
Functional Morphology
doing linguistics in Haskell

Markus Forsberg, Aarne Ranta

ICFP 2004

Snowbird, Utah

1

What is a morphology?

• Think of a dictionary for a natural language stored in a
computer

• How is a dictionary organized?
Normally we don’t find all word forms, but:

– A set of inflection tables, also called paradigms

– A list of entries with a pointer to a inflection table.
The pointer can be enough grammar information so that
you can “point for yourself”.

2

Why do we need a morphology?

Some examples

• Machine translation, e.g.

– To retrieve the grammatical information about the words

– To retrieve all possible analyses for the disambiguation
phase

– To generate a particular word form in a target language

• Information retrieval
Searching for: cars
you may also be interested in: car, cars, car’s cars’
but not: cart, carisma, Carter

• Language education

– language quizzes

– study material resources

3

Earlier implementations of morphology

• More or less hand-written databases and full-form lexica have
been around since the 1950’s

• Proprietary systems in proprietary formats: XFST (Xerox)
current state of the art, finite state technology

• Huet’s Zen toolkit and Sanskrit morphology in CAML is a
substantial example of the functional methodology and
provides algorithms that we have used in our work

4

Three views of Functional Morphology

• A methodology for developing a morphology in a typed
functional language.

• An embedded domain-specific language in Haskell for
morphology development.

• A collection of morphology implementations.

5

Overview of the system

Analyzer

Synthesizer

Translators

Dictionary format

Functional Morphology
API

Morphology

Language
Language

IndependentDependent

Translator to:

• XFST and LexC

• GF (Grammatical Framework)

• XML

• SQL

• Full-form lexicon, tables and LATEX.

6

Morphological analysis of text

...

[<gud>

1. gud (3309) Substantiv - Sg Indef Nom - Utr

]

[<såg>

1. såg (4693) Substantiv - Sg Indef Nom - Utr

2. se (198) Verb - Pret Conj Act -

3. se (198) Verb - Pret Ind Act -

]

[<att>

1. att (148) Infinitivmärke - Invariant -

2. att (94) Subjunktion - Invariant -

]

...

7

Morphological synthesis

**

* Swedish Morphology *

**

* Functional Morphology v1.00 *

* (c) Markus Forsberg & Aarne Ranta 2004 *

* under GNU General Public License. *

**

[Synthesiser mode]

Enter a Swedish word in any form.

Type ’c’ to list commands.

Dictionary loaded: DF = 17209 and WF = 228262.

> programmet

program - Substantiv - Neutr

Sg Indef Nom: program

Sg Indef Gen: programs

Sg Def Nom: programmet

Sg Def Gen: programmets

Pl Indef Nom: program

Pl Indef Gen: programs

...

8

A morphology in FM

• The backbone of FM consists of three type classes: Param,
Dict and Language. Enable code resuse and generic algoritms
for analysis, synthesis and code generation.

• Fundamentally, a morphology in FM has:

– A type system: defines all word classes and the
parameters belonging to them.

– An inflection machinery: defines all possible inflection
tables (paradigms) for all word classes.

– A lexicon: lists all words in the target language with their
paradigms.

9

Nouns in Latin

• The Latin noun rosa, a feminine noun in the first declension.

Singular Plural

Nominative rosa rosae

Vocative rosa rosae

Accusative rosam rosas

Genitive rosae rosarum

Dative rosae rosis

Ablative rosa rosis

• Think of rosa as an example word for the first declension paradigm.

10

Nouns in Latin: type system

(Inflectional) parameter types as algebraic data types:
data Case =

Nominative | Genitive | Dative |

Accusative | Ablative | Vocative

deriving (Show,Eq,Enum,Ord,Bounded)

data Number = Singular | Plural

deriving (Show,Eq,Enum,Ord,Bounded)

data NounForm = NounForm Number Case

deriving (Show,Eq)

Nouns in Latin also have a inherent parameter: Gender. Nouns in
Latin have a gender, they are not inflected in gender.

data Gender = Feminine | Masculine | Neuter

deriving (Show,Eq,Enum,Ord,Bounded)

11

Type hierarchy

• A more complicated word class, latin verbs
data VerbForm =

Indicative Person Number Tense Voice |

Infinitive TenseI Voice |

ParticiplesFuture Voice |

ParticiplesPresent |

ParticiplesPerfect |

Subjunctive Person Number TenseS Voice |

ImperativePresent Number Voice |

ImperativeFutureActive Number PersonI |

ImperativeFuturePassiveSing PersonI |

ImperativeFuturePassivePl |

GerundGenitive |

GerundDative |

GerundAcc |

GerundAbl |

SupineAcc |

SupineAblative

• 147 cases, compared with the product of 1260 cases

12

rosa as a Haskell table

A first attempt of describing a paradigm.
rosaParadigm :: String → [(NounForm,String)]

rosaParadigm rosa =

[

(NounForm Singular Nominative, rosa),

(NounForm Singular Vocative, rosa),

(NounForm Singular Accusative, rosa ++ "m"),

(NounForm Singular Genitive, rosa ++ "e"),

(NounForm Singular Dative, rosa ++ "e"),

(NounForm Singular Ablative, rosa),

(NounForm Plural Nominative, rosa ++ "e"),

(NounForm Plural Vocative, rosa ++ "e"),

(NounForm Plural Accusative, rosa ++ "s"),

(NounForm Plural Genitive, rosa ++ "arum"),

(NounForm Plural Dative, rosis),

(NounForm Plural Ablative, rosis)

]

where rosis = tk 1 rosa ++ "is"

Not very nice ... Difficult to express linguistic abstraction and
error-prone.

13

Finite parameters, towards finite functions

The class Param provide a constant values that enumerates all
values in a parameter type.
class (Eq a, Show a) ⇒ Param a where

values :: [a]

-- and some default definitions

instance Param Case ...

instance Param Number ...

instance Param NounForm ...

14

Nouns as finite function

• A noun as a function — given a parameter it gives a word form.

type Noun = NounForm → String

• NounForm is an instance of Param, so a Noun is easily turned
into a table:

table :: Param a ⇒ (a → String) → [(a,String)]

table f = [(v, f v) | v <- values]

nounTable :: Noun -> [(a,String)]

nounTable f = table f

15

rosa as a function

• The inflection table of rosa as a function.
rosaParadigm :: String → Noun

rosaParadigm rosa (NounForm n c) =

case n of

Singular → case c of

Accusative → rosa + "m"

Genitive → rosae

Dative → rosae

_ → rosa

Plural → case c of

Nominative → rosae

Vocative → rosae

Accusative → rosa ++ "s"

Genitive → rosa ++ "rum"

_ → ros ++ "is"

where rosae = rosa ++ "e"

ros = init rosa

16

Strings

• A word form in FM is actually a list of strings, not a single one.

• This to handle non-existing forms and free variation
(many word forms may be possible for a particular set of
inflectional parameters).

type Str = ...

mkStr :: String → Str

strings :: [String] -> Str

nonExist :: Str

17

vis, Non-existing forms

• vis is an example of a word that lacks some forms.

Singular Plural

Nominative vis vires

Vocative - vires

Accusative vim vires

Genitive - virium

Dative - viribus

Ablative vi viribus

18

Exceptions

• Exceptions are used to define paradigm in terms of other
paradigms, or a lemma that is close to a particular paradigm.

• Exceptions in FM: excepts, missing, only, variants.
dea :: Noun

dea =

(rosaParadigm "dea") ’excepts’

[(NounForm Plural c, "dea") | c <- [Dative, Ablative]]

vis :: Noun

vis = (hostisParadigm "vis") ’missing’

[NounForm Singular c | c <- [Vocative, Genitive, Dative]]

19

Translation to the language-independent

dictionary

• Every morphology is translated into the language-independent
dictionary.

• This can be done almost automatically — we already know
how to create an inflection table, but we need some additional
information.
class Param a ⇒ Dict a where

dictword :: (a → Str) → String -- lemma

category :: (a → Str) → String -- word class

defaultAttr :: (a → Str) → Attr -- composite analysis

attrException :: (a → Str) → [(a,Attr)] -- composite analysis

instance Dict NounForm where

category _ = "Noun"

• Note: the use of a function avoids the inconvenience of having
to supply an object in a.

20

Dictionary: interface functions

• A dictionary consists of a set of Entry:s.

• A couple of interface functions about nouns in general:
entryI :: Dict a => (a -> Str) -> [Inherent] -> Entry

noun :: Noun → Gender → Entry

noun n g = entryI n [prValue g]

masculine :: Noun → Entry

masculine n = noun n Masculine

feminine :: Noun → Entry

feminine n = noun n Feminine

neuter :: Noun → Entry

neuter n = noun n Neuter

21

Dictionary: interface functions

• We continue by defining a few interface functions for a couple
of paradigms.

d1rosa :: String → Entry

d1rosa = feminine . decl1rosa

d2servus :: String → Entry

d2servus = masculine . decl2servus

d2donum :: String → Entry

d2donum s = neuter . decl2donum

22

The (internal) dictionary

latinDict :: Dictionary

latinDict =

dictionary $

[

d1rosa "rosa",

d1rosa "puella",

d2servus "servus",

d2servus "somnus",

d2servus "amicus",

d2servus "animus",

d2servus "campus",

d2servus "cantus",

d2servus "caseus",

d2servus "cervus",

d2donum "donum"

]

23

The internal and external dictionary

• The internal dictionary usually describes the closed word
classes (conjunction, preposition etc) and the highly irregular
cases. Compiles into the program.

• The external dictionary usually contains the open word
classes (nouns, verbs, adjectives etc). Consists of an external
file that lists paradigms and lemmas.

24

External dictionary

• Paradigm with the word in lemma form.

• (latin.lexicon)
d1rosa rosa

d2servus servus

v1amare amare

v1amare portare

v1amare demonstrare

v1amare laborare

...

25

Analysis: trie

• The analysis in FM is done in the same manner as in Huet’s
Zen toolkit — we use a decorated trie as fundamental data
structure.

• A trie is an acyclic, one-way-directed transducer, that can be
built and run efficiently.

• We handle composite analysis by permitting cycles over the
trie.

26

Composite analysis in FM

• Forms are given attribute values in the Attr type, that
describes how they can be composed.

• The developer provides a boolean function that describes which
compositions are valid, e.g. :

composeLatin :: [Attr] → Bool

• The default is that no word compositions is valid — words can
only appear by themselves.

27

Composite forms: example

• Consider the question particle ne in Latin, which can be added
as a suffix to any word in Latin, and thereby put the word in
question.

• We describe with our attribute values and attribute function
that ne only can occur as a suffix.

• If we now analyze the word servumne, we would get the
following:
[<servumne>

Composite:

servus Noun - Singular Accusative - Masculine

| # ne Particle - Invariant -]

28

The runtime system

The Language class consists of functions for the runtime system.
All functions have a default definition.
class Show a ⇒ Language a where

name :: a → String

dbaseName :: a → String

composition :: a → [Attr] → Bool

env :: a → String

paradigms :: a → Commands

internDict :: a → Dictionary

data Latin = Latin

deriving Show

instance Language Latin where

...

29

Lexicon Extraction (the extraction tool)

• The Word and Paradigm representation in FM open up the
door for automatic lexicon extraction.

• The idea is simple: let a set of affixes identify a particular
paradigm, and use a Trie data structure to search for new
words in a corpus.

• A great help in lexicon building, but ... the problem often has
no solution, and manual checking is necessary.

30

Example of a paradigm file: Swedish

s1: ap/a apor 3

s2: al alen alar 2

s2: cyk/el cykeln cyklar 4

s3: oas oaserna 3

s4: id/e idet idena 3

s5: ris riset 2

s5: öv/are övarna 5

aReg: dyr dyrt dyra (dyraste|dyrare|dyrast) 2

aReg: gir/ig girigt 4

aReg: fag/er fagra 4

aReg: gal/en galet galna 4

v1: an/a (anar|anade|anat) 3

v2: ös/a öser (öste|öst) 3

v3: sy syr sydde 2

31

Lexicon extracted from the Swedish Bible

Found 1995 lemmas, e.g.

s1 möda

v1 möda

v1 mörda

aReg mörk

v2 mörka

s5 möt

v2 möta

v1 nagla

aReg naken

s5 namn

s3 nasir

aReg nedbruten

32

Results

• Swedish - 17 000 lemmas

• Spanish - 12 000 lemmas
(Master thesis of Inger Andersson, Therese Söderberg)

• Russian - 9 000 lemmas
(Master thesis of Ludmilla Bogavac)

• Italian - 5 000 lemmas

• Latin - tutorial language

33

Conclusion

• Functional Morphology has showned to be very productive.

• The use of Haskell gives access to powerful programming
constructs that can be used to capture linguistic
generalizations.

• Students with no previous Haskell experience have managed to
produce substantial morphologies in FM.

• Functional Morphology is freely available under the GPL
license, downloadable here:
http://www.cs.chalmers.se/~markus/FM

Some stuff is still in the cvs, but will soon appear on the
webpage.

34

