Functional Morphology
by Markus Forsberg & Aarne Ranta

Otakar Smrz

Institute of Formal and Applied Linguistics
Charles University in Prague

Functional Morphology

<-Implementing morphological models
< Programming environment within Haskell
< Extensible, powerful, language-independent

<-Markus Forsberg & Aarne Ranta
< Chalmers University of Technology

<+ September 2004, International Conference on
Functional Programming

<-Inspired by Gérard Huet’s toolkit Zen
<+ Computational processing of Sanskrit, 2002

February 3, 2005 Linguistic Data Consortium 2

Outline of the Talk
<-Little bit of Theory and Research

< Karttunen, Stump, Buckwalter, Maxwell, Huet

<-Finite-state modeling of morphology

< Regular relations, finite-state transducers

<+ Two-level morphology, lexicons and grammars
<-Functional Morphology

< Features, concepts, implementation issues

< Demo of the system — formats, applications

< Meeting requirements of different languages

February 3, 2005 Linguistic Data Consortium 3

Linguistic Perspective

<-Inflectional morphology is understood in
various ways (Stump 2001)

<-Description of the inflectional processes
<+ Inferential rules, paradigms
< Lexical decomposition, affixation

<-Preferred direction of consideration
< Realizational forms reflect parameters
< Incremental morphs identify features

February 3, 2005 Linguistic Data Consortium 4

Decisive Evidence

<-Extended morphological exponence
< One or more markings of a single property

<-Null morphological exponence
< Composition/decomposition not equivalent

< Non-concatenative inflection

< Why restrict morphological operations to
concatenation?
good < better << best * good|er << good|est
dobr|y < lep|si << nej|lep|$i * dobr|ejsi << nej|dobr|ejsi

February 3, 2005 Linguistic Data Consortium 5

Computational Concern

<-Morphology can be captured by finite-state
networks (Beesley and Karttunen 2003)

<+ Implementation regular expressions,
right linear grammars

< Complexity linear runtime, advanced
compilation techniques
< Efficiency fast, but large networks

<-Non-regular formalisms might be difficult
to implement efficiently enough

February 3, 2005 Linguistic Data Consortium 6

Efficiency vs. Expressivity

< Xerox Finite-State Tools like xfst, lexc
< Languages of Europe, Arabic, Korean, Malay

AT&T, Inxight, ..., open-source FS tools
<-Hybrid systems — Buckwalter’s Analyzer

<-DATR/KATR, MORPHE, Hermit Crab, ...

<-Functional Morphology in Haskell, Zen in
Objective Caml — compiled into tries

February 3, 2005 Linguistic Data Consortium 7

Languages as Networks

<-Languages are sets of sequences of symbols
<-Networks with limited number of states
<-Sequences of symbols recorded in arcs

9.0 oo o

February 3, 2005 Linguistic Data Consortium 8

Languages as Networks

<-Languages are sets of sequences of symbols
<-Networks with limited number of states
<-Sequences of symbols recorded in arcs

9.0 oo o

February 3, 2005 Linguistic Data Consortium 9

REs and RLGS

<-Regular expressions describe such networks

L =(nicer|night|higher|height) listing
=(ni(cer|ght)|h(eight|igher)) prefix-
=((niclhigh)er|(n|he)ight) suffix trie

<-Right linear grammars / lexicons do as well

ADJ ->{nice,high,happyH{CMP {}} where

CMP ->{+er} deriwving from L ->{ADJ,{}}
L’ = {nice,nice+er,happy+er,high,...}
or even {nice/ADJ+er/CMP,high/ADJ,...}

February 3, 2005 Linguistic Data Consortium 10

Regular Relations

<Networks can convert input into output

<Two languages — lexical /upper : surface/lower
L” = {nice/ADJ+er/CMP:nicer,high/ADJ:high,
happy/ADJ+er/CMP:happier,...} regular relation

< Invertible structure, analysis iff synthesis

< Networks can be composed one over another
<-Building relations is not trivial!

< Two-level rules for orthographical alternations

< Every information merges into untyped string

February 3, 2005 Linguistic Data Consortium 11

Not Only Finite-State (Beesley)

<-Flag diacritics vs. network multiplication

To impose this constraint in pure finite-
state terms, the whole noun-stem structure

At = Skaatib 2) _ o .
P is duplicated in the course of composition.
a b

.
&

<

Contains illegal paths like:
Art+ @U.ART.YES@ kaatib +Indef (@UART.NO@ +Nom
a | @UART.YES@ kaatib @U.ART.NO@ uN

~$[Art%-+ ?* %-+Indef] .0. the filter in xfst

< http://www.stanford.edu/~laurik/fsmbook/
lecture-notes/Beesley2004/thupm.html

February 3, 2005 Linguistic Data Consortium 12

Burning Issues (Karttunen)

<-Non-concatenative phenomena like
interdigitation or reduplication

<-Non-local dependencies
<-Syntax/morphology interface

<-http://www.cog.jhu.edu/workshop-03/
Handouts/karttunen.ppt

February 3, 2005 Linguistic Data Consortium 13

More Burning Issues

<-Does the direct coding allow to implement
one’s linguistic abstraction adequately?

< Correspondence of formulations, expressivity

<1s the model extensible and reusable?
< How much will it cost to add a lexical item?

< Will refinement of information require global
re-design, and/or will it cause inconsistencies?

<-How can it be integrated into applications?
< API and GUI interfaces, modularity, openness

February 3, 2005 Linguistic Data Consortium 14

Why Functional

<~ Purely functional programming language Haskell
< Higher-order functions, type classes, polymorphism
<~ Linguistic process ~ function on entities of the
given description
< Distinction between functions and forms in a language
< Inflectional morphology may extend to derivational
< Decomposition — phonology, orthography, grammar, ...
<- Excellent progressive functionality
<+ FM provides high-level interfaces for concrete models
< Inferential-realizational generality & freedom of speech

February 3, 2005 Linguistic Data Consortium 15

Why Morphology

<-Methodology for developing similar models
< Paradigms, inflectional + inherent parameters

<-Embedded domain-specific language

<-Collection of morphology implementations
< Swedish, Spanish, Russian, Italian, Latin

<-The Zen Computational Linguistics Toolkit
<Grammatical Framework <-FST Studio

February 3, 2005 Linguistic Data Consortium 16

FM Architecture

Linguist-dependent //' Linguist-independent / FM-generated

The Model = Dictionary » Analyzer
R — .
FM Library Exporter Synthesizer

<- The language model <~ Provisions by FM

<+ Types meta-information < Dictionary compilation
< Functions tables/rules < Runtime applications
< Lexicons classified units < Data export utilities

February 3, 2005 Linguistic Data Consortium 17

Inflection Tables & Parameters

<-Inflection described by finite functions

<-Analogy shown on

1 . rosa Singular | Plural

d S€ eCt.ed Instance Nominative | rosa rosae
Of the glveln group Vocative rosa rosae

&> Realization of Accusative |rosam rosas
inﬂectional Genitive rosae rosarum
p arameters y1 el dS Dative rosae rosis

Ablative rosa rosis

the word form

February 3, 2005 Linguistic Data Consortium 18

Inherent Properties & Classes

<-How do I describe words’ non-inflectional
properties, 1.e. inherent parameters?

<-Design word classes that refine the
inflectional groups, and characterize them

< Lexicon associates lemmas with the classes
< Dictionary lists the expanded information

February 3, 2005 Linguistic Data Consortium 19

Parameters in FM/Haskaell

<{-Parameters take their distinct type of values

<-Values are constructed by symbolic names

data Case = Nominative | Genitive |
Accusative | Ablative |
Dative | Vocative
data Number = Singular | Plural

data Gender = Feminine | Neuter |
Masculine

data Nouninfl = NounInfl Case Number

February 3, 2005 Linguistic Data Consortium 20

Paradigm Definition

<-Using functions with type signatures

ourParadigm :: String -> Nounlnfl
-> String

ourParadigm rosa (Nouninfl nc) =
let rosae = rosa ++ “e”
rosis =init rosa ++ “Is”
N
case n of
Singular -> case ¢ of
Accusative -> rosa ++“m”
Genitive -> rosae
Dative -> rosae

_ -> rosa -- nextslide

February 3, 2005 Linguistic Data Consortium 21

-- continued

Plural -> case c of
Nominative -> rosae
Vocative -> rosae
Accusative -> rosa ++ “s”
Genitive -> rosa ++ “rum”
-> rOSIS

-- where rosis =init rosa ++ “|s”

<-How, when and what does it compute?

ourParadigm “barba” (Nouninfl Plural Genitive)

-> “barbarum”
ourParadigm “dea” (Nouninfl Plural Dative)
- “deis” which is not correct Latin — we misused the paradigm

February 3, 2005 Linguistic Data Consortium 22

FM pre-defined functions

<-Programmer is free to be creative, as long as
she keeps to the inferred system of types

<FM accounts for exceptions, missing/only
forms, multiple variants, stem changes, ...

<-Each new model can add to this repertoire

<FM implements the whole mechanism

< Tries for efficient analysis/synthesis
<+ Exports to XML, SQL, xfst, lexc, GF, LaTeX, ...

February 3, 2005 Linguistic Data Consortium 23

L exicon Format

<-Word class identification and the lemma
<~ Lemma might yet be a function into a database
< No programming needed — pure lexicography

Dictionary Format

<-Class functions listing the information

ourClass :: String -> Entry
type Dictionary = [Entry]

February 3, 2005 Linguistic Data Consortium 24

Demo of the System

February 3, 2005 Linguistic Data Consortium 25

Inflection in Sanskrit
<-Computationally pioneered by Huet (2003)

<-Challenging issues in Sanskrit

<+ Segmentation of compound words/verses
< Alternation rules — external and internal sandhi
< Phonetical orthography!

<-The Zen Toolkit inspired FM greatly

February 3, 2005 Linguistic Data Consortium 26

Inflection in Arabic

<-Quite structuralist computational models!

<-Functional Arabic Morphology

< Revised description of grammatical parameters
<+ Implementation in FM, providing its extensions

<-Challenging issues in Arabic

< Run-on tokens, complex change of parameters
< Decomposition of phonology and orthography

February 3, 2005 Linguistic Data Consortium 27

Summary

<-Functional Morphology reconciles
linguistic abstraction with computational
implementation

<-Haskell is a powertul, modern language

<-Development of morphologies requires
only little initial programming knowledge

<-Development of lexicons reduces to
natural lexicography

February 3, 2005 Linguistic Data Consortium 28

References

<> Markus Forsberg and Aarne Ranta. 2004. Functional
Morphology. In Proceedings of the ICFP 2004, pages
213—223. ACM Press.

< Gérard Huet. 2003. Lexicon-directed Segmentation and
Tagging of Sanskrit. In XIIth World Sanskrit Conference,
pages 307—325, Helsinki, Finland.

< Gregory T. Stump. 2001. Inflectional Morphology: A

Theory of Paradigm Structure. Cambridge Studies in
Linguistics 93. Cambridge University Press.

< Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Studies in Computational
Linguistics. CSLI Publications, Stanford, California.

February 3, 2005 Linguistic Data Consortium 29

Web Links

http://www.cs.chalmers.se/~markus/FM/
http://sanskrit.inria.fr/ZEN/

http://www.google.com/search?q=AraMorph

http://www.sil.org/computing/hermitcrab/

http://www.arabic-morphology.com/

http://www.fsmbook.com/

http://www.haskell.org/

R R R R SR

http://www.ocaml.org/

February 3, 2005 Linguistic Data Consortium 30

