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Functional Morphology

<-Implementing morphological models
< Programming environment within Haskell
< Extensible, powerful, language-independent

<-Markus Forsberg & Aarne Ranta
< Chalmers University of Technology

<+ September 2004, International Conference on
Functional Programming

<-Inspired by Gérard Huet’s toolkit Zen
<+ Computational processing of Sanskrit, 2002
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Outline of the Talk
<-Little bit of Theory and Research

< Karttunen, Stump, Buckwalter, Maxwell, Huet

<-Finite-state modeling of morphology

< Regular relations, finite-state transducers

<+ Two-level morphology, lexicons and grammars
<-Functional Morphology

< Features, concepts, implementation issues

< Demo of the system — formats, applications

< Meeting requirements of different languages
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Linguistic Perspective

<-Inflectional morphology is understood in
various ways (Stump 2001)

<-Description of the inflectional processes
<+ Inferential rules, paradigms
< Lexical decomposition, affixation

<-Preferred direction of consideration
< Realizational forms reflect parameters
< Incremental morphs identify features
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Decisive Evidence

<-Extended morphological exponence
< One or more markings of a single property

<-Null morphological exponence
< Composition/decomposition not equivalent

< Non-concatenative inflection

< Why restrict morphological operations to
concatenation?
good < better << best * good|er << good|est
dobr|y < lep|si << nej|lep|$i * dobr|ejsi << nej|dobr|ejsi
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Computational Concern

<-Morphology can be captured by finite-state
networks (Beesley and Karttunen 2003)

<+ Implementation regular expressions,
right linear grammars

< Complexity linear runtime, advanced
compilation techniques
< Efficiency fast, but large networks

<-Non-regular formalisms might be difficult
to implement efficiently enough
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Efficiency vs. Expressivity

< Xerox Finite-State Tools like xfst, lexc
< Languages of Europe, Arabic, Korean, Malay

AT&T, Inxight, ..., open-source FS tools
<-Hybrid systems — Buckwalter’s Analyzer

<-DATR/KATR, MORPHE, Hermit Crab, ...

<-Functional Morphology in Haskell, Zen in
Objective Caml — compiled into tries
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Languages as Networks

<-Languages are sets of sequences of symbols
<-Networks with limited number of states
<-Sequences of symbols recorded in arcs

9.0 oo o
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REs and RLGS

<-Regular expressions describe such networks

L =(nicer|night|higher|height) listing
=(ni(cer|ght)|h(eight|igher)) prefix-
=((niclhigh)er|(n|he)ight) suffix trie

<-Right linear grammars / lexicons do as well

ADJ ->{nice,high,happyH{CMP {}} where

CMP ->{+er}  deriwving from L ->{ADJ,{}}
L’ = {nice,nice+er,happy+er,high,...}
or even {nice/ADJ+er/CMP,high/ADJ,...}

February 3, 2005 Linguistic Data Consortium 10



Regular Relations

<Networks can convert input into output

<Two languages — lexical /upper : surface/lower
L” = {nice/ADJ+er/CMP:nicer,high/ADJ:high,
happy/ADJ+er/CMP:happier,...} regular relation

< Invertible structure, analysis iff synthesis

< Networks can be composed one over another
<-Building relations is not trivial!

< Two-level rules for orthographical alternations

< Every information merges into untyped string

February 3, 2005 Linguistic Data Consortium 11



Not Only Finite-State (Beesley)

<-Flag diacritics vs. network multiplication

To impose this constraint in pure finite-
state terms, the whole noun-stem structure

At = Skaatib 2 ) _ o .
P is duplicated in the course of composition.
a b

.
&

<

Contains illegal paths like:
Art+ @U.ART.YES@ kaatib +Indef (@UART.NO@ +Nom
a | @UART.YES@ kaatib @U.ART.NO@ uN

~$[ Art%-+ ?* %-+Indef ] .0. the filter in xfst

< http://www.stanford.edu/~laurik/fsmbook/
lecture-notes/Beesley2004/thupm.html
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Burning Issues (Karttunen)

<-Non-concatenative phenomena like
interdigitation or reduplication

<-Non-local dependencies
<-Syntax/morphology interface

<-http://www.cog.jhu.edu/workshop-03/
Handouts/karttunen.ppt
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More Burning Issues

<-Does the direct coding allow to implement
one’s linguistic abstraction adequately?

< Correspondence of formulations, expressivity

<1s the model extensible and reusable?
< How much will it cost to add a lexical item?

< Will refinement of information require global
re-design, and/or will it cause inconsistencies?

<-How can it be integrated into applications?
< API and GUI interfaces, modularity, openness
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Why Functional

<~ Purely functional programming language Haskell
< Higher-order functions, type classes, polymorphism
<~ Linguistic process ~ function on entities of the
given description
< Distinction between functions and forms in a language
< Inflectional morphology may extend to derivational
< Decomposition — phonology, orthography, grammar, ...
<- Excellent progressive functionality
<+ FM provides high-level interfaces for concrete models
< Inferential-realizational generality & freedom of speech
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Why Morphology

<-Methodology for developing similar models
< Paradigms, inflectional + inherent parameters

<-Embedded domain-specific language

<-Collection of morphology implementations
< Swedish, Spanish, Russian, Italian, Latin

<-The Zen Computational Linguistics Toolkit
<Grammatical Framework <-FST Studio
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FM Architecture

Linguist-dependent //' Linguist-independent / FM-generated

The Model = Dictionary » Analyzer
R — .
FM Library Exporter Synthesizer

<- The language model <~ Provisions by FM

<+ Types meta-information < Dictionary compilation
< Functions tables/rules < Runtime applications
< Lexicons classified units < Data export utilities
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Inflection Tables & Parameters

<-Inflection described by finite functions

<-Analogy shown on

1 . rosa Singular | Plural

d S€ eCt.ed Instance Nominative | rosa rosae
Of the glveln group Vocative rosa rosae

&> Realization of Accusative |rosam rosas
inﬂectional Genitive rosae rosarum
p arameters y1 el dS Dative rosae rosis

Ablative rosa rosis

the word form
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Inherent Properties & Classes

<-How do I describe words’ non-inflectional
properties, 1.e. inherent parameters?

<-Design word classes that refine the
inflectional groups, and characterize them

< Lexicon associates lemmas with the classes
< Dictionary lists the expanded information
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Parameters in FM/Haskaell

<{-Parameters take their distinct type of values

<-Values are constructed by symbolic names

data Case = Nominative | Genitive |
Accusative | Ablative |
Dative | Vocative
data Number = Singular | Plural

data Gender = Feminine | Neuter |
Masculine

data Nouninfl = NounInfl Case Number
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Paradigm Definition

<-Using functions with type signatures

ourParadigm :: String -> Nounlnfl
-> String

ourParadigm rosa (Nouninfl nc) =
let rosae = rosa ++ “e”
rosis =init rosa ++ “Is”
N
case n of
Singular -> case ¢ of
Accusative -> rosa ++“m”
Genitive -> rosae
Dative -> rosae

_ -> rosa -- nextslide
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-- continued

Plural -> case c of
Nominative -> rosae
Vocative -> rosae
Accusative -> rosa ++ “s”
Genitive -> rosa ++ “rum”
-> rOSIS

-- where rosis =init rosa ++ “|s”

<-How, when and what does it compute?

ourParadigm “barba” (Nouninfl Plural Genitive)

-> “barbarum”
ourParadigm “dea” (Nouninfl Plural Dative)
- “deis”  which is not correct Latin — we misused the paradigm
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FM pre-defined functions

<-Programmer is free to be creative, as long as
she keeps to the inferred system of types

<FM accounts for exceptions, missing/only
forms, multiple variants, stem changes, ...

<-Each new model can add to this repertoire

<FM implements the whole mechanism

< Tries for efficient analysis/synthesis
<+ Exports to XML, SQL, xfst, lexc, GF, LaTeX, ...
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L exicon Format

<-Word class identification and the lemma
<~ Lemma might yet be a function into a database
< No programming needed — pure lexicography

Dictionary Format

<-Class functions listing the information

ourClass :: String -> Entry
type Dictionary = [Entry]
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Demo of the System
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Inflection in Sanskrit
<-Computationally pioneered by Huet (2003)

<-Challenging issues in Sanskrit

<+ Segmentation of compound words/verses
< Alternation rules — external and internal sandhi
< Phonetical orthography!

<-The Zen Toolkit inspired FM greatly
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Inflection in Arabic

<-Quite structuralist computational models!

<-Functional Arabic Morphology

< Revised description of grammatical parameters
<+ Implementation in FM, providing its extensions

<-Challenging issues in Arabic

< Run-on tokens, complex change of parameters
< Decomposition of phonology and orthography
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Summary

<-Functional Morphology reconciles
linguistic abstraction with computational
implementation

<-Haskell is a powertul, modern language

<-Development of morphologies requires
only little initial programming knowledge

<-Development of lexicons reduces to
natural lexicography
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Web Links

http://www.cs.chalmers.se/~markus/FM/
http://sanskrit.inria.fr/ZEN/

http://www.google.com/search?q=AraMorph

http://www.sil.org/computing/hermitcrab/

http://www.arabic-morphology.com/

http://www.fsmbook.com/

http://www.haskell.org/

R R R R SR

http://www.ocaml.org/
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