and J. Hughes. Report on the Programming Language
Haskell 98, a Non-strict, Purely Functional Language. Available at
http://www.haskell.org, February 1999.

[23] A. Ranta. Grammatical Framework Homepage, 2000–2004. www.cs.

chalmers.se/∼aarne/GF/.

[24] A. Ranta. 1+n representations of Italian morphology. Essays dedicated
to Jan von Plato on the occasion of his 50th birthday, http://www.

valt.helsinki.fi/kfil/jvp50.htm, 2001.

[25] A. Ranta. Grammatical Framework: A Type-theoretical Grammar For-
malism. The Journal of Functional Programming, 14(2):145–189, 2004.

[26] M. K. Ronald M. Kaplan. Regular Models of Phonological Rule Sys-
tems. Computational lingustics, pages 331–380, 1994.

112

[27] The World Wide Web Consortium. Extensible Markup Language
(XML). http://www.w3.org/XML/, 2000.

[28] G. van Noord. Finite state automata utilities. http://odur.let.rug.
nl/∼vannoord/Fsa/.

[29] Xerox. The Xerox Finite-State Compiler. http://www.xrce.xerox.

com/competencies/content-analysis/fsCompiler/.

113

114

Chapter 5

The Functional Morphology

Library

Author:
Markus Forsberg

Department of Computing Science
Chalmers University of Technology
and the University of Gothenburg

markus@cs.chalmers.se

Paper published:
Technical Report no. 2007-09 in Computing Science at Chalmers

University of Technology and Göteborg University

5.1 Introduction

This document contains the technical report of Functional Morphology (FM)
version 2.0. The aim of the text is to supply a detailed description on how
to use FM and to provide some insights into the implementation of FM.

FM is a library for programming lexical resources. It is not a new
linguistic formalism. It helps creating a lexical resource in a structured
and efficient way. It is also a compiler, able to translate a lexical resource,
defined in FM, into many other lexical resource formats, such as SQL or
XFST source code.

Note that to be able to fully benefit from this document, a basic knowl-
edge of the functional programming language Haskell is required.

115

5.2 FM Tutorial

This section presents a detailed walk-through of a fragment of a Latin mor-
phology implemented in FM. Even though the choice of Latin is arbitrary,
it works as a nice example for FM since it is a highly inflected language,
which fits perfectly with the word-and-paradigm model of FM.

5.2.1 Overview

An implementation of a lexical resource in FM consists of clearly distinct
components, which is naturally put into different Haskell modules. The
components, listed below with short explanations, will be presented one by
one in the following sections.

Type system The type system consists of inflectional, inherent and dic-
tionary types, i.e. the parameters of the lexical resource, defined with
algebraic data types.

Paradigm functions The paradigms of the lexical resource expressed as
finite functions over the algebraic data types.

Interface functions The paradigm functions are translated to interface
functions. An interface function connects a paradigm function to the
dictionary, which includes the production of the inflection table and
the addition of the inherent parameters.

Lexicon There are two kinds of lexicon for a lexicon resource, an internal
and an external one. We will see that even though it may be convenient
with internal lexica, there are reasons to only use external lexica.

Paradigm names The words in the external lexicon are annotated with
paradigm names. The paradigm name module connects these names
with interface functions.

Compound analysis (optional) If compound analysis is used, all word
forms are given an attribute that defines how they can be combined
with other words forms. The compound analysis function defines
which of the attribute sequences correspond to possible compounds.

Main module The main module puts everything together into a runtime
system.

116

5.2.2 Type System

The type system defines all inflectional and inherent parameters of the mor-
phology. The parameters are defined with algebraic data types. Inflectional
parameters, for example number and case, are parameters dictating how a
word is inflected. Inherent parameters are attributes associated to a word,
such as gender or subcategorization frame. Inherent parameters differ from
inflectional parameters in that inflectional parameters are associated to a
word form, but an inherent parameter is associated to the word — e.g. a
feminine noun is not inflected in feminine, it is feminine.

The use of algebraic data types instead of ordinary strings gives many
advantages. It gives a guarantee that the correct parameters are used for
a paradigm as long as the correct word class is chosen. Furthermore, it
is possible to define the types in such a way that only valid parameter
configurations are possible to construct. For example, the cross product of
the inflectional parameters of Latin verbs generates 1260 forms, but only
147 forms are existing — with algebraic types we can define a type system
which disallows the 1113 non-existing forms.

Furthermore, if incomplete pattern detection is activated in the Haskell
compiler, we can get information about missing cases. That is, if we forget to
define the word forms for some parameter configurations, then the compiler
will complain.

As an example, consider the Latin noun causa (Eng. ’cause’). It is in-
flected in number and case, i.e. number and case are the inflectional param-
eters. It also has one inherent parameter: gender. The inflection of causa
in plural nominative is causae, but it has a feminine gender.

The parameters of Latin nouns are described with the help of Haskell’s
data types. To describe them, we introduce the types: Gender, Case and
Number, given in Fig. 5.1. The deriving part is needed to ensure that the
type is finite and enumerable — it gives us a way to enumerate all objects
in a type.

The inflectional parameter types Case and Number are combined into
one dictionary type NounForm describing all inflection forms of a Latin noun.
Gender is not part of the dictionary type, since it is an inherent parameter.

data NounForm = NounForm Number Case

deriving (Show,Eq,Ord,Bounded)

The NounForm type is missing a deriving for the Enum class. This is be-
cause the current main Haskell compiler is unable to derive the enumeration
of a data type containing constructors with arguments. The reason for this

117

data Gender = Feminine |

Masculine |

Neuter

deriving (Show,Eq,Enum,Ord,Bounded)

data Case = Nominative |

Genitive |

Dative |

Accusative |

Ablative |

Vocative

deriving (Show,Eq,Enum,Ord,Bounded)

data Number = Singular |

Plural

deriving (Show,Eq,Enum,Ord,Bounded)

Figure 5.1: Type system

is obvious for arguments that are not Enum and Bounded, since there is no
obvious enumeration strategy in that case, but there is a natural strategy if
they are: simply enumerating a constructor’s arguments from left to right.

An important class in FM is Param, defined in General.hs. The most
important method — the only one not defined by default — is values. It
gives the complete list of the objects in a Param type. An instance of Param
is easy to define for bounded enumerated types with the function enum, using
the member functions of Enum (the list generator) and Bounded (minBound
and maxBound).

enum :: (Enum a, Bounded a) => [a]

enum = [minBound .. maxBound]

We continue by instantiating the parameters of the Latin nouns in the
class Param. The default definition for prValue has been redefined for
NounForm, to remove the NounForm constructor. Usually, a more sophis-
ticated printing scheme is preferred, using a particular tag set, i.e. adopting
to a standard for describing the types of a language.

instance Param Gender where values = enum

instance Param Case where values = enum

instance Param Number where values = enum

instance Param NounForm where

118

values =

[NounForm n c | n <- values ,

c <- values]

prValue (NounForm n c) =

unwords $ [prValue n, prValue c]

A paradigm of Latin nouns is defined as a finite function Noun, from a
NounForm to a Str; from a parameter configuration to a word form. The
type for word forms is actually a list of strings, instead of a single one. The
reason for this is to be able to describe missing word forms and word form
variants.

type Noun = NounForm -> Str

A Noun is translated to an inflection table by generating all NounForm
objects and applying them to the Noun. This is done by the function table.

table :: Param a => (a -> Str) -> [(a,Str)]

table f = [(a,f a) | a <- values]

Note that this function is polymorphic — the only restriction of a is that
it is an instance of the Param class.

5.2.3 String operations

FM provides a set of string operation functions capturing common phenom-
ena in word inflection. For a complete reference, see General.hs in the FM
API (see Sec. 5.15.1).

The set of string operations is by no means complete. An implementer
of a lexical resource typically writes new functions reflecting some specifics
of the target language. For example, if it is common in a language that
the second last letter is dropped while inflecting a word, it is reasonable
to write a function that does exactly that. These new functions can be
delivered as an extended library, which will simplify the implementation of
a similar language.

For example, among the string operations are the functions tk and dp,
similar to Haskell’s standard functions take and drop, but they focus on
suffixes instead of prefixes. tk takes all but the n last characters and dp

drops all but the last n characters.

tk :: Int -> String -> String

tk n s = take (max 0 (length s - n)) s

119

dp :: Int -> String -> String

dp n s = drop (max 0 (length s - n)) s

Yet another example is the operator (+?), which implements the com-
mon phenomenon: if the last letter of a word and the first letter of an ending
coincide, then one of them is dropped. An example of the usage is given in
the function mkCase, where the genitive case of Swedish nouns is formed by
adding an ’s’ to word forms, unless it does not already end in ’s’. In that
case, nothing is added.

(+?) :: String -> String -> String

s +? e = case (s,e) of

(_:_,c:cs) | last s == c -> s ++ cs

_ -> s ++ e

mkCase :: Case -> String -> String

mkCase c w = case c of

Nom -> w

Gen -> w +? "s"

The strings operations all share the property that they perform a small,
specific task. And more, that their definitions are compact and easily un-
derstood.

5.3 Paradigms as functions

Let us start by considering the first declension noun paradigm, illustrated
with the inflection table of the word rosa (Eng. ’rose’), in Fig. 5.2. The
concept of inflection tables corresponds intuitively to a list of pairs in a
programming language, but FM takes an indirect approach and uses finite
functions, which is later translated to a list of pairs. The use of finite func-
tions has many advantages: it allows the use of higher-order functions, e.g.
see exceptions in Sec. 5.3.1; it allows us to divide the paradigm definitions
into sets of finite functions, each solving a specific task, which in the end
are combined into one function with function compositions; and it allows
the use of pattern matching, which permits common cases to be defined
simultaneously.

The paradigm function for the first declension paradigm, decl1, is di-
rectly defined based on the inflection table. It is defined as a single function.

120

Singular Plural
Nominative rosa rosae
Vocative rosa rosae
Accusative rosam rosas
Genitive rosae rosarum
Dative rosae rosis
Ablative rosa rosis

Figure 5.2: The inflection table of rosa

decl1rosa :: String -> Noun

decl1rosa rosa (NounForm n c) =

mkStr $

case n of

Singular ->

case c of

Accusative -> rosa ++ "m"

Genitive -> rosa ++ "e"

Dative -> rosa ++ "e"

_ -> rosa

Plural ->

case c of

Nominative -> rosa ++ "e"

Vocative -> rosa ++ "e"

Accusative -> rosa ++ "s"

Genitive -> rosa ++ "rum"

_ -> rosa ++ "is"

Note that the paradigm function requires one argument, a citation word
form. The functions rosa and puella are two nouns created by the appli-
cation of the citation forms "rosa" and "puella" (Eng. ’girl’).

rosa :: Noun

rosa = decl1 "rosa"

puella :: Noun

puella = decl1 "puella"

5.3.1 Exceptions

Many paradigms of the same type are similar, just differing in one or two
word forms. When defining a class of similar paradigms, its is convenient
to use FM:s exceptions. Exceptions are used to describe inflection functions

121

in terms of other inflection functions. Instead of defining a completely new
paradigm, we use the old definition and only mark what is different. This
is not only linguistically more satisfying, it saves a lot of work.

There are four different kinds of exception: excepts, missing, only

and variants. All exceptions are higher-order functions that take a finite
inflection function as an argument.

The exceptions except and excepts, take a finite inflection function and
list of exceptions, and constructs a new finite function with the exceptions
included. An example of its usage is given in the definition of decl2gladius.

except :: Param a => (a -> Str) -> [(a,String)] -> (a -> Str)

excepts :: Param a => (a -> Str) -> [(a,Str)] -> (a -> Str)

decl2gladius :: String -> Noun

decl2gladius gladius =

except (decl2servus gladius)

[(NounForm Singular Genitive, gladi),

(NounForm Singular Vocative, gladi)]

where gladi = tk 2 gladius

The exception functions missing and only are used to express missing
cases in a table. missing enumerates the cases with missing forms, and
only, used for highly defective words, enumerates the cases that exists. An
example is the paradigm of vis (Eng. ’force’), which inflects in the same
manner as hostis (Eng. ’enemy’), with the exception that it is missing the
singular vocative, genitive and dative case.

missing :: Param a => (a -> Str) -> [a] -> (a -> Str)

only :: Param a => (a -> Str) -> [a] -> (a -> Str)

vis_paradigm :: String -> Noun

vis_paradigm s = (hostisParadigm s) ’missing’

[NounForm Singular c | c <- [Vocative, Genitive, Dative]]

A very common exception is additional variants, i.e. that two paradigms
differ only in the number of word forms for one or more parameter configu-
ration. This type of exception is expressed with the functions variant and
variants.

An example is given with the function decl3parti, a Swedish paradigm
function. The function is defined in terms of a worst-case function mkNoun,
which takes Strings as arguments. This function is then augmented with
two variant word forms through the use of variant.

122

variant :: Param a => (a -> Str) -> [(a,String)] -> (a -> Str)

variants :: Param a => (a -> Str) -> [(a,Str)] -> (a -> Str)

decl3parti :: String -> Substantive

decl3parti parti =

mkNoun parti (parti ++ "et") (parti ++ "er") (parti ++ "erna")

‘variant‘

[(SF Sg Def c, mkCase c (parti++"t") | c <- values]

Note that we use values to generate the values of c. The type system
is able to infer that c is of type Case, and since Case is an instance of the
class Param, we can use the function values to generate the constructors
Nom and Gen.

5.4 Interface Functions

A lexical resource has its own type system, so to be able to use generic trans-
lations, we need to translate it into an intermediary format, a Dictionary.
A Dictionary is an untyped ADT consisting of a list of Entry:s. An Entry

corresponds to dictionary entry, specifying information about a word, e.g.
the inflection table and the inherent parameters.

The translation is done by first instantiating the dictionary types in
the Dict class, defined in Dictionary.hs (see Sec. 5.15.2). Typically, the
only information we need to supply is the name of the word class that the
dictionary type represents. Note that since we have no access to the names
of the types within Haskell, we must require that this information is supplied
by the user.

Let us return to the Latin noun example with the dictionary type NounForm.
When the NounForm type is made an instance of Dict, we also give the name
of the word class that NounForm represents, i.e. Noun.

instance Dict NounForm where

category _ = "Noun"

The next step is to define interface functions, i.e. functions that create
Entry:s. We start by a general interface function, noun, which transforms a
Noun together with its inherent parameter, Gender, and its paradigm iden-
tifier, to an Entry. The identifier is not the same as the paradigm names
in a command map (see Sec. 5.6), it is used in the word identifier. A word
identifier is built up from the citation form, the word class, the inherent

123

parameters and the identifier. For example, the word rosa has the identi-
fier rosa Noun Feminine n1. The main difference between the command
map identifiers and the ones in the word identifiers is that command map
identifiers must be unique.

We also define a function for every gender: masculine, feminine and
neuter.

noun :: Noun -> Gender -> Paradigm -> Entry

noun n g p = entryIP n [prValue g] p

feminine :: Noun -> Paradigm -> Entry

feminine n = noun n Feminine

masculine :: Noun -> Paradigm -> Entry

masculine n = noun n Masculine

neuter :: Noun -> Paradigm -> Entry

neuter n = noun n Neuter

We can now define interface functions for all our paradigm functions.
Let us have a look at three interface functions, one for each gender: d1rosa
(Eng. ’rose’), d2servus (Eng. ’servant’), and d2bellum (Eng. ’war’).

d1rosa :: DictForm -> Entry

d1rosa w = feminine (decl1rosa w) "n1"

d2servus :: DictForm -> Entry

d2servus w = masculine (decl2servus w) "n2"

d2bellum :: DictForm -> Entry

d2bellum w = neuter (decl2bellum w) "n2"

We can now create a small lexicon with the interface functions we have
defined. The function dictionary is an abstraction function that creates a
Dictionary ADT from a list of Entry:s.

latinDict :: Dictionary

latinDict =

dictionary $

[

d1rosa "puella",

d2servus "somnus",

d2servus "amicus",

d2bellum "donum"

]

124

The lexicon we just defined is referred to as an internal lexicon, since it is
defined within Haskell. If we add a new word, we need to recompile our FM
implementation, but on the other hand, we have the full power of Haskell at
our disposal. This is contrasted with an external lexicon, which is simply a
text file (discussed in Sec. 5.6). If we add a new word to the external lexicon
there is no need to recompile. We are, however, more restricted in what we
can express, since we no longer have access to Haskell.

In previous documentations of FM, we recommended that the irregularly
inflected words should be defined in the internal lexicon, and the regularly
ones in the external lexicon. We have reconsidered this somewhat, since it
is very convenient to have all words listed in the external lexicon — all in
the same place, in the same format. A definite preference, however, depends
on the intended usage of the lexical resource in question.

5.5 Compound Analysis

FM offers the possibility to perform compound analysis. By default, all
words are assumed to appear outside compounds, so the compound analysis
is invisible to someone who does not use it.

We will use the particle ne (Eng. approximately ’?’) as our example, a
clitic element that can be placed on any word, and by that, it expresses that
the word it attaches to is in some way questioned.

The first thing we need to do is to define attributes, which will be used
to describe the compound behaviour of ne. Attributes are integers greater
than one and we use the type Attr to refer to them.

For the purpose of our example, we will only define one attribute, atS,
which will be used for words that may only appear as a suffix on another
word form.

atS :: Attr

atS = 1

The next step is to associate the attribute to the dictionary type. This
is done in the instantiation of the class Dict, or more precisely, in the class
function defaultAttr.

instance Dict ParticleForm where

category _ = "Particle"

defaultAttr _ = atS

125

All words with the dictionary type ParticleForm now have the default
attribute atS. As the name defaultAttr implies, it is also possible to asso-
ciate an attribute value to any parameter configuration.

All word forms have an attribute associated to them. If no attribute
association has been defined for a word form, it receives the default attribute
value. The default attribute value is 0, which explains why a user-defined
attribute value must be larger than 0.

The compound analysis try to divide an input word form into all possible
sequences of word forms with their associated attributes. Some of these
sequences will, of course, not be valid. It is the compound function, defined
by the implementer of the lexical resource, which decides what attributes
are valid.

The compound function latin compound defines the valid attribute se-
quences of our Latin lexical resource.

latin_compound :: [Attr] -> Bool

latin_compound [x,y] = (x /= y) && atS == y

latin_compound [x] = x /= atS

latin_compound _ = False

Word forms with the attribute atS may only occur as suffixes. All other
word forms may only occur as single words.

5.6 Paradigm Identifiers and External Lexicon

We do not want to recompile the whole system every time we add a new
word, in fact, we may not want to recompile at all. This is where the external
lexicon comes into picture. An external lexicon is a text file containing a list
of citation forms marked with paradigm names. A paradigm name refers to
an interface function.

The first thing we need to do to get things working is to define a command
map. The command map defines the mapping between paradigm name and
interface functions. It consists of a list of triplets, where the first element
is the paradigm name, the second element is example citation forms for the
paradigm, and the third element is the interface function.

The interface functions are applied to a function app1 that requires a
special explanation. First of all, we want to be able to have interface func-
tions that have more than one argument. But then we have a problem,
since the type system of Haskell does not allow functions of different types
to appear at the same position in a list. The solution provided by FM is to

126

use one of a set of wrapper functions, named app1, app2, app3, et cetera,
where the number corresponds to the argument count. These wrapper func-
tions encapsulate the interface functions, creating new functions of the type
[String] -> Entry. Since all wrapper functions create a function of the
same type, we can have interface functions of different argument count ap-
pearing in the command list.

commands =

[

("d1puella", ["rosa"], app1 d1puella),

("d1puellaMasc", ["poeta"], app1 d1puellaMasc),

("d2servus", ["servus"], app1 d2servus),

("d2servusFem", ["pinus"], app1 d2servusFem),

("d2servusNeu", ["virus"], app1 d2servusNeu),

("d2bellum", ["bellum"], app1 d2bellum),

("d2puer", ["puer"], app1 d2puer),

("d2liber", ["liber"], app1 d2liber),

("prep", ["ad"], app1 prep),

("v1amare", ["amare"], app1 v1amare),

("v2habere", ["habere"], app1 v2habere)

]

Given that we have defined our command map (and our runtime system,
see Sec. 5.7), then we can start developing our external lexicon.

latin.lexicon:

v1amare amare

v1amare portare

v1amare demonstrare

v1amare laborare

The external lexicon is in a file latin.lexicon, where we have de-
fined four words in the first conjugation: amare (Eng. ’to love’), portare
(Eng. ’to carry’), demonstrare (Eng. ’to point out’), and laborare (Eng. ’to
work’). Note that the format of an external lexicon is simple — it consists
of paradigm names and citation forms. Single line comments are allowed,
triggered by --, but besides that, there is nothing more.

5.7 Runtime System

The last thing we need to do is to connect our lexical resource with the
runtime system of FM. For this, FM uses a class Language, defined in

127

Frontend.hs (see Sec. 5.15.4), which gives the language-specific parts of
the runtime system. We start by defining a type consisting of a single con-
structor, which is the default name of our lexical resource.

data Latin = Latin

deriving Show

Next, we make our data type an instance of of the Language class, where
we define functions needed for the runtime system. All class functions have
a default definition, e.g. the internal dictionary may be empty; the list of
commands may be empty; or there may be no compound analysis. In this
instance, we define our internal dictionary, our compound function, and our
command map, which is folded into a more efficient lookup table.

instance Language Latin where

internDict _ = latinDict

composition _ = latin_compound

paradigms _ = foldr insertCommand emptyC commands

We can now define our main function with the help of the FM library
commonMain applied to our constructor Latin.

main :: IO ()

main = commonMain Latin

The constructor Latin is used to retrieve the information provided in
the instance of the Language class. It is a convenient way to avoid having
many optional arguments in the commonMain function.

This concludes the FM tutorial — we have now defined a complete frag-
ment of a lexical resource for Latin. For information on how to compile FM,
see Sec. 5.10, and on how to run FM, see Sec. 5.11.

5.8 Extending the Translator

This section lists how to add a new output format called FORMAT. For addi-
tional help, have a look at how another format is defined.

1. Define a function in Print.hs:
prFORMAT :: Dictionary -> String

128

2. Define two functions in GeneralIO.hs:
writeFORMAT :: FilePath -> Dictionary -> IO()

outputFORMAT :: Dictionary -> IO()

These functions, responsible of writing the output of prFORMAT to
the file Filepath and standard output respectively, typically add an
header to the output.

3. In CommonMain.hs: add a new command-line flag (e.g. -format) and
document it in the help message help text.

5.9 Compound Analysis in FM

A compound in FM is a word w = w1w2...wn where dictionary(wi) and
valid(attr(w1)...attr(wn)). dictionary is a boolean function defining the
word forms of a language. attr is function that for every word form in the
dictionary assigns a set of parameter values. The parameter values defines
how the word forms can be composed with other words. valid is a boolean
function that accepts as input a list of sets of attribute values and gives as
result a boolean value that states if the sequence of attribute values is valid
or not.

The compound analysis of FM consists of two functions, unglue and
valid. The unglue function is a rewritten version of Huet’s unglueing func-
tion [3], which splits an input word, based on a dictionary, into all possible
compounds. Note that it is essential to have the dictionary check in the gen-
erator, since the generator would otherwise be subject to a combinatorial
explosion.

unglue [] dictionary = [[]]

unglue w dictionary = [map (pre:) (unglue suf) |

(pre,suf) <- zip (prefixes w)

(suffixes w)

dictionary pre]

The valid function uses the compound function to filter out only the
valid compound.

valid c_fun cs = filter_valid attr_values

where

attr_values = flatten $ map lookup_attr cs

filter_valid [] = []

filter_valid (as:ass)

| c_fun (extract_attr as) = as : filter_valid ass

| otherwise = filter_valid ass

129

These two functions could be combined to avoid duplicate work, but
are held separate for the presentation. It may seem inefficient to separate
the validity test with the actual unglueing, but since Haskell is a lazy pro-
gramming language, the situation is better. The laziness ensures that the
unglueing process only continues on the suffix if the prefix is in the lexicon.

Since a word form may be a homograph, it can be associated with a
set of attributes. Because of this, we need to use the function flatten to
flatten the sequences of sets of attributes into a set of attribute sequences.

The function compound analysis puts everything together.

compound_analysis c_fun w =

concat $ map (valid c_fun) (unglue w)

Huet [3] uses a different approach to compounds: he uses rewrite rules
to describe internal and external sandhi of Sanskrit. The rules are compiled
into a dictionary trie with the addition of choice points, which encodes the
rules. The sandhi of Sanskrit is complicated since the spelling exactly reflects
the pronunciation of the sentences.

It is not clear that it would be possible to handle Sanskrit’s sandhi in
FM. It may be the case that the number of word forms would be to great
to be feasible to define in FM style.

The translation in FM of a lexical resource with compounding to other
systems is not complete — even though the compound information is ex-
ported, the compound function is missing. The compound function is cur-
rently a function in Haskell that is not readily translatable. The situation
could be improved by an algebraic representation of the compound function,
which in turn would be translatable. How such an algebraic representation
is best implemented requires some future work.

5.10 Compiling FM

The source code is downloadable at FM’s homepage1.

FM requires the GHC compiler2 to be built. Since FM is a command-line
program, it should work on all platforms supported by the GHC compiler.

1. Unpack the source code: tar -xvfz FM_LAT_v2.0.tgz

2. Change directory: cd ./FM_LAT_v2.0/

1http://www.cs.chalmers.se/∼markus/FM
2http://www.haskell.org/ghc

130

3. Compile FM: make

4. This produces a binary morpho lat

5.11 Running FM

We assume that the tutorial language is downloaded — the lexical resource
of Latin, and compiled in the manner described in Sec. 5.10. Other FM
implementations are handled in an analogous way.

Before FM implementation can be run, one needs to refer to the external
lexicon, latin.lexicon. This is done by either running the program in
the same directory as the external lexicon, or by pointing the environment
variable FM LAT to it. Environment variables are set differently depending
on which shell are in use, but in a Bash shell, and given that the lexicon file
is placed in the directory /home/dictionary, we would write the command
below. Or better, put the command in one of the system files declaring the
environment variables.

$ export FM_LAT="/home/dictionary/latin.lexicon"

The runtime system of an FM implementation consists of four parts: the
analyzer, the synthesizer, the inflection engine, and the translator. We will
describe each of these parts in the rest of this section. An overview of the
command-line flag of FM is printed with the help command morpho lat -h.
The output is given in Fig. 5.3.

5.11.1 The Analyzer

The analyzer, also referred to as the tagger, annotates the word forms of an
input text with information collected from the current lexical resource. The
analyzer is divided into two phases: word segmentation, or tokenization, and
word analysis. The word segmentation splits the string of the input text into
tokens, and the word analysis, which may be compound analysis, does the
actual annotation.

An example of the analyzer in action is given in Fig. 5.4, where two
word forms is being tagged: servi and servusne. The first word, servi, is
the inflection form of servus (Eng. ’servant’). It is ambiguous: it may be
singular genitive, plural nominative or plural vocative. The second word,
servusne, is a compound word consisting of servus and the question particle
ne.

131

|---------------------------------------|

| Program parameters |

|---------------------------------------|

| -h | Display this message |

|---------------------------------------|

| <None> | Enter tagger mode |

|---------------------------------------|

| -s | Enter interactive |

| | synthesiser mode |

|---------------------------------------|

| -i | Enter inflection |

| | mode |

|---------------------------------------|

| -lex [file] | Full form lexicon |

| -tables [file] | Tables |

| -gf [file] | GF source code |

| -latex [file] | LaTeX source code |

| -xml [file] | XML source code |

| -lexc [file] | LexC source code |

| -xfst [file] | XFST source code |

| -sql [file] | SQL source code |

|---------------------------------------|

Figure 5.3: FM help

The part about Morphology Statistics contains information about the
lexical resource — here we see that 11 paradigms have been implemented;
the lexicon consists of 196 entries, 173 in the external lexicon and 23 in the
internal; these entries are expanded into 8131 word forms (yes, Latin is a
highly inflected language!) of which 5417 are unique. Finally, the compile
time for the dictionary and the building time of the analysis data structure
sums to 1.00 seconds.

FM is, of course, capable of analyzing a complete text. Given a Latin
text Latina Vulgate.txt, we analyze the whole text by simply piping the
text to the FM program, as illustrated below.

$ cat Latina_Vulgate.txt | morpho_lat

The analysis is reasonably fast. The analysis of ’Latina Vulgate’, con-
sisting of approximately 1.4 million word forms, took around 25 seconds on
a Macbook (including the compile time of the lexical resource), which gives
us an analysis speed in the ballpark of 56k word forms per second.

5.11.2 The Synthesizer

The synthesizer is used to retrieve all dictionary entries that include the
input word form in their inflection table. An example is provided in Fig. 5.5

132

$ morpho_lat

* Functional Morphology v2.0 *

* (c) M. Forsberg & A. Ranta 2007 *

* under GNU General Public License. *

Morphology Statistics:

language id: latin

11 paradigms

0k entries (e: 173, i: 23)

8k word forms (c: 8131, u: 5417)

compile time: 1.00 seconds

servi

[<servi>

1. servus (servus_Noun_Masculine__n2:1)

Noun - Plural Vocative - Masculine [0]

2. servus (servus_Noun_Masculine__n2:1)

Noun - Plural Nominative - Masculine [0]

3. servus (servus_Noun_Masculine__n2:1)

Noun - Singular Genitive - Masculine [0]

]

servusne

[<servusne>

1. Composite: servus (servus_Noun_Masculine__n2:1) Noun -

Singular Nominative - Masculine [0] |

ne (ne_Particle__inv:1) Particle - Invariant [1]

]

Figure 5.4: FM analysis example

133

with the word form puellae. In this example, we only got one entry, since
the word form puellae only appears in one entry. If it were an homograph,
on the other hand, appearing in more than one entry, then those entries
would be listed also.

The current version of FM does not include compound words in the
synthesizer: it only retrieves word forms that exists in the lexicon. How
to include compound words in the synthesis is by no means obvious — we
need a method to decide which word form in the compound that is the
main word form, to be able to select the correct word class and the correct
inherent parameters. And more, this method must be valid for any language,
and preferably invisible to an FM implementer that do not use compound
analysis.

A possible solution would be to strengthen the compound function so
that it would, as a result, not only give true or false, but also which attribute
corresponds to the main word form. Such an addition, however, would break
the backward compatibility of FM.

5.12 The Inflection Engine

The inflection engine of FM translates paradigm names applied to citation
word forms to dictionary entries. The inflection engine is also runnable in
batch mode, i.e. the input can be piped to the program. An example of the
inflection engine in interactive mode is given in Fig. 5.6, where the word
porta (Eng. ’door’) is marked as being in the first declension. The same
result is achieved in batch mode with the following command.

$ echo "d1rosa porta" | ./morpho_lat -ib

Typing ’c’ in interactive mode gives the list of all paradigm names
together with their example word forms.

5.13 The Translator

An important aspect of FM is its use as a compiler. The idea is that the
user of FM should never get ”stuck” in FM, but instead have the ability to
translate the lexical resource to many other lexicon formats, and by doing
that, maximize the usefulness of the resource. In fact, FM has been designed
so that adding a new format is a relatively small task (see Sec. 5.8 for details).

The formats currently supported by FM will now be exemplified one
by one. We will use the same example word, and only the part of the

134

$ morpho_lat -s

* Functional Morphology v2.0 *

* (c) M. Forsberg & A. Ranta 2007 *

* under GNU General Public License. *

Synthesiser mode

Enter a Latin word in any form

or a [paradigm name] with [word forms].

Type ’c’ to list paradigms.

Type ’q’ to quit.

Morphology Statistics:

language id: latin

11 paradigms

0k entries (e: 173, i: 23)

8k word forms (c: 8131, u: 5417)

compile time: 0.00 seconds

> puellae

[<puellae>

{

lemma: puella

pos: Noun

inherent(s): Feminine

paradigm id: n1

Singular Nominative : puella

Singular Vocative : puella

Singular Accusative : puellam

Singular Genitive : puellae

Singular Dative : puellae

Singular Ablative : puella

Plural Nominative : puellae

Plural Vocative : puellae

Plural Accusative : puellas

Plural Genitive : puellarum

Plural Dative : puellis

Plural Ablative : puellis

}

]

Figure 5.5: FM synthesis example

135

$ morpho_lat -i

* Functional Morphology v2.0 *

* (c) M. Forsberg & A. Ranta 2007 *

* under GNU General Public License. *

[Inflection mode]

Enter [paradigm name] with [word forms].

Type ’c’ to list paradigms.

Type ’q’ to quit.

> d1rosa porta

porta

Noun

Feminine

Singular Nominative: porta

Singular Vocative: porta

Singular Accusative: portam

Singular Genitive: portae

Singular Dative: portae

Singular Ablative: porta

Plural Nominative: portae

Plural Vocative: portae

Plural Accusative: portas

Plural Genitive: portarum

Plural Dative: portis

Plural Ablative: portis

>

Figure 5.6: FM inflection mode example

136

generation that refers to that word, to enable comparisons between the
different formats. The word used is filius (Eng. ’son’).

5.13.1 Full Form Lexicon

A fundamental format in FM is the full form lexicon, which is the format
that the analyzer builds on. The format consists of all word forms annotated
with their analyses (separated by ’:’).

filius:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Nominative - Masculine [0]

fili:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Vocative - Masculine [0]

filium:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Accusative - Masculine [0]

fili:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Genitive - Masculine [0]

filio:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Dative - Masculine [0]

filio:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Ablative - Masculine [0]

filii:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Nominative - Masculine [0]

filii:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Vocative - Masculine [0]

filios:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Accusative - Masculine [0]

filiorum:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Genitive - Masculine [0]

filiis:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Dative - Masculine [0]

filiis:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Ablative - Masculine [0]

5.13.2 Inflection Tables

Inflection tables can be generated in two formats, either as text or Latex
source code. The text version is given below.

$ morpho_lat -tables

filius

Noun

Masculine

137

Singular Nominative: filius

Singular Vocative: fili

Singular Accusative: filium

Singular Genitive: fili

Singular Dative: filio

Singular Ablative: filio

Plural Nominative: filii

Plural Vocative: filii

Plural Accusative: filios

Plural Genitive: filiorum

Plural Dative: filiis

Plural Ablative: filiis

The generation of tables in Latex source code enables us to create nicer,
formatted tables with the program latex.

$ morpho_lat -latex

filius, Noun Masculine

\begin{center}

\begin{tabular}{|l|l|}\hline

Singular Nominative & {\em filius} \\

Singular Vocative & {\em fili} \\

Singular Accusative & {\em filium} \\

Singular Genitive & {\em fili} \\

Singular Dative & {\em filio} \\

Singular Ablative & {\em filio} \\

Plural Nominative & {\em filii} \\

Plural Vocative & {\em filii} \\

Plural Accusative & {\em filios} \\

Plural Genitive & {\em filiorum} \\

Plural Dative & {\em filiis} \\

Plural Ablative & {\em filiis} \\

\hline

\end{tabular}

\end{center}

% \newpage

Grammatical framework (GF)

Grammatical Framework [4] is a multilingual grammar formalism, and be-
cause of the translation, we have a direct connection between a lexical re-
source and syntax, i.e. a GF grammar. GF also requires a type system, which
is not exported from FM. The type system, which should corresponds to the
type system of the FM implementation, must be in the file types.latin.gf.

138

We have actually cheated a bit with the generation — in our FM im-
plementation we used the possibility to have pretty-printed versions of our
types, through the function prValue in the class Param, where we have
removed the constructor NounForm. For the generation to be correct, we
needed to remove our prValue declarations, and recompile FM. It may be
reasonable to extend FM to support two kinds of Dictionary:s, one with the
pretty-printed types and one without, to avoid having to remove prValue

declarations prior to GF generation.

$ morpho_lat -gf

include types.latin.gf ;

cat Noun;

fun filius_1 : Noun ;

lin filius_1 = {s = table {

NounForm Singular Nominative => "filius" ;

NounForm Singular Vocative => "fili" ;

NounForm Singular Accusative => "filium" ;

NounForm Singular Genitive => "fili" ;

NounForm Singular Dative => "filio" ;

NounForm Singular Ablative => "filio" ;

NounForm Plural Nominative => "filii" ;

NounForm Plural Vocative => "filii" ;

NounForm Plural Accusative => "filios" ;

NounForm Plural Genitive => "filiorum" ;

NounForm Plural Dative => "filiis" ;

NounForm Plural Ablative => "filiis" };

h1 = Masculine

} ;

5.13.3 XML

The XML [5] format is a way of representing structured information in
ASCII. It is the most verbose format of FM, which is typical to an XML
representation. However, it is not as bad as it seems, since an XML file may
be heavily compressed.

$ morpho_lat -xml

<lexicon_entry>

<dictionary_form value="filius" />

139

<inherent value="Masculine" />

<inflection_table>

<inflection_form pos="Singular Nominative">

<variant word="filius" />

</inflection_form>

<inflection_form pos="Singular Vocative">

<variant word="fili" />

</inflection_form>

<inflection_form pos="Singular Accusative">

<variant word="filium" />

</inflection_form>

<inflection_form pos="Singular Genitive">

<variant word="fili" />

</inflection_form>

<inflection_form pos="Singular Dative">

<variant word="filio" />

</inflection_form>

<inflection_form pos="Singular Ablative">

<variant word="filio" />

</inflection_form>

<inflection_form pos="Plural Nominative">

<variant word="filii" />

</inflection_form>

<inflection_form pos="Plural Vocative">

<variant word="filii" />

</inflection_form>

<inflection_form pos="Plural Accusative">

<variant word="filios" />

</inflection_form>

<inflection_form pos="Plural Genitive">

<variant word="filiorum" />

</inflection_form>

<inflection_form pos="Plural Dative">

<variant word="filiis" />

</inflection_form>

<inflection_form pos="Plural Ablative">

<variant word="filiis" />

</inflection_form>

</inflection_table>

</lexicon_entry>

140

5.13.4 XFST

XFST [2] (Xerox Finite State Transducer) source code defines a regular
relation, i.e. a relation between two regular languages. A regular relation can
be compiled into a finite state transducer, which is an automaton providing
a compact and efficient structure for lexical resources. XFST source code is
compiled by the XFST tool.

$ morpho_lat -xfst

[{filius} %+Singular %+Nominative %+Masculine .x. {filius}] |

[{filius} %+Singular %+Vocative %+Masculine .x. {fili}] |

[{filius} %+Singular %+Accusative %+Masculine .x. {filium}] |

[{filius} %+Singular %+Genitive %+Masculine .x. {fili}] |

[{filius} %+Singular %+Dative %+Masculine .x. {filio}] |

[{filius} %+Singular %+Ablative %+Masculine .x. {filio}] |

[{filius} %+Plural %+Nominative %+Masculine .x. {filii}] |

[{filius} %+Plural %+Vocative %+Masculine .x. {filii}] |

[{filius} %+Plural %+Accusative %+Masculine .x. {filios}] |

[{filius} %+Plural %+Genitive %+Masculine .x. {filiorum}] |

[{filius} %+Plural %+Dative %+Masculine .x. {filiis}] |

[{filius} %+Plural %+Ablative %+Masculine .x. {filiis}]

5.13.5 LexC

LexC [2] source code is another, but more restricted, regular relation format
designed by Xerox. The restrictions of the format enable the XFST tool
to compile the regular relation to a finite state transducer faster and allow
better optimizations to be done on the resulting finite state transducer.

$ morpho_lat -lexc

filius:filius+Singular+Nominative+Masculine # ;

fili:filius+Singular+Vocative+Masculine # ;

filium:filius+Singular+Accusative+Masculine # ;

fili:filius+Singular+Genitive+Masculine # ;

filio:filius+Singular+Dative+Masculine # ;

filio:filius+Singular+Ablative+Masculine # ;

filii:filius+Plural+Nominative+Masculine # ;

filii:filius+Plural+Vocative+Masculine # ;

filios:filius+Plural+Accusative+Masculine # ;

filiorum:filius+Plural+Genitive+Masculine # ;

filiis:filius+Plural+Dative+Masculine # ;

filiis:filius+Plural+Ablative+Masculine # ;

141

5.13.6 SQL

SQL, Structured Query Language [1], is a popular source format for defining
databases. The first part of the generation creates a table LEXICON and
defines the types of the elements in the table. We use integers here instead
of word identifiers to identify words. The second part simply consists of
insertions of data into the table.

$ morpho_lat -sql

CREATE TABLE LEXICON

(

ID INTEGER NOT NULL,

DICTIONARY VARCHAR(50) NOT NULL,

CLASS VARCHAR(50) NOT NULL,

WORD VARCHAR(50) NOT NULL,

POS VARCHAR(50) NOT NULL);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filius’,’Singular Nominative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’fili’,’Singular Vocative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filium’,’Singular Accusative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’fili’,’Singular Genitive - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filio’,’Singular Dative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filio’,’Singular Ablative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filii’,’Plural Nominative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filii’,’Plural Vocative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filios’,’Plural Accusative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filiorum’,’Plural Genitive - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filiis’,’Plural Dative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filiis’,’Plural Ablative -Masculine’);

142

5.14 Other Commands

5.14.1 Precompiled Dictionary

When we run FM we always rebuild our dictionary, and if it is large it may
take some time. However, if we are only going to use the analyzer, there is
a shortcut. A full form lexicon, i.e. a precompiled list of word forms, can be
read with the following command.

./morpho_lat -f latin.fullform

The file latin.fullform was generated with the full form generation of
FM, i.e. with the command morpho lat -lex.

5.14.2 Print Paradigms

The paradigms of FM are printed with the -p flag. The result is similar
to generating inflection tables, but with the crucial difference that every
paradigm is only printed once and only for those paradigms that have been
defined in the command map.

5.15 The Functional Morphology API

5.15.1 General.hs

The type for word forms. The type is a list to allow variants and missing
word forms.

newtype Str = Str [String]

The type for polymorphic inflection tables.

type Table a = [(a, Str)]

The type for finite inflection functions.

type Finite a = a -> Str

The class for finite parameters.

143

class (Eq a, Show a) => Param a where

values :: [a]

value :: Int -> a

value0 :: a

prValue :: a -> String

The type for token: W for normal tokens, P for symbols and D for digits.

data Tok = W String

| P String

| D String

The attribute type for compounds.

type Attr = Int

The default attribute value (0).

noComp :: Attr

Promotes String to Str.

mkStr :: String -> Str

Sharing of Str:s, achieved by the use of a global hash table.

shareStr :: Str -> Str

Translate a Str to [String].

unStr :: Str -> [String]

Promotes [String] to Str.

strings :: [String] -> Str

Apply function to a and promote the resulting String to Str.

mkStr1 :: (a -> String) -> a -> Str

Apply function to all variants in Str.

mapStr :: (String -> String) -> Str -> Str

144

The union of two Str.

unionStr :: Str -> Str -> Str

Prepend a string to all variants in Str.

(+*) :: String -> Str -> Str

Concatenation that marks the morpheme boundaries.

(+/) :: String -> String -> String

Variants listed in a string. Translated into a list of word by the function
words.

mkStrWords :: String -> Str

Takes all but Int characters in the end of the string.

tk :: Int -> String -> String

Drops all but Int character in the end of the string.

dp :: Int -> String -> String

Gets the Int:th character from the end of String.

ch :: Int -> String -> String

Prevents duplication, e.g. "mus" +? "s" = "mus".

(+?) :: String -> String -> String

Chooses suffix (second and third String) depending on the last letter of
the first String.

ifEndThen :: (Char -> Bool) -> String ->

String -> String -> String

Conditionally drops the last letter.

dropEndIf :: (Char -> Bool) -> String -> String

Apply substitution table to string.

145

changes :: [(String, String)] -> String -> String

Like changes, but applies only to the prefix.

changePref :: [(String, String)] -> String -> String

Single word form exception.

except :: Param a => Finite a -> [(a, String)] -> Finite a

Multiple word form exception.

excepts :: Param a => Finite a -> [(a, Str)] -> Finite a

Merge two paradigm functions.

combine :: Param a => Finite a -> Finite a -> Finite a

Missing forms exception.

missing :: Param a => Finite a -> [a] -> Finite a

Only exception, for highly degenerate paradigms.

only :: Param a => Finite a -> [a] -> Finite a

Single word form variant exception.

variant :: Param a => Finite a -> [(a, String)] -> Finite a

Multiple word form variants exception.

variants :: Param a => Finite a -> [(a, Str)] -> Finite a

Missing word form.

nonExist :: Str

Filters missing forms from inflection table.

existingForms :: Table a -> Table a

Translates a finite function to a table.

146

table :: Param a => (a -> Str) -> Table a

Used to define Param instances.

enum :: (Enum a, Bounded a) => [a]

A function with the same functionality as fromEnum, but for Param.

indexVal :: (Eq a, Param a) => a -> Int

Lookup in an inflection table.

appTable :: Param a => Table a -> a -> Str

Selects the first word form in an inflection table.

firstForm :: Param a => Table a -> Str

Creates a function from list of values (sensitive to order).

giveValues :: (Eq a, Param a) => [Str] -> a -> Str

Longest common prefix for a list of strings.

longestPrefix :: [String] -> String

Collects all word forms into a Str.

formsInTable :: Table a -> Str

Apply function to all word forms in table.

mapInTable :: (String -> String) -> Table a -> Table a

147

5.15.2 Dictionary.hs

An instance of the Dict class provides information on how to construct an
entry for a given dictionary type. In particular, it associates a word class
identifier to the dictionary type.

class Param a => Dict a where

dictword :: (a -> Str) -> String

category :: (a -> Str) -> String

defaultAttr :: (a -> Str) -> Attr

attrException :: (a -> Str) -> [(a, Attr)]

The type for dictionaries.

data Dictionary = D [Entry]

The type for a dictionary entry.

type Entry = (Dictionary_Word,

Paradigm,

Category,

[Inherent],

Inflection_Table,

Extra)

The type for paradigm identifiers.

type Paradigm = String

Transforms a typed table to an untyped.

prTable :: Param a => Table a -> Table String

Removes attributes and extra information from a dictionary.

removeAttr :: Dictionary -> [EntryN]

The type for full form lexica: a list of word forms together with their
analyses and compound attributes.

type FullFormLex = [(String, [(Attr, String)])]

148

Group a dictionary into categories; reverses the entries.

classifyDict :: Dictionary -> [(Category, [Entry])]

Removes attributes and extra information from Entry.

noAttr :: Entry -> EntryN

Translates an inflection function to an Entry.

entry :: Dict a => (a -> Str) -> Entry

Translates an inflection function with inherent information to an Entry.

entryI :: Dict a => (a -> Str) -> [Inherent] -> Entry

Translates an inflection function with extra information to an Entry.

entryWithInfo :: Dict a => (a -> (Str, Str)) -> Entry

Translates an inflection function with extra information and inherent
information to an Entry.

entryWithInfoI :: Dict a => (a -> (Str, Str)) ->

[Inherent] -> Entry

Translates an inflection function with paradigm identifier to an Entry.

entryP :: Dict a => (a -> Str) -> Paradigm -> Entry

Translates an inflection function with inherent information and paradigm
identifier to an Entry.

entryIP :: Dict a => (a -> Str) ->

[Inherent] -> Paradigm -> Entry

Translates an inflection function with extra information and paradigm
identifier to an Entry.

entryWithInfoP :: Dict a => (a -> (Str, Str)) ->

Paradigm -> Entry

149

Translates an inflection function with extra information, inherent infor-
mation, and paradigm identifier to an Entry.

entryWithInfoIP :: Dict a => (a -> (Str, Str)) ->

[Inherent] -> Paradigm -> Entry

An Entry without attributes and extra information.

type EntryN = (Dictionary_Word,

Category,

[Inherent],

[(Untyped, Str)])

Creates a Dictionary.

dictionary :: [Entry] -> Dictionary

Translate a Dictionary to a list of Entry:s.

unDict :: Dictionary -> [Entry]

The number of entries in a dictionary.

size :: Dictionary -> Int

The number of word forms in a dictionary.

sizeW :: Dictionary -> Int

Concatenates two dictionaries.

unionDictionary :: Dictionary -> Dictionary -> Dictionary

Concatenates a list of Dictionaries.

unionDictionaries :: [Dictionary] -> Dictionary

An empty Dictionary.

emptyDict :: Dictionary

Translates a Dictionary to a FullFormLex.

dict2fullform :: Dictionary -> FullFormLex

A full form lexicon structured around the word identifier.

dict2idlex :: Dictionary -> FullFormLex

Performs sharing on the strings in the Dictionary.

shareDictionary :: Dictionary -> Dictionary

150

5.15.3 Print.hs

Prints word forms in Str, separated with ’/’.

prStr :: Str -> String

Similar prStr, but outputs ’*’ for missing word forms.

prAlts :: Str -> String

Creates a constant table.

consTable :: Str -> Table String

Creates an attributed constant table.

consTableW :: Str -> [(String, (Attr, Str))]

Print a show:ed inflection function to standard output.

putFun0 :: Param a => (a -> Str) -> IO ()

Print an inflection function to standard output.

putFun :: Param a => (a -> Str) -> IO ()

Translate a show:ed parameter value to one without parenthesis.

prFlat :: String -> String

Shows all values for the first parameter.

prFirstForm :: Param a => Table a -> String

Shows one value for the first parameter.

prDictForm :: Param a => Table a -> String

Another Str printing function.

prDictStr :: Str -> String

Prints a dictionary, removing the attributes.

151

prDictionary :: Dictionary -> String

Prints a dictionary in a structured format.

prNewDictionary :: Dictionary -> String

Writes a full form lexicon to handle.

prFullFormLex :: Handle -> FullFormLex -> IO ()

Prints attribute to handle.

prCompAttr :: Handle -> Attr -> IO ()

Generates GF paradigm functions.

prGFRes :: Dictionary -> String

Prints GF source code.

prGF :: Dictionary -> String

Generates XML source code.

prXML :: Dictionary -> String

Prints LexC source code.

prLEXC :: Dictionary -> String

Prints XFST source code.

prXFST :: Dictionary -> String

Prints latex tables.

prLatex :: Dictionary -> String

Prints SQL Code.

prSQL :: Dictionary -> String

152

5.15.4 Frontend.hs

The runtime system class.

class Show a => Language a where

name :: a -> String

dbaseName :: a -> String

composition :: a -> [Attr] -> Bool

env :: a -> String

paradigms :: a -> Commands

internDict :: a -> Dictionary

tokenizer :: a -> String -> [Tok]

wordGuesser :: a -> String -> [String]

The type for command maps.

type Commands = Map String ([String], [String] -> Entry)

An empty command map.

emptyC :: Commands

Inserts a command into a set of commands.

insertCommand :: (String, [String], [String] -> Entry) ->

Commands -> Commands

Constructs a command map.

mkCommands :: [(String, [String], [String] -> Entry)] ->

Commands

Creates a dictionary from the list of paradigms.

command_paradigms :: Language a => a -> Dictionary

Parses commands.

parseCommand :: Language a => a -> String -> Err Entry

Lists paradigm names.

paradigmNames :: Language a => a -> [String]

153

The number of paradigms.

paradigmCount :: Language a => a -> Int

Reading external lexicon. Creates empty lexicon if the file does not exist.

parseDict :: Language a => a -> FilePath ->

IO (Dictionary, Int)

Is input string a paradigm name?

isParadigm :: Language a => a -> String -> Bool

Reads external lexicon.

readdict :: Language a => a -> FilePath ->

IO ([Entry], Int)

Removes comments in String.

remove_comment :: String -> String

Wrapper functions for the command map.

app1 :: (String -> Entry) -> [String] -> Entry

app2 :: (String -> String -> Entry) -> [String] -> Entry

app3 :: (String -> String -> String ->

Entry) -> [String] -> Entry

app4 :: (String -> String -> String ->

String -> Entry) -> [String] -> Entry

app5 :: (String -> String -> String -> String ->

String -> Entry) -> [String] -> Entry

app6 :: (String -> String -> String -> String ->

String -> String -> Entry) -> [String] -> Entry

app7 :: (String -> String -> String -> String ->

String -> String -> String -> Entry) ->

[String] -> Entry

Prints to stderr.

prErr :: String -> IO ()

154

5.15.5 GeneralIO.hs

Outputs UTF8-encoded string.

putStrLnUTF8 :: String -> IO ()

Writes source format to file.

writeLex :: FilePath -> Dictionary -> IO ()

writeTables :: FilePath -> Dictionary -> IO ()

writeGF :: FilePath -> FilePath -> Dictionary -> IO ()

writeGFRes :: FilePath -> FilePath -> Dictionary -> IO ()

writeXML :: FilePath -> Dictionary -> IO ()

writeXFST :: FilePath -> Dictionary -> IO ()

writeLEXC :: FilePath -> Dictionary -> IO ()

writeLatex :: FilePath -> Dictionary -> IO ()

writeSQL :: FilePath -> Dictionary -> IO ()

The analysis function.

analysis :: ([Attr] -> Bool) -> String -> [[String]]

Lookup identifiers for a word form.

lookupId :: String -> [String]

The synthesiser function.

synthesiser :: Language a => a -> IO ()

The inflection mode function.

infMode :: Language a => a -> IO ()

The batch inflection mode function.

imode :: Language a => a -> IO ()

155

5.15.6 CommonMain.hs

The ’main’ function of FM.

commonMain :: Language a => a -> IO ()

A type for statistics.

data Stats = Stats {totalWords :: Int,

coveredWords :: Int}

Empty statistics.

initStats :: Stats

5.15.7 CTrie.hs

Constructs a c-trie from a file containing a full form lexicon.

buildTrie :: FilePath -> Bool -> IO ()

Constructs a C-trie from a Dictionary ADT. Note that the trie is not
handled in Haskell, it’s a global object in C.

buildTrieDict :: Dictionary -> Bool -> IO ()

buildTrieDictSynt :: Dictionary -> Bool -> IO ()

Builds an undecorated trie.

buildTrieWordlist :: [String] -> Bool -> IO ()

trie_lookup :: String -> [(Attr, String)]

Is the string a member in the trie?

isInTrie :: String -> Bool

Function for compound analysis.

decompose :: ([Attr] -> Bool) -> String -> [[(Attr, String)]]

156

Bibliography

[1] ISO/IEC 9075 Information Technology–Database Languages–SQL. 1999.

[2] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Publi-
cations, Stanford University, United States, 2003.

[3] G. Huet. A functional toolkit for morphological and phonological pro-
cessing, application to a Sanskrit tagger. J. Functional Programming,
15,4:573–614, 2005. http://yquem.inria.fr/∼huet/PUBLIC/tagger.

pdf.

[4] A. Ranta. Grammatical Framework: A Type-theoretical Grammar For-
malism. The Journal of Functional Programming, 14(2):145–189, 2004.

[5] The World Wide Web Consortium. Extensible Markup Language
(XML). http://www.w3.org/XML/, 2000.

157

158

Part III

Extract

159

Chapter 6

Morphological Lexicon

Extraction from Raw Text

Data

Authors:
Markus Forsberg, Harald Hammarström and Aarne Ranta

{markus,harald2,aarne}@cs.chalmers.se
Department of Computing Science
Chalmers University of Technology

Sweden

Paper published:
FinTAL 2006, LNAI 4139, pp.488-499

abstract

The tool extract enables the automatic extraction of lemma-paradigm pairs
from raw text data. The tool uses search patterns that consist of regular
expressions and propositional logic. These search patterns define sufficient
conditions for including lemma-paradigm pairs in the lexicon, on the basis
of word forms occurring in the data. This paper explains the search pattern
syntax of extract as well as the search algorithm, and discusses the design
of search patterns from the recall and precision point of view.

The extract tool was developed for morphologies defined in the Func-
tional Morphology tool [1], but it is systems that implement a word-and-
paradigm description of a morphology.

161

The usefulness of the tool is demonstrated by a case study on the Cana-
dian Hansards Corpus of French. The result is evaluated in terms of precision
of the extracted lemmas and statistics on coverage and rule productiveness.
Competitive extraction figures show that human-written rules in a tailored
tool is a time-efficient approach to the task at hand.

6.1 Introduction

A wide-coverage morphological lexicon is a key part of any information re-
trieval system, machine translation engine and of a variety of other Natural
Language Processing applications. The demand is high not only for low-
density languages, since existing lexica for major languages are often not
publicly available. Moreover, even if they were, running text – especially
newspapers and technical texts – will always contain new, not necessarily
hapax, words.

Manual development of a full-scale lexicon is a time-consuming task, so
it is natural to investigate how the lexicon development can be automated.
The situation is usually such that access to large collections of raw language
data is cheap, so cheap that it is tempting to look at ways to exploit the raw
data to obtain the sought after high-quality morphological lexicon. Clearly,
attempts to fully automatize the process (e.g [2, 3] – most other systems
for unsupervised learning of morphology cannot be used directly to build
a lexicon) do not reach the kind of quality we are generally interested in.
However, instead of using humans for supervised learning of lexicon extrac-
tion in some form, we believe there is a more advantageous placement of
the human role. With a suitable tool, humans can use their knowledge to
guide a computerized extraction from raw text, with comparatively little
time spent.

To be more specific, we intend to show that a profitable role for the
human is to write intelligent extraction rules. The extract tool has been
developed with this in mind. The idea behind extract is simple: start with
a large-sized corpus and a description of the word forms in the paradigms
with the varying parts, which we refer to as technical stems, represented
with variables. In the tool’s syntax, we could describe the first declension
noun of Swedish with the following definition.

paradigm decl1 =

x+"a"

{ x+"a" & x+"as" & x+"an" & x+"ans" &

x+"or" & x+"ors" & x+"orna & x+"ornas" } ;

162

〈Def 〉 ::= paradigm 〈Name 〉 〈VarDef 〉 =
〈Head 〉 { 〈Logic 〉 }

| regexp 〈Name 〉 = 〈Reg 〉

Figure 6.1: Regexp and paradigm definitions

Given that all forms in the curly brackets, called the constraint, are found
for some prefix x, the tool outputs the head x+"a" tagged with the name
of the paradigm. E.g., if these forms exist in the text data: ärta, ärtas,
ärtan, ärtans, ärtor, ärtors, ärtorna and ärtornas, the tool will output
decl1 ärta. Given that we have the lemma and the paradigm class label,
it is a relatively simple task to generate all word forms.

The paradigm definition has a major drawback: very few lemmas appear
in all word forms. It could in fact be relaxed to increase recall without sacri-
ficing precision: to identify a Swedish word as a noun of the first declension
it is often enough to find one instance of the four singular forms and one of
the four plural forms. The tool offers a solution by supporting propositional
logic in the constraint, further described in Sec. 6.2.1. Various issues of the
extraction process are discussed in Sec. 6.3.

Another problem with the given definition is the lack of control over
what the variable x might be. Sec. 6.2.2 describes how the tool improves
this situation by allowing variables to be associated with regular expressions.

The stems of first declension nouns in Swedish are the same for all word
forms, but this is not the case for many paradigms, e.g. German nouns with
umlaut. Sec. 6.2.3 presents the tool’s use of multiple variables as a solution
to this problem.

6.2 Paradigm File Format

A paradigm file consists of two kinds of definitions: regexp and paradigm.
The syntax is given in Fig. 6.1.

A regexp definition associates a name (Name) with a regular expression
(Reg). A paradigm definition consists of a name (Name), a set of variable-
regular expression associations (VarDef), a set of output constituents (Head)
and a constraint (Logic).

The basic unit in Head and Logic is a pattern that describes a word
form. A pattern consists of a sequence of variables and string literals glued
together with the ’+’ operator. An example of a pattern given previously

163

〈Logic 〉 ::= 〈Logic 〉 & 〈Logic 〉
| 〈Logic 〉 | 〈Logic 〉
| 〈Logic 〉
| ~ 〈Logic 〉
| 〈Pattern 〉
| (〈Logic 〉)

Figure 6.2: Propositional logic grammar

was x+"a".
Both definitions will be discussed in detail in the following sections.

6.2.1 Propositional Logic

Propositional logic appears in the constraint to enable a more fine-grained
description of what word forms the tool should look for. The basic unit
is a pattern, corresponding to a word form, which is combined with the
operators & (and), | (or), and ~ (not).

The syntax for propositional logic is given in Fig. 6.2, where Pattern
refers to one word form.

The addition of new operators allow the paradigm in Sec. 6.1 to be
rewritten with disjunction to reflect that it is sufficient to find one singular
and one plural word form.

paradigm decl1 =

x+"a"

{ (x+"a" | x+"as" | x+"an" | x+"ans") &

(x+"or" | x+"ors" |x+"orna | x+"ornas") } ;

6.2.2 Regular Expressions

It was mentioned in Sec. 6.1 that control over the variable part of a paradigm
description was desired. The solution provided by the tool is to enable the
user to associate every variable with a regular expression. The association
dictates which (sub-)strings a variable can match. An unannotated variable
can match any string, i.e. its regular expression is Kleene star over any
symbol.

As a simple example, consider German, where nouns always start with
an uppercase letter. This can be expressed as follows.

regexp UpperWord = upper letter*;

paradigm n [x:UpperWord] = ... ;

164

〈Reg 〉 ::= 〈Reg 〉 | 〈Reg 〉
| 〈Reg 〉 − 〈Reg 〉
| 〈Reg 〉 〈Reg 〉
| 〈Reg 〉 *
| 〈Reg 〉 +
| 〈Reg 〉 ?
| eps

| 〈Char 〉
| digit

| letter

| upper

| lower

| char

| 〈String 〉
| (〈Reg 〉)

Figure 6.3: Regular expression

The syntax of the tool’s regular expressions is given in Fig. 6.3, with the
normal connectives: union, concatenation, set minus, Kleene star, Kleene
plus and optionality. eps refers to the empty string, digit to 0−9, letter to an
alphabetic Unicode character, lower and upper to a lowercase respectively an
uppercase letter. char refers to any character. A regular expression can also
contain a double-quoted string, which is interpreted as the concatenation of
the characters in the string.

6.2.3 Multiple Variables

Not all paradigm definitions are as neat as the initial example — phenomena
like umlaut require an increased control over the variable part. The solution
the tool provides is to allow multiple variables, i.e. a pattern may contain
more than one variable. This is best explained with an example, where two
German noun paradigms are described, both with umlaut. The change of
the stem vowel is captured by introducing two variables and by letting the
stem vowel be a constant string.

regexp Consonant = ... ;

regexp Pre = upper letter*;

regexp Aft = Consonant+ ;

165

paradigm n2 [F:Pre, ll:Aft] =

F+"a"+ll

{ F+"a"+ll & F+"ä"+ll+"e" } ;

paradigm n3 [W:Pre, rt:Aft] =

W+"o"+rt

{ W+"o"+rt & W+"ö"+rt+"er" } ;

The use of variables may reduce the time-performance of the tool, since
every possible variable binding is considered. The use of multiple variables
should be moderate, and the variables should be restricted as much as pos-
sible by their regular expression association to reduce the search space.

A variable does not need to occur in every pattern, but the tool only
performs an initial match with patterns containing all variables. The reason
for this is efficiency — the tool only considers one word at the time, and
if the word matches one of the patterns, it searches for all other patterns
with the variables instantiated by the initial match. For obvious reasons, an
initial match is never performed under a negation, since this would imply
that the tool searches for something it does not want to find.

It is allowed to have repeated variables, i.e. non-linear patterns, which is
equivalent to back reference in the programming language Perl. An example
where a sequence of bits is reduplicated is given. This language is known to
be non-context-free [4].

regexp ABs = (0|1)*;

paradigm reduplication [x:ABs] =

x+x { x+x } ;

6.2.4 Multiple Arguments

The head of a paradigm definition may have multiple arguments to support
more abstract paradigms. An example is Swedish nouns, where many nouns
can be correctly classified by just detecting the word forms in nominative
singular and nominative plural. An example is given below, where the first
and second declension is handled with the same paradigm function, where
the head consists of two output forms. The constraints are omitted.

paradigm regNoun = paradigm regNoun =

flick+"a" flick+"or" pojk+"e" pojk+"ar"

{...} ; {...} ;

166

6.2.5 The Algorithm

The underlying algorithm of the tool is presented in pseudo-code notation.

let L be the empty lexicon.

let P be the set of extraction paradigms.

let W be all word types in the corpus.

for each w : W

for each p : P

for each constraint C with which w matches p

if W satisfies C with the result H,

add H to L

endif

end

end

end

The algorithm is initialized by reading the word types of the corpus into
an array W . A word w matches a paradigm p, if it can match any of the
patterns in the paradigm’s constraint that contains all variables occurring in
the constraint. The result of a successful match is an instantiated constraint
C, i.e. a logical formula with words as atomic propositions. The corpus W
satisfies a constraint C if the formula is true, where the truth of an atomic
proposition a means that the word a occurs in W .

6.2.6 The Performance of the Tool

The extraction tool is implemented in Haskell. It is available as an open-
source free software 1. A typical example of using the tool, the experiment
reported in Sec. 6.4 extracted a lexicon of 19,295 lemmas from a corpus of
66,853 word types, by using 43 paradigms. The execution time was 11min
23s on a computer with an AMD 3600+ CPU and 1 GB memory, running
Kubuntu Linux 5.10. The memory consumption was 34 MB.

6.3 The Art of Extraction

The constraint of a paradigm describes a sub-paradigm, a subset of the
word forms, considered to be evidence enough to be able to judge that
the lemmas in the head are in that paradigm class. The identification of
appropriate sub-paradigms requires good insights into the target language

1Extract homepage: http://www.cs.chalmers.se/∼markus/extract/

167

and intuitions about the distributions of the word forms. However, these
insights and intuitions may be acquired while using the tool by trial and
error.

Lexicon extraction is a balance between precision, i.e. the percentage
of the extracted lemmas that are correctly classified, and recall, i.e. the
percentage of the lemmas in the text data that are extracted. Precision,
however, is by far the most important, since poor recall can be compensated
with more text data, but poor precision requires more human labor.

How about extracting the paradigm descriptions from a set of paradigms
automatically? We use the term minimum-size sub-paradigm to describe the
minimum-sized set of word forms needed to uniquely identify a paradigm
P . More formally, a minimum-sized sub-paradigm is a minimum-size set
of word forms P ′ ⊆ P such that for any other paradigm Q, P ′ 6⊆ Q. It
turns out that the problem of finding the minimum-size sub-paradigm for a
paradigm P is NP-complete2. Furthermore, the minimum-size sub-paradigm
need not be of high practical interest since it may contain forms that are
very uncommon in actual usage. Therefore there is all the more reason to
let a human choose which forms to require and also weigh in which forms
are likely to be common or uncommon in actual usage.

Also, some natural languages have overshadowed paradigms, i.e. paradigms
where the form of one paradigm is a subset of another paradigm. For exam-
ple, in Latin some noun paradigms are overshadowed by adjective paradigms.
The distinction of Latin nouns and adjectives can be done through the use
of negation where a second declension noun paradigm is defined by also stat-
ing that the feminine endings, which would indicate that it is an adjective,
should not be present. This definition, however, misses e.g. filius where the
feminine parallel filia does exist.

paradigm decl2fungus =

fung++"us"

{ fung+"us" & fung+"i" & ~(fung+"a" | fung+"ae") };

Negation is similar with negation as failure in Prolog, with the same
problems associated with it. The main problem is that negation rests on
the absence, not the presence, of information, which in turn means that
the extraction process with negation is non-monotonic: the use of a larger
corpus may lead to an extracted lexicon which is smaller. A worst-case
scenario is a misspelt or foreign word that, by negation, removes large parts
of the correctly classified lemmas in the extracted lexicon.

2The minimum-size sub-paradigm problem (MSS) is equivalent to the well-known set-
cover problem. Proof omitted.

168

In most cases, a better alternative to negation is a more careful use of
regular expressions, and in cases like Latin nouns, a rudimentary POS tagger
that resolves the POS ambiguity may outperform negation.

6.3.1 Manual Verification

Almost all corpora have misspellings which may lead to false conclusions.
Added to that are word forms that incidentally coincide. One possible so-
lution to handle misspellings is to only consider words that occur at some
frequency. However, that would remove a lot of unusual but correctly spelled
words (to an extent which is unacceptable). Coincidences are in practice im-
possible to avoid.

Misspellings, foreign words and coincidences are the reason why man-
ual verification of the extracted lexicon cannot be circumvented even with
”perfect” paradigm definitions. However, browse-filtering a high-precision
extracted lexicon requires much less time than building the same lexicon by
hand. Also, nothing in principle prohibits statistical techniques to be ap-
plied in collaboration here. For instance, one can sort the extracted lemmas
heuristically according to how many forms and with what frequencies they
occur (cf. Sec. 6.5). In general, this is productive for poly-occurring lemmas
but helps little for the (typically many) hapax lemmas.

6.4 Experiments

We will evaluate our proposed extraction technique with a study of real-
world extraction on the Hansards corpus of Canadian French [5]. All words
were manually annotated to enable a thorough evaluation. However, the
intended practical usage of the extraction tool is to simply run the tool on
the raw text data and eye-browse the output list for erroneous extractions.

The corpus consisted of approximately 15 million running tokens of 66853
types. From these 66853 types we manually removed all junk – foreign
words, proper names, misspellings, numeric expressions, abbreviations as
well as pronouns, prepositions, interjections and non-derived adverbs – so
that a 49477 true lexical items remained. 27681 lemmas account for the
49477 forms, where verb lemmas tended to occur in more forms than noun
and adjective lemmas. Of course, not all these lemmas occurred in such
forms that their morphological class could be recognized by their endings
alone. Many lemmas occur in only one form – usually not enough to infer its
morphological class – unless, as is often the case, they contain a derivational
morpheme which, together with its inflectional ending, does suffice. For

169

Tokens 15 000 000
Types 66 853
Non-junk types 49 477
Lemmas 27 681

Figure 6.4: Statistics on the corpus of Canadian French Hansards used in
the experiment

example, a single occurrence of a word ending in -e is hardly conclusive,
whereas one ending in -tude is almost certainly a feminine noun with a plural
in -s. Nouns without derivational ending cannot be reliably distinguished
from adjectives even when they occur in all their forms, i.e. both the singular
and plural. The table in Fig. 6.4 summarizes these data.

We now turn to the question of precision and coverage of rule-extraction
of the targeted 27 681 lemmas. We quickly devised a set of 43 rules to ex-
tract French nouns (18 rules), verbs (7 rules) and adjectives (18 rules). The
verb-rules aimed at -ir and -er verbs by requiring salient forms for these
paradigms, whereas the noun- and adjective rules make heavy use of regu-
larities in derivational morphology to overcome the problems of overlapping
forms. Two typical example groups are given below:

regexp NOTi = char* (char-"i") ;

paradigm Ver [regard:NOTi]

= regard+"er"

{regard+"e" &

(regard+"é" | regard+"ée" |

regard+"ez" | regard+"ont" |

regard+"ons" | regard+"a")} ;

paradigm Aif

= sport+"if"

{sport+"if" | sport+"ifs" |

sport+"ive" | sport+"ives"} ;

The results of the extraction are shown in Fig. 6.5. If possible, one would
like to know where one’s false positives come from – sloppy rules or noisy
data? At least one would like to know roughly what to expect. Since we
have already annotated this corpus we can give some indicative quantitative
data. To assess the impact of misspellings and foreign words – the two main
sources for spurious extractions – we show the results of the same extraction

170

Extr. All Extr. Non-Junk

False Positives 2 031 664
Correctly Indentified 17 264 17 264

19 295 17 928

Precision 89.5% 96.3%

Figure 6.5: Extraction results on raw text vs. text with junk removed first.

performed on the corpus with all junk removed beforehand. As expected,
false positives increase when junk is added. To be more precise, we get a lot
of spurious verbs from English words and proper names in -er (e.g farmer,
worchester) as well as many nouns, whose identification requires only one
form, from misspellings (e.g qestion). Non-junk-related cases of confusion
worth mentioning are nouns in -ment – the same ending as adverbs – and
verbs which have spelling changes (manger-mangeait, appeler-appelle etc).

The rule productiveness, i.e a rule on average catches 17264/43 ≈ 401,
must be considered very high. As for coverage, we can see that our rules
catch the lions share of the available lemmas, 17 264 out of 27 681 (again,
not all of which occur in enough forms to predict their morphological class),
in the corpus. This is relevant because even if we can always find more raw
text cheaply, we want our rules to make maximal use of whatever is available
and more raw data is of little help unless we can actually extract a lot of its
lemmas with reasonable effort. It is also relevant because a precision figure
without a rule productiveness figure is meaningless. It would be easy to tailor
43 rules to perfect precision, perhaps catching one lemma per rule, so what
we show is that precision and rule productiveness can be simultaneously
high. In general it is of course up to the user how much of the raw-data
lemmas to sacrifice for precision and rule-writing effort, which are usually
more important objectives.

6.5 Related Work

The most important work dealing with the very same problem as addressed
here, i.e. extracting a morphological lexicon given a morphological descrip-
tion, is the study of the acquisition of French verbs and adjectives in Clément
et al. [6]. Likewise, they start from an existing inflection engine and exploit
the fact that a new lemma can be inferred with high probability if it occurs
in raw text in predictable morphological form(s). Their algorithm ranks

171

hypothetical lemmas based on the frequency of occurrence of its (hypothet-
ical) forms as well as part-of-speech information signalled from surrounding
closed-class words. They do not make use of human-written rules but reserve
an unclear, yet crucial, role for the human to hand-validate parts of output
and then let the algorithm re-iterate. Given the many differences, the results
cannot be compared directly to ours but rather illustrate a complementary
technique.

Tested on Russian and Croat, Oliver et al. [7, 8, Ch. 3] describe a
lexicon extraction strategy very similar to ours. In contrast to human-made
rules, they have rules extracted from an existing (part of) a morphological
lexicon and use the number of inflected forms found to heuristically choose
between multiple lemma-generating rules (additionally also querying the
Internet for existence of forms). The resulting rules appear not at all as
sharp as hand-made rules with built-in human knowledge of the paradigms
involved and their respective frequency (the latter being crucial for recall).
Also, in comparison, our search engine is much more powerful and allows
for greater flexibility and user convenience.

For the low-density language Assamese, Sharma et al. [3] report an ex-
periment to induce both morphology, i.e. the set of paradigms, and a mor-
phological lexicon at the same time. Their method is based on segmentation
and alignment using string counts only – involving no human annotation or
intervention inside the algorithm. It is difficult to assess the strength of their
acquired lexicon as it is intertwined with induction of the morphology itself.
We feel that inducing morphology and extracting a morphological lexicon
should be performed and evaluated separately. Many other attempts to in-
duce morphology, usually with some human tweaking, from raw corpus data
(notably Goldsmith [9]), do not aim at lexicon extraction in their current
form.

There is a body of work on inducing verb subcategorization information
from raw or tagged text (see [10, 11, 12] and references therein). However,
the parallel between subcategorization frame and morphological class is only
lax. The latter is a simple mapping from word forms to a paradigm mem-
bership, whereas in verb subcategorization one also has the onus discerning
which parts of a sentence are relevant to a certain verb. Moreover, it is far
from clear that verb subcategorization comes in well-defined paradigms –
instead the goal may be to reduce the amount of parse trees in a parser that
uses the extracted subcategorization constraints.

172

6.6 Conclusions and Further Work

We have shown that building a morphological lexicon requires relatively lit-
tle human work. Given a morphological description, typically an inflection
engine and a description of the closed word classes, such as pronouns and
prepositions, and access to raw text data, a human with knowledge of the
language can use a simple but versatile tool that exploits word forms alone.
It remains to be seen to what extent syntactic information, e.g part-of-speech
information, can further enhance the performance. A more open question is
whether the suggested approach can be generalized to collect linguistic infor-
mation of other kinds than morphology, such as e.g verb subcategorization
frames.

Bibliography

[1] Forsberg, M., Ranta, A.: Functional Morphology. Proceedings of
the Ninth ACM SIGPLAN International Conference of Functional Pro-
gramming, Snowbird, Utah (2004) 213–223

[2] Creutz, M., Lagus, K.: Inducing the morphological lexicon of a natural
language from unannotated text. In: Proceedings of the International
and Interdisciplinary Conference on Adaptive Knowledge Representa-
tion and Reasoning (AKRR ’05), 15-17 June, Espoo, Finland, Espoo
(2005) 106–113

[3] Utpal Sharma, J.K., Das, R.: Unsupervised learning of morphology
for building lexicon for a highly inflectional language. In: Proceedings
of the 6th Workshop of the ACL Special Interest Group in Computa-
tional Phonology (SIGPHON), Philadelphia, July 2002, Association for
Computational Linguistics (2002) 1–10

[4] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley (1979)

[5] Germann, U.: Corpus of hansards of the 36th parliament of canada.
Provided by the Natural Language Group of the Universtity of South-
ern California Information Sciences Institute. Downloadable at http:

//www.isi.edu/natural-language/download/hansard/, accessed 1
Nov 2005. (2003) 15 million words.

173

[6] Clément, L., Sagot, B., Lang, B.: Morphology based automatic acqui-
sition of large-coverage lexica. In: Proc. of LREC’04, Lisboa, Portugal
(2004) 1841–1844

[7] Oliver, A., Tadić, M.: Enlarging the croatian morphological lexicon by
automatic lexical acquisition from raw corpora. In: Proc. of LREC’04,
Lisboa, Portugal (2004) 1259–1262

[8] Oliver, A.: Adquisició d’informació lèxica i morfosintàctica a partir de
corpus sense anotar: aplicació al rus i al croat. PhD thesis, Universitat
de Barcelona (2004)

[9] Goldsmith, J.: Unsupervised learning of the morphology of natural
language. Computational Linguistics 27(2) (2001) 153–198

[10] Kermanidis, K.L., Fakotakis, N., Kokkinakis, G.: Automatic acquisi-
tion of verb subcategorization information by exploiting minimal lin-
guistic resources. International Journal of Corpus Linguistics 9(1)
(2004) 1–28

[11] Faure, D., Nédellec, C.: Asium: Learning subcategorization frames
and restrictions of selection. In Kodratoff, Y., ed.: 10th Conference on
Machine Learning (ECML 98) – Workshop on Text Mining, Chemnitz,
Germany, Avril 1998. Springer-Verlag, Berlin (1998)

[12] Gamallo, P., Agustini, A., Lopes, G.P.: Learning subcategorisation
information to model a grammar with ”co-restrictions”. Traitement
Automatique des Langues 44(1) (2003) 93–177

174

Chapter 7

The Extract Tool

Author:
Markus Forsberg

Department of Computing Science
Chalmers University of Technology
and the University of Gothenburg

markus@cs.chalmers.se

Paper published:
Technical Report no. 2007-10 in Computing Science at Chalmers

University of Technology and Göteborg University

7.1 Introduction

This technical report describes Extract v2.0, a tool for extracting linguistic
information from raw text data, in particular inflectional information on
words, based on the word forms appearing in the text data. This document
is a revision of the Extract manual describing Extract v1.0, a previous version
of the tool [1]. The main differences between v1.0 and v2.0 are the addition of
Constraint Grammar together with a new data format, and an upgrade of the
regular expression engine. The new engine has changed the semantics of the
regular expressions: letter, upper, and lower no longer refer to Unicode
letters, but to English letters. However, this small loss of functionality is
well compensated by the improved efficiency.

The input of Extract is a file containing a, possibly unannotated, corpus
and a file containing Extract rules. Each rule provides a search template
for some linguistic information, such as regular nouns of English. If a rule’s

175

search template is applicable to a set of word forms in the text data then
the tool outputs the head of the rule. The head of the rule specifies the rule
identifier and the output word forms.

The tool’s output is a list of analyses, each analysis consists of a sequence
of words annotated with an identifier. The identifier states some linguistic
information, e.g. regNoun hat may encode that the word hat is a regular
noun, and v2 eat may encode that eat is a transitive verb.

The previous version of the tool viewed the input data as a set of words
with no contextual information. The focus was solely on annotating words
with paradigm identifiers, hence the rules were marked with the keyword
paradigm. The new version of Extract, presented in this document, allows
contextual information in the rules, expressed with a variant of the Con-
straint Grammar formalism [3]. This addition allows more involved linguis-
tic information to be extracted, such as subcategorization frames for verbs.
This change is reflected through the change of the keyword paradigm to the
more generic keyword rule. The old keyword is still usable for backward
compatibility reasons.

7.2 Lexicon Extraction

We start our discussion with lexicon extraction — how citation forms marked
with inflectional information can be extracted from a corpus. We will
present our tool incrementally, trying to motivate its different features by
presenting problems that need to be resolved.

Citation forms, or dictionary forms, are those word forms typically found
in a normal dictionary. They represent a word, or a word’s inflection table,
and are usually the word forms that are the most unmarked, i.e. perceived
as most neutral, or the most characteristic.

Paradigms are abstractions from inflection tables. A paradigm identifier
together with the citation forms is enough to produce the complete inflection
table of a word.

The objective is to extract citation forms annotated with identifiers.
A first approach is to search for all word forms of a paradigm, where the

stem is replaced with a variable. We then traverse the input data searching
for instantiations of the variable. This idea is illustrated in the syntax of
Extract with the paradigm of Swedish first declension noun as example.

176

rule decl1 =

x+"a"

{ x+"a" & x+"as" & x+"an" & x+"ans" &

x+"or" & x+"ors" & x+"orna" & x+"ornas" } ;

The rules of Extract consists of an identifier, a body and a head. The
body consists of a search template inside curly brackets. Given that all
word forms are found in the search template for some string x, then the
head x+"a" will be output tagged with the identifier decl1.

Stated more concretely, if we have the inflection table of the Swedish
word smula (Eng. ’crumb’) in our input data, that is, the word forms smula,
smulas, smulan, smulans, smulor, smulors, smulorna and smulornas, then
the output would be decl1 smula.

If the rule decl1 is defined in a file rules, and if we collect some Swedish
text and put it in a file Swedish text, then Extract is runnable with those
files as arguments (see Fig. 7.1). Two additional flags are supplied, -u,
for no duplicates, and -utf8, for UTF-8 encoding. The text we are us-
ing in this example is the complete set of word forms for the words smula
(Eng. ’crumb’), människa (Eng. ’human’) and flicka (Eng. ’girl’), all first
declension nouns.

The result of the run is, as expected, the three words in the input data.

This looks straightforward enough, but unfortunately, words in a lan-
guage with non-trivial morphology, such as Swedish, rarely occur in all
word forms. Furthermore, it is often difficult to select a subset of word
forms that are the most representative for a particular paradigm, if at all
possible. For example, in the rule decl1, it does not matter if a word form
is in the nominative or genitive case, since the case inflection is the same
for all declensions. But, restricting the search to just one of the cases would
be completely arbitrary. The tool supports propositional logic in the con-
straints to allow more fine-grained descriptions, such as using disjunction for
the case distinction. The use of propositional logic in Extract is described
in more detail in Sec. 7.2.1.

In the rule decl1, there is no control over which substrings may be
associated to the variable x. We may, for example, want to state that
x should at least be monosyllabic to avoid spurious outputs. Sec. 7.2.2
describes how the tool improves this situation by allowing variables to be
associated with a regular expression.

The stem in rule decl1 is the same for all word forms. This is not the
case for many paradigms, such as paradigms with umlaut. In Sec. 7.2.3 we
describes how such paradigms can be defined by the use of multiple variables.

177

$ extract -u -utf8 rules Swedish_text

**

* Lexicon Extraction *

* with *

* Constraint Grammar *

**

* (c) Markus Forsberg & Aarne Ranta 2007 *

* under GNU General Public License. *

**

1 rule read from ’rules’.

Reading raw text data from ’Swedish_text’...

decl1 flicka

decl1 människa

decl1 smula

Unique tokens : 24

Corpus Usage : 100.00%

Words Extracted : 3

Figure 7.1: Example run

178

〈Logic 〉 ::= 〈Logic 〉 & 〈Logic 〉
| 〈Logic 〉 | 〈Logic 〉
| 〈Logic 〉
| ~ 〈Logic 〉
| 〈Pattern 〉
| (〈Logic 〉)

Figure 7.2: Propositional logic

7.2.1 Propositional Logic

Propositional logic is used in the body of a rule to enable a more fine-
grained description of which word forms the tool should look for. The basic
unit is a pattern, corresponding to a word form, which are the atoms of a
propositional logic formula. The formula is referred to as a search template.
A formula is built with three connectives with their conventional meanings:
conjunction (&), disjunction (|) and negation (~). The syntax is given in
Fig. 7.2, without precedence and associativity information. For a complete
reference, see Sec. 7.10.

Note that negation in a search template is true when no counter-example
is found, i.e. it is negation as failure. We try to prove p, and when we fail,
we conclude ~p. The use of negation in lexicon extraction makes it non-
monotonic — the addition of more data may lead to a smaller result set.

The rule in Sec. 7.2 can be rewritten with propositional logic to reflect
that it is sufficient to find a word form either in the nominative or genitive
case by the use of the disjunctive operator.

rule decl1 =

x+"a"

{(x+"a" | x+"an" | x+"or" | x+"orna") &

(x+"as" | x+"ans" | x+"ors" | x+"ornas")} ;

The word forms in the head are not necessary in the input data, they
may be constructed from the instantiated variables and constant strings.

7.2.2 Regular Expressions

In Sec. 7.2 we mentioned that it is necessary to increase the control over what
substrings a rule’s variables may be associated with — allowing a variable
to be associated to any substring may seriously degrade the performance of
the tool. For example, in Swedish it is necessary to require that the variable

179

corresponding to the stem contains, at least, one vowel to avoid many false
positives.

The solution Extract provides is to enable variables to be associated
to regular expressions describing which strings the variable can match. An
unannotated variable matches any string, i.e. its regular expression is Kleene
star over all characters.

Let us define the stems of German nouns, exemplified with the rule noun.
A German noun begins with an uppercase letter, which we express easily
with a regular expression. In this example, it is necessary that the word
forms in the rule are capitalized to avoid capturing verbs.

regexp GermanUpper = "Ä" | "Ü" | "Ö" | "ß" | upper ;

regexp GermanLower = "ä" | "ü" | "ö" | lower ;

regexp UpperWord = GermanUpper GermanLower*;

rule noun [x:UpperWord] =

{ x+"e" & x+"en" } ;

The syntax of the tool’s regular expression is given in Fig. 7.3, with the
normal connectives: union, concatenation, set minus, Kleene’s star, Kleene’s
plus and optionality. eps refers to the empty string, digit to 0− 9, letter to
an alphabetic character (a-z, A-Z), lower and upper to lowercase (a-z) and
uppercase (A-Z), and char to any character. A regular expression can also
contain a double quoted string, which is interpreted as the concatenation of
the characters in the string.

7.2.3 Multiple Variables

Not all paradigms are as neat as the initial example — phenomena like
umlaut require increased control over the variable part. The solution the
tool provides is to allow multiple variables, i.e. that a pattern can have more
than one variable. This is best explained with an example, here with the
rules of two German nouns.

regexp GermanUpper = "Ä" | "Ü" | "Ö" | "ß" | upper ;

regexp GermanLower = "ä" | "ü" | "ö" | lower ;

regexp Pre = GermanUpper GermanLower ;

regexp Whatever = GermanLower* ;

rule n2 [F:Pre, ll:Whatever] =

F+"a"+ll

{F+"a"+ll & F+"ä"+ll+"e"} ;

180

〈Reg 〉 ::= 〈Reg 〉 | 〈Reg 〉
| 〈Reg 〉 − 〈Reg 〉
| 〈Reg 〉 〈Reg 〉
| 〈Reg 〉 *
| 〈Reg 〉 +
| 〈Reg 〉 ?
| eps

| 〈Char 〉
| digit

| letter

| upper

| lower

| char

| 〈String 〉
| (〈Reg 〉)

Figure 7.3: Regular expression syntax

rule n3 [W:Pre, rt:Whatever] =

W+"o"+rt

{W+"o"+rt & W+"ö"+rt+"er"} ;

The use of multiple variables did previously reduce the performance of
the tool. This is no longer true in Extract v2.0, as long as no back reference
is used, due to a new regular expression back end.

It is not required that all variables occur in every pattern, but the tool
performs an initial match only on patterns that contains all variables. The
reason for this is efficiency — the tool only considers one word at a time,
and if the word matches one of the patterns, it searches for all other patterns
with the variables instantiated by the initial match. For obvious reasons,
an initial match is never performed under a negation (this would imply that
the tool searches for something it does not want to find!).

7.2.4 Multiple Output Patterns

The head of a rule may have multiple output patterns, which support more
abstract rules. An example is Swedish nouns, where many nouns can be
correctly classified by just analyzing the word forms in nominative singular
and nominative plural. The first and second declensions are handled with
the same paradigm function, and the head consists of two output patterns.
The constraints are omitted.

181

rule regNoun =

flick+"a" flick+"or"

{...} ;

rule regNoun =

pojk+"e" pojk+"ar"

{...} ;

7.3 Structured Input Data

The input data of Extract v2.0 can either be raw text data or structured
data. Structured data consists of a list of sequences of tokens, chunks,
where chunks correspond to a meaningful context. A token is a word form
associated with a list of terms, referred to as the ambiguity class. A term is a
non-atomic structured information unit, consisting of labels and applications
of labels. Here is an example of two chunks: the first one consisting of two
unambiguous tokens, and the second one of four tokens, two unambiguous
tokens, one ambiguous (sticka), and one token without analysis (fingret).

{ ("hej",in)

("!",spec) }

{ ("sticka",nn sg indef nom u|vb inf aktiv|vb imper)

("i",pr)

("fingret",)

(".",spec) }

A chunk may be a sentence, a phrase or some other appropriate unit.
Raw text data is also divided into chunks, where the dividers are major
punctuations. Although a naive approach, it works quite well, since the
garbage generated by, e.g. abbreviations, does not normally give rise to any
spurious analyses.

A chunk is used to generate the context of a token, which can be referred
to with Constraint Grammar (CG) constructs, explained Sec. 7.4. If no CG
constructs appear in any rule, then the chunks are left unused, and the tool
acts in the same manner as before.

A morphological lexicon typically includes more information about the
word forms than just part of speech, e.g. inflectional parameters, such as
number or case, and inherent parameters, such as gender. Because of this,
it is natural to allow non-atomic class labels that can be partially specified.
This is done by a simple term language. When we refer to non-atomic class
labels, we can use a don’t care symbol to state that a part of a class label
is irrelevant.

182

If a lexical resource in FM is available, then structured input data can
be produced with the following command. We use the FM implementation
of Latin in this example to produce our structured data.

$ cat raw_text_data.txt | ./morpho_lat -pos > structured_data.txt

This produces a file structured data.txt, consisting of a sequence of
chunks, where the tokens have been annotated with the analyses provided
by the FM implementation.

7.4 Constraint Grammar

7.4.1 Introduction to Constraint Grammar

Constraint grammar (CG) [3] [4] was first introduced by F. Karlsson, pre-
sented as a facility for performing disambiguation and light parsing. Karls-
son’s Constraint Grammar framework assumes total knowledge, i.e. that all
possible analyses of a word is already known, and the objective of a Con-
straint Grammar is to reduce ambiguity. Yet another assumption, related
to total knowledge, is the Sherlock Holmes assumption, stating that if we
remove all possible analyses except one, then that one must be the correct
one, no matter how improbable.

The input word forms of a CG have an ambiguity class associated to
them. The ambiguity classes consist of lists of readings, and the goal of the
rules of a CG is to reduce these ambiguity classes.

A CG rule consists of a domain, a target, an operator and a context.
The domain provides a typing of the rule, declaring which of the tokens

that are affected. For example, @w declares that all tokens are affected.
The target declares a result of the rule, its reading, and together with the
operator of the rule, defines the outcome of the rule if the input word form
satisfies the rule’s context.

Two examples are taken from F. Karlsson [3]. The first rule states that
for any word (the domain @w) preceded by a word with the reading TO (the
context), then the target VFIN is discarded (stated by the operator =0). The
second rule contains a operator =!, stating that the target reading "<REL>"

is unambiguous, if the input word form that (the domain), if it is preceded
by NOMHEAD and followed by VFIN.

1. (@w=0 VFIN (-1 TO))

2. ("that" =! "<REL>" (-1 NOMHEAD) (1 VFIN))

183

7.4.2 Constraint Grammar in Extract Rules

The total knowledge assumption is a reasonable assumption with a large
dictionary, but in a lexicon extraction setting it is invalid, since it is the
unknown word forms that are interesting. Theoretically, we could fix this
by associating all words with all possible analyses, but this would destroy
all information provided by our dictionary.

Constraint Grammar in Extract differs from the traditional definition,
since the task is no longer to reduce ambiguity, but to classify unknown
words.

There is only one, implicit, operator used in the rules, which is not quite
the same as any of the operators in CG, since it selects a reading that,
possibly, is not part of the ambiguity class. This is natural since the words
that we are aiming for are outside the lexicon.

The constraints in the rules are defined with a propositional formula,
which already existed in Karlsson’s framework in an indirect fashion. Con-
junction is implicit in the rules, what he refers to as ’polarity’ corresponds to
negation, and disjunction can be defined by translating it to a list of rules.

A context element is a triple, consisting of a position, a regular expression
and a term, as illustrated in Fig. 7.4. Karlsson’s CG lacked the possibility
to refer to words in the context with regular expressions, which is natural
since the assumption is that the ambiguity class contains the correct class,
so we normally only need to refer to the classes. Here, we need to be able
to refer to the actual words, since we cannot assume that the correct class
is included.

An example is given below where we are interested in identifying nouns.
The constraint is in square brackets and states that the word in question
must be preceded by an article and followed by a verb in present tense. We
use the don’t care symbol for positions that we are not interested in. We
also use the uniqueness operator ! to express that we are only interested in
words where the preceding and following words is unambiguous.

rule noun x [x:Word] =

x

{

x [(-1,_, ! article _ _) &

(1, _, ! verb present _ _)]

}

Wild cards () can be used anywhere except for positions. A wild card
can be matched with anything.

184

(〈Position 〉 , 〈Reg 〉 , 〈Unique 〉 〈Patt 〉)

Figure 7.4: An atom of a constraint

7.4.3 Positions in CG

Positions in a context element of CG are either absolute, unbounded, relative
or unbounded relative. A position identifies a token in the context of the
current token.

Positions are referred to with integers, where the current token is at
position 0, the ones to the left have increasingly negative numbers, and the
ones to the right have increasingly positive numbers. An absolute position is
an integer referring to a token, much in the same way as indexing an array.

Unbounded positions, marked by a star ’*’, refer to the first hit starting
at an absolute position within the current chunk. An unbounded position
may furthermore be labelled so the resulting position can be referred to
by a relative position. As an example, consider the following two context
elements. The first element contains an unbounded position, where the label
t will be assigned the value of the position of the first occurrence of the, if
any, starting to the left of the current token. The second element contains
a relative position, stating that the word to the right of the first the should
be black.

(t@-1*,"the",_) & (t+1,"black",_)

Relative positions may also be unbounded. We could change our example
of a relative position to t+1* to express that the word black should be
somewhere on the right of the, and moreover, we could label it so its position
becomes referable: p@t+1*.

185

7.4.4 Changes in the Algorithm

Here is a modified version of the algorithm (without CG) given in Forsberg
et al. [1], in pseudo-code notation:

let L be the empty lexicon.

let R be the set of extraction rules.

let W be all word types in the corpus.

let S be the list of chunks.

for each w : W

for each r : R

for each constraint r(C) with which w matches r(C)

if W,S satisfies instantiated r(C) with the result H,

add H to L

endif

end

end

end

The algorithm is initialized by reading the word types of the corpus
into an array W . A word w matches a constraint of a rule r(C), if it
can match any of the patterns in the rule’s constraint that contains all
variables occurring in the constraint. The result of a successful match is
an instantiated constraint, i.e. a logical formula with words as atomic
propositions. The corpus W satisfies an instantiated constraint r(C) if the
formula is true, where the truth of an atomic proposition a means that the
word a occurs in W . And finally, the store S, containing the contextual
information, satisfies an instantiated constraint r(C) if, for a Constraint
Grammar cgi associated to an instantiated pattern a ∈ r(C), there exists at
least one chunk ch ∈ S, in which a appears, which satisfies cgi.

7.5 The Implementation

An important consideration with the implementation is to be able to deal
with as much data as possible. It is space, not speed, which is the critical
issue (within reason, of course), since the result typically improves with
larger amounts of data.

The representation of strings in Haskell is a bit wasteful, and if one is
not careful, one soon runs out of memory. There are other string types
with more efficient representations, but these types are not as convenient to
program with. We solved this by implementing sharing, i.e. a word form is
only fully represented once in memory, and all other occurrences are pointers

186

to the full representation. This solution gives the tool a reasonable space
behavior.

7.6 Experiments

An experiment with the French Hansard corpus has been conducted and
furthermore described in Extract’s FinTAL article [1].

Some initial experiments have been tried using CG and structured data
while extracting Swedish words, where the starting point is a morphology
implemented in Functional Morphology (FM) [2]. FM supports the analysis
of a text into Extract’s data format, where the chunks are divided, in a naive
fashion, at major punctuations. No disambiguation is performed, i.e. FM
augments all word forms with all possible interpretations.

In these experiments we realized that without any form of disambigua-
tion, the information provided by the existing lexicon is of little use, at least
for Swedish. It is not necessary to perform full disambiguation: it is suffi-
cient to focus on classes mentioned in the constraints. For example, consider
the word att in Swedish, which is a function word that is either an infinitive
marker or a subjunction (that). If we knew that att is an infinitive marker, it
would be a good indicator for identifying verbs, but with no disambiguation,
we are not helped.

It is our experience that it is more difficult than we previously thought to
use the context consisting of either unannotated word forms or word forms
annotated with ambiguous information for improving the extraction in a
substantial way. Our hypothesis is that to be able to use CG in Extract
efficiently, we need to augment the word forms with unambiguous informa-
tion. Ambiguous information is useful for filtering out spurious outputs,
but difficult to use in a positive sense, i.e. to locate and extract new words.
However, it is too early to draw any conclusions.

7.7 Compiling Extract

The source code is downloadable at Extract’s homepage1.

Extract requires the GHC compiler2 to be built. Since Extract is a
command-line program, it should work on all platforms supported by the
GHC compiler.

1http://www.cs.chalmers.se/∼markus/Extract
2http://www.haskell.org/ghc

187

1. tar xvfz Extract_2.0.tgz

2. cd Extract_2.0

3. make

4. This produces a binary: extract

7.8 Running Extract

Extract is command-line program, which is run with a rule file, a text file,
and possibly, some flags.

$ extract [Flag(s)] rule_file text_file

The text file text file may either be structured, in the sense described
in Sec. 7.3, or unformatted. Extract is able to automatically detect which
of the different types it is.

If a lexical resource in Functional Morphology is available, then it can
be used to generate structured data. See the technical report of Functional
Morphology for details.

7.9 Command-line Options

All command-line flags available in Extract are printed by calling Extract
with the flag -h. The output is given in Fig. 7.5. Most of the flags are
self-explanatory, but we will still give some clarifying comments for all of
them.

7.9.1 Character Encodings

Extract v1.0 supported the character encoding ISO-8859, which restricts the
use of the tool to a particular set of language, or forces the use of some ad-hoc
encoding. Extract v2.0 acknowledges this problem by introducing UTF-8
encoding, activated with the flag -utf8. If the UTF-8 mode is activated,
then both the input data file and the rule file must be in that encoding.

7.9.2 Data Preprocessing

There are two commands for data preprocessing: (-uncap), which trans-
forms the word forms to lowercase and -nocap which removes all capitalized
words.

188

$ extract -h

**

* Lexicon Extraction *

* with *

* Constraint Grammar *

**

* (c) Markus Forsberg & Aarne Ranta 2007 *

* under GNU General Public License. *

**

Help message:

extract [Option(s)] rule_file corpus_file

Options:

-h Display this message

-utf8 Use UTF-8 encoding

-nobad Keep only the analysed words

-uncap Transform uppercase to lowercase

-nocap Remove all words in uppercase

-e Print evidence as comment

-u Print no duplicates

-id Print identifier

-r Reverse words

Figure 7.5: Help command

189

7.9.3 Output Control

The word forms that do not give rise to any output are by default printed
with dashes (--) in front of them. To avoid printing these, use the flag
-nobad.

Extract traverses all word forms and tries to instantiate the rule’s con-
straint. This, in turn, typically means duplicated output, since every word
form gives rise to its own instantiations. This is avoided by giving the
uniqueness flag, -u, which means that a history of previous results is kept
and no duplicates are output. Extract is typically run with the uniqueness
flag, or, if preferred, with the Unix command sort -u.

A constraint of a rule is fulfilled by a set of word forms, but since a
constraint may contain disjunctive patterns, it is not always clear which
word forms were used. Since this information may be useful, it is possible
to obtain it with the evidence flag -e. Every output will then be marked
with the word forms used.

Multiple rules may have the same identifier, and it is sometimes useful
to know exactly which of the rules were used: if for nothing else, so for rule
debugging purposes. The identify flag -id annotates the output with an
integer corresponding to a rule in the rule file.

7.9.4 Dictionary

One of the data structures of Extract is a trie, which is a deterministic
automaton, i.e. it is prefix-minimal but not suffix-minimal. If a language is
suffix-heavy, it may save memory to reverse the string, which can be done
with the flag -r.

7.10 BNFC Documentation of Extract

7.10.1 The Language Extract

This document was automatically generated by the BNF-Converter. It was
generated together with the lexer, the parser, and the abstract syntax mod-
ule, which guarantees that the document matches with the implementation
of the language (provided no hand-hacking has taken place).

190

The lexical structure of Extract

Identifiers

Identifiers 〈Ident 〉 are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters ’, reserved words
excluded.

Literals

String literals 〈String 〉 have the form "x", where x is any sequence of any
characters except " unless preceded by \.

Integer literals 〈Int 〉 are nonempty sequences of digits.

Character literals 〈Char 〉 have the form ’c’, where c is any single char-
acter.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in Extract are the following:

char context digit

eps letter lower

paradigm regexp rule

upper

The symbols used in Extract are the following:

; = {
} []

: ,

() +
& | ~

! @ −
* ?

191

Comments

Single-line comments begin with −−.
Multiple-line comments are enclosed with {− and −}.

The syntactic structure of Extract

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production),
| (union) and ǫ (empty rule) belong to the BNF notation. All other symbols
are terminals.

〈Grammar 〉 ::= 〈ListDef 〉

〈ListDef 〉 ::= ǫ
| 〈Def 〉 ; 〈ListDef 〉

〈Def 〉 ::= paradigm 〈Ident 〉 〈Env 〉 = 〈Head 〉 { 〈Logic 〉 }
| rule 〈Ident 〉 〈Env 〉 = 〈Head 〉 { 〈Logic 〉 }
| regexp 〈Ident 〉 = 〈Reg 〉
| context 〈Ident 〉 = 〈CLogic 〉

〈Env 〉 ::= [〈ListBinding 〉]
| ǫ

〈Binding 〉 ::= 〈Ident 〉 : 〈Reg 〉

〈ListBinding 〉 ::= ǫ
| 〈Binding 〉
| 〈Binding 〉 , 〈ListBinding 〉

〈Pattern 〉 ::= 〈ListItem 〉 〈Constraint 〉

〈Item 〉 ::= 〈String 〉
| 〈Ident 〉

〈Patt1 〉 ::=
| 〈Ident 〉
| (〈Patt 〉)

〈Patt 〉 ::= 〈Ident 〉 〈ListPatt1 〉
| 〈Patt1 〉

〈ListPatt1 〉 ::= 〈Patt1 〉
| 〈Patt1 〉 〈ListPatt1 〉

192

〈Head 〉 ::= 〈ListPattern 〉

〈ListPattern 〉 ::= 〈Pattern 〉
| 〈Pattern 〉 〈ListPattern 〉

〈ListItem 〉 ::= 〈Item 〉
| 〈Item 〉 + 〈ListItem 〉

〈Constraint 〉 ::= [〈CLogic 〉]
| [〈Ident 〉]
| ǫ

〈CLogic 〉 ::= 〈CLogic 〉 & 〈CLogic1 〉
| 〈CLogic 〉 | 〈CLogic1 〉
| 〈CLogic1 〉

〈CLogic1 〉 ::= ~ 〈CLogic1 〉
|
| (〈Position 〉 , 〈Reg 〉 , 〈Unique 〉 〈Patt 〉)
| (〈CLogic 〉)

〈Unique 〉 ::= !

| ǫ

〈Position 〉 ::=
| 〈Pos 〉
| 〈Ident 〉 @ 〈Pos 〉
| 〈Ident 〉 @ 〈Ident 〉 〈Pos 〉
| 〈Ident 〉 〈Pos 〉

〈Pos 〉 ::= 〈Integer 〉
| + 〈Integer 〉
| − 〈Integer 〉
| + 〈Integer 〉 *
| − 〈Integer 〉 *
| *

〈Logic 〉 ::= 〈Logic 〉 & 〈Logic1 〉
| 〈Logic 〉 | 〈Logic1 〉
| 〈Logic1 〉

〈Logic1 〉 ::= ~ 〈Logic1 〉
|
| 〈Pattern 〉
| (〈Logic 〉)

193

〈Reg 〉 ::= 〈Reg 〉 | 〈Reg1 〉
| 〈Reg1 〉 − 〈Reg1 〉
| 〈Reg1 〉

〈Reg1 〉 ::= 〈Reg1 〉 〈Reg2 〉
| 〈Reg2 〉

〈Reg2 〉 ::= 〈Reg2 〉 *
| 〈Reg2 〉 +
| 〈Reg2 〉 ?
| eps

| 〈Char 〉
| [〈String 〉]
| digit

| letter

| upper

| lower

| char

|
| 〈String 〉
| 〈Ident 〉
| (〈Reg 〉)

7.10.2 The Language Data

This document was automatically generated by the BNF-Converter. It was
generated together with the lexer, the parser, and the abstract syntax mod-
ule, which guarantees that the document matches with the implementation
of the language (provided no hand-hacking has taken place).

The lexical structure of Data

Identifiers

Identifiers 〈Ident 〉 are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters ’, reserved words
excluded.

Literals

String literals 〈String 〉 have the form "x", where x is any sequence of any
characters except " unless preceded by \.

194

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in Data are the following:

There are no reserved words in Data.

The symbols used in Data are the following:

{ } (

,) |

Comments

There are no single-line comments in the grammar.
There are no multiple-line comments in the grammar.

The syntactic structure of Data

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production),
| (union) and ǫ (empty rule) belong to the BNF notation. All other symbols
are terminals.

〈Input 〉 ::= 〈ListData 〉

〈Data 〉 ::= { 〈ListTokD 〉 }

〈TokD 〉 ::= (〈String 〉 , 〈ListPattern 〉)

〈Pattern 〉 ::= 〈Ident 〉 〈ListPattern1 〉
| 〈Pattern1 〉

〈Pattern1 〉 ::= 〈Ident 〉
| (〈Pattern 〉)

〈ListData 〉 ::= ǫ
| 〈Data 〉 〈ListData 〉

195

〈ListTokD 〉 ::= ǫ
| 〈TokD 〉 〈ListTokD 〉

〈ListPattern1 〉 ::= 〈Pattern1 〉
| 〈Pattern1 〉 〈ListPattern1 〉

〈ListPattern 〉 ::= ǫ
| 〈Pattern 〉
| 〈Pattern 〉 | 〈ListPattern 〉

Bibliography

[1] M. Forsberg, H. Hammarström, and A. Ranta. Morphological lexicon
extraction from raw text data. FinTAL 2006, LNAI 4139, pages 488–
499, 2006.

[2] M. Forsberg and A. Ranta. Functional morphology. http://www.cs.

chalmers.se/∼markus/FM, 2007.

[3] F. Karlsson. Constraint grammar as a framework for parsing running
text. 13th International Conference of Computational Linguistics, 3:168–
173, 1990.

[4] A. Voutilainen, J. Heikkilä, and A. Anttila. Constraint grammar of
english, a performance-oriented introduction. University of Helsinki,
publication no. 21, 1992.

196

