
Thesis for the Degree of Licentiate of Philosophy

Language Engineering in Grammatical
Framework (GF)

Janna Khegai

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, December 2003

Language engineering in Grammatical Framework (GF)
Janna Khegai

c© Janna Khegai, 2003

Technical Report no. 30L
ISSN 1651-4963
School of Computer Science and Engineering

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone + 46 (0)31-772 1000

Printed at Chalmers, Göteborg, Sweden, 2003

Language engineering in Grammatical Framework (GF)
JANNA KHEGAI
Department of Computing Science
Chalmers University of Technology and Göteborg University

Abstract

This thesis describes a number of practical experiments rather than theoretical
investigations in the area of natural language processing.

The basis for the work presented is Grammatical Framework (GF). It is a
very complex system, which comprises among other things a grammar formalism
based on type theory and its implementation written in Haskell. GF is intended
for high-quality machine translation (of INTERLINGUA type) in the restricted
language domains.

The primary concern of this thesis is however limited to the usage of GF as a
piece of software. The main results are:

• Implementing a syntax editor, which provides a graphical user interface
(GUI) for the command-line GF core.

• Writing a part of code for automatic generation of gramlets — pure Java
programs with limited (compared to GF) functionality that can be run on
PDA (Portable Device Assistants) and as applets in a browser.

• Writing the Russian resource grammar that takes care of the most ba-
sic morphological and syntactic rules and serves as a standard library for
building application grammars (describing restricted language domains) in
Russian.

These results contribute to language engineering in GF on two different levels:

• Author level (end-user) — constructing sentences in natural languages.

• Grammarian level — building a grammar description, which is later used
on the author level.

The last part of the thesis deals with a non-linguistic domain. In that exper-
iment we try to apply functional parsing technique to the well-known problem of
protein secondary structure prediction (bioinformatics).

Keywords: syntax editing, multilingual authoring, graphical user interface (GUI),
interlingua, natural language processing (NLP), computational linguistics, ma-
chine translation (MT)

Acknowledgements

I would like to thank my supervisor, Aarne Ranta for giving me a project in the
first place and for careful guidance in carrying it out. From him I have learned a
lot about the research field and beyond.

Thanks a lot to Arto Mustajoki and his colleagues from the Slavonic and
Baltic Department at the University of Helsinki for fruitful discussions on Russian
grammar. Also thanks to Mats Wirén from Telia Research, the discussion leader
for his useful comments. Many thanks to my co-workers on this thesis - Kristofer
Johannisson and Markus Forsberg and to the members of my advisory commitee
- Bengt Nordström and Devdatt Dubhashi who donated their time and ideas to
the project.

I am grateful to my former office mates: Angela Wallenburg, Wojciech Mostow-
ski and Erik Kilborn for being both kind and helpful on many occasions. I also
appreciate the efforts of many PhD students who have organized and participated
in numerous social activities like parties, pubs, PhD cakes, skiing trips, brännboll
matches, laserdome games etc., which I have enjoyed very much. Special thanks
to Tuomo Takkula, Wojciech Mostowski, Boris Koldehofe and Alex Sinner for
skiing lessons in Trysil.

My gratitude to all the people at the department of Computing Science at
Chalmers for the opportunity to study in a friendly and intellectually charged
atmosphere.

Finally I am happy to thank my friends and relatives outside the department,
particularly my husband, Alexandre for constant technical, financial and moral
support.

Contents

1 Introduction 1

1.1 The GF system . 1

1.2 GF in use . 7

1.3 Thesis overview . 8

2 Syntax editing 9

2.1 Java GUI syntax editor for GF 15

2.1.1 Editor’s structure . 16

2.1.2 Creating a new object . 18

2.1.3 Refining the object . 18

2.1.4 Adding new languages . 22

2.1.5 Saving the object to a file 22

2.1.6 Changing the topic . 24

2.1.7 More syntax editing commands 25

2.2 Gramlets: GF on-line and in the pocket 28

2.2.1 Canonical GF . 30

2.2.2 Implementation . 32

3 Russian resource library 37

3.1 Resource grammar library structure 37

3.2 Designing a resource grammar for Russian 39

3.2.1 Types module . 41

3.2.2 Morphology and Paradigms modules 43

3.2.3 Syntax module . 45

3.2.4 High-level modules . 47

3.3 Application grammar examples 48

3.3.1 Arithmetic grammar: the resource and the non-resource
version . 48

3.3.2 Health grammar in five languages 52

3.3.3 Arithmetic grammar usage example 54

i

ii CONTENTS

4 Functional parsing for biosequence analysis 57
4.1 Sample biosequence grammar . 57
4.2 GF as a functional parser generator 59
4.3 Parser combinators . 62
4.4 Conclusion . 65

5 Conclusion 67
5.1 Related work . 67

5.1.1 Multilingual authoring . 67
5.1.2 Resource grammars . 69

5.2 Results . 72
5.3 Future work . 73

A Java GUI Editor command reference 77
A.1 File menu . 77
A.2 Languages menu . 77
A.3 View menu . 78
A.4 Upper panel buttons . 78
A.5 Middle panel buttons . 79
A.6 Bottom panel buttons . 79

B Automatically generated test examples 81

C Types module 89
C.1 Enumerated parameter types . 89
C.2 Word classes and parameter types 90

C.2.1 Nouns . 90
C.2.2 Pronouns . 91
C.2.3 Adjectives . 91
C.2.4 Verbs . 92
C.2.5 Other open classes . 94
C.2.6 Closed classes . 94
C.2.7 Relative pronouns . 94
C.2.8 Prepositions are just strings. 94

D A Small Russian Resource Syntax 95
D.1 Common Nouns . 95

D.1.1 Common noun phrases . 95
D.2 Noun Phrases . 96
D.3 Determiners . 96
D.4 Adjectives . 98

D.4.1 Simple adjectives . 98
D.4.2 Adjective phrases . 99

CONTENTS iii

D.4.3 Comparison adjectives . 99
D.4.4 Two-place adjectives . 100
D.4.5 Complements . 100

D.5 Individual-valued functions . 100
D.5.1 Modification of common nouns 101

D.6 Verbs . 102
D.6.1 Transitive verbs . 102
D.6.2 Verb phrases . 103

D.7 Adverbials . 104
D.8 Sentences . 105

D.8.1 Sentence-complement verbs 106
D.9 Sentences missing noun phrases 106
D.10 Coordination . 107

D.10.1 Conjunctions . 107
D.11 Relative pronouns and relative clauses 107
D.12 Interrogative pronouns . 108
D.13 Utterances . 110
D.14 Questions . 110

D.14.1 Yes-no questions . 110
D.14.2 Wh-questions . 111
D.14.3 Interrogative adverbials 111

D.15 Imperatives . 111
D.15.1 Coordinating sentences 112
D.15.2 Coordinating adjective phrases 112
D.15.3 Coordinating noun phrases 113

D.16 Subjunction . 114
D.17 One-word utterances . 115

Bibliography 117

iv CONTENTS

Chapter 1

Introduction

The Grammatical Framework (GF) is a grammar formalism based on type theory.
Together with implementation it forms a framework for performing various Natu-
ral Language Processing (NLP) tasks. In this chapter we will give a brief overview
of the system. For a systematic description of GF we refer to [Ranar, Ran03].

1.1 The GF system

The GF originates from the tradition of logical frameworks, which give the pos-
sibility to define logical calculi that can be used for interactive theorem prov-
ing. This tradition is closely connected to the functional programming paradigm,
whose programming style is very close to the language of mathematics. GF is
implemented in functional programming language Haskell. Logical frameworks
implement Type Theory concepts and some of the frameworks even translate
these concepts into user-friendly notations. Although the user can define new
mathematical objects in a logical framework, the expressions that could be used
for that purpose are limited to those hard-wired in the system. GF extends the
language of framework with a grammar formalism — a notation for syntactic
annotations.

The main features of the GF grammar formalism are:

• mapping between abstract and concrete syntax levels

• type system on both levels

The first property makes it natural to have multilingual grammars with a shared
abstract part (interlingua) and different concrete parts for different languages.
Type system allows us to verify the well-formedness of an input as well as resolve
ambiguities using semantic information contained in the type of the input.

A grammar in GF is defined in a declarative way using GF syntactic notation
close to those used in functional programming languages. The definition consists

1

2 CHAPTER 1. INTRODUCTION

of abstract and concrete part. Let us consider a simple Letter grammar. Here is
a piece from the abstract part:

cat

Letter ;

Recipient ;

Heading ;

Message ;

Ending ;

fun

MkLetter : Heading -> Message -> Ending -> Letter ;

NameHe, NameShe : String -> Recipient ;

DearRec : Recipient -> Heading ;

This introduces five types (categories) for different types of letter elements
after the reserved word cat and four functions for constructing a letter after
the reserved word fun. The first function (rule) says that a letter consists of a
heading, a message and an ending. The second and third tell that a recipient can
be formed from a string representing a name. The last function forms a Dear
heading from a recipient argument. So far we describe the letter domain in a
language-independent manner. Thus the abstract syntax is a sort of interlingua
— a semantical representation (meaning) of the domain.

Language specific components are placed in the concrete part of the grammar.
Here is a fragment from English concrete syntax:

param

Sex = masc | fem ;

Num = sg | pl ;

lincat

-- linearizations for "Message" and "Ending" are omitted

Letter = {s : Str} ;

Recipient = {s : Str ; n : Num ; x : Sex} ;

Heading = {s : Str ; n : Num ; x : Sex} ;

lin

-- linearization of MkLetter is omitted

NameHe s = {s = s.s ; n = sg ; x = masc} ;

NameShe s = {s = s.s ; n = sg ; x = fem} ;

DearRec rec = {s = "Dear" ++ rec.s ; n = rec.n ; x = rec.x} ;

1.1. THE GF SYSTEM 3

Here we can see the correspondence between the abstract and the concrete
part. Each category introduced in the abstract part has a linearization in the
concrete part after the reserved word lincat), each function — after the reserved
word lin. Category linearizations describe the type of the category declared in
the abstract part for a concrete language. All categories have record types with
one or more record fields.

For instance, the category Letter contains one field of the type String (Str).
This basically means that a letter is a string. The categories Recipient and
Heading have number (n: Num) and sex (x: Sex) fields besides the string field,
where Num and Sex are parameters with values enumerated after the reserved
word param. n and x are so called inherent parameters, which are fixed for every
instance of Recipient and Heading.

These type definitions become more meaningful if we look at function lin-
earizations. For example, the linearizations for the function NameHe, which re-
turns the result of the type Recipient, says that the number of the resulting
Recipient is singular and the sex is masculine while for the function NameShe

the sex will be feminine, which is also reflected in the names of the functions. The
field s of NameHe and NameShe just contains the string, which they take as an ar-
gument. Thus, NameShe "Mary" gives as a result the following record of the type
Recipient: { s = "Mary"; n = sg; x = fem}. Similarly, DearRec (NameShe

"Mary) will give the type Heading record { s = "Dear Mary"; n = sg; x =

fem}, since the ++-sign in DearRec linearization means string concatenation and
rec.s gets the value of the field s of the argument rec.

Now let us take a look at the Russian version of the grammar Letter, namely
at the part, which differs from the English version:

DearRec rec = {s = regAdj "dorog"! rec.n ! rec.x ++ rec.s ;

n = rec.n ; x = rec.x} ;

regAdj : Str -> Num => Sex => Tok =\s -> table {
sg => table {masc => s + "o½"; fem => s + "aÂ"} ;

pl => table { => s + "ie""}
} ;

In the linearization of the function DearRec the fields’ values n and x are
inherited from the argument rec similarly to the English version. The string
field, however, is more complex due to inflecting of the word Dear in Russian,
whose inflection table is provided by the extra function regAdj. In order to
choose the right form we need to use the number and the sex fields’ values of the
argument rec. Then we can use the operator ! to select the right values from
the inflection table thus providing grammatically correct output.

As we can see all language-specific things can be expressed in the concrete
part, without disturbing the semantics of the abstract part. However, the ab-

4 CHAPTER 1. INTRODUCTION

stract part should be refined enough to take into account all possible grammar
variations in different languages. For example, the English part does not really
use the parameter Sex, since the word dear does not change. However, the two
versions NameShe and NameHe of the same function are kept for the sake of the
compatibility with other languages, where the distinction between masculine and
feminine forms is important.

A grammar definition is stored in a text-file. Usually the abstract part and
the concrete part for each language are stored in separate files. The command
include is used whenever it is necessary to access the content of another file.
Therefore, grammar definitions are separated from the GF algorithmic core. They
are loaded and compiled before usage. During the compilation a parser for the
loaded grammar is generated. There is a number of user interfaces or modes in
which GF can be run. The main functionality of the system comprises:

• constructing semantic trees for expressions covered by the loaded grammars
using parsing

• constructing semantic trees for expressions covered by the loaded grammars
using interactive syntax editing

• linearization of semantic trees for expressions covered by loaded grammars

Translation is the combination of the first and the third operations above.
Input language concrete syntax is used during the first step. Output language
concrete syntax is used during the last step. The abstract syntax shared by all
implemented languages is used over the whole translation procedure.

The abstract syntax represents a syntactic and partially semantic model of the
natural language fragment we are trying to cover with a GF grammar. It defines
categories and relationships among them very much similar to the manner of
standard context-free rules, although using different notation. Abstract syntax
represents language independent properties of the described natural language
domain.

Concrete syntax, represented by linearization rules introduces actual strings
(words) from certain natural language. The values returned by linearization can
be not only strings, but also tables and records. This is especially important
for expressing such language dependent features like morphological inflections
without affecting the abstract part. Tables look very much like inflection tables
in the grammar books. Records remind of dictionary entries. For example, here
is the description of the word ona (she) in the Russian concrete syntax:

oper pronOna: Pronoun =

{ s = table {
PF Nom NonPoss => "ona";
PF Gen No NonPoss => "eë";
PF Gen Yes NonPoss => "neë";

1.1. THE GF SYSTEM 5

PF Dat No NonPoss => "e½";
PF Dat Yes NonPoss => "ne½";
PF Acc No NonPoss => "eë";
PF Acc Yes NonPoss => "neë";
PF Inst No NonPoss => "e½";
PF Inst Yes NonPoss => "ne½";
PF Prepos NonPoss => "ne½";
PF (Poss) => "eë"
} ;

g = PGen Fem ;

n = Sg ;

p = P3 ;

} ;

Every morphological entry is represented as operation definition starting with
the reserved word oper followed by the name of the operation, here pronOna. The
operation return type is specified after a semicolon, here — Pronoun. Thus, the
word ona (she) in Russian is a pronoun. Pronoun type in Russian is a record
with several fields that contain all the grammatical information about the entry
word: s (different word forms), g(gender), n(number) and p(person). The field
s is a table that contains various inflection forms of the entry word just as a
grammar book table does. The rest of the fields provide the information about:
gender (g) — feminine (PGen Fem), number (n) — singular (Sg) and person (p)
— third (P3) of the word ona (she). Similar descriptions of a word can be found
in a dictionary.

Linearization and type checking are straightforward to implement having the
results of logical frameworks. Parsing is more difficult. The GF grammar for-
malism is stronger than context-free grammars. Parsing in GF consists of two
steps:

• context-free parsing (a number of parsers are implemented including basic
top-down, Earley, chart)

• postprocessing phase

The result produced by a context-free parser is further transformed by post-
processing, which mainly consists of argument rearrangements and consistency
checking for duplicated arguments. Correspondingly, a GF grammar needs to be
translated into a context-free grammar, before feeding into a context-free parser.
After such translation each GF rule is represented by a context-free rule anno-
tated with so called profile that contains non-context-free information that will
be used by the postprocessor. Profile describes the mapping from the position
of a rule argument in the tree (after postprocessing) to the position in the string
(parsed text). Possible argument recombinations are:

6 CHAPTER 1. INTRODUCTION

• Permutation

• Suppression

• Reduplication

These operations are important for describing multilingual grammars sharing the
same abstract syntax (semantic model). For instance, permutation is used for
translation of adjective modifiers from English into French: even number corre-
sponds to nombre pair. Suppression is needed, for example, in translation from
English into Russian, where the first language uses noun articles, but the second
does not. In colloquial Russian reduplication of adjectives has an intensifying
function. Like in bely½-bely½ sneg, which means ”very white snow”. In some
languages reduplication is used to form plural form [Lin95]. The expressive power
of the GF grammar formalism permits to handle these phenomena known to be
non-context-free [JM00].

To give an example of a profile annotation let us look at the GF rule for
Finnish grammar that linearize strings like ”Every woman is pretty”.

fun f: A -> B -> C -> D

pattern f x y = y ++ "kuin"++ y ++ "on"++ z

we will get the context free rule:

f ::= B "kuin"B "on"C

with profile:

[[], [1,2], [3]],

where each element in the list contains occurrences of the corresponding argument
of the function. Positions are numbered according to the order in the right part of
the resulting context-free rule. Thus, the first argument is suppressed, the second
repeated twice on the first and second place in the rule. The third argument
appears once at the third position.

Having at disposition the mechanisms for permutation, suppression and redu-
plication, we can easily describe the notorious non-context-free language:

{anbncn|n = 1, 2, ...}

The corresponding GF grammar is the following
Abstract part:

cat S; Aux

1.2. GF IN USE 7

fun exp: Aux -> S

first: Aux

next: Aux -> Aux

Concrete part:

lincat Aux = {s1 : Str; s2 : Str; s3 : Str; }

lin

exp x = {s= x.s1 ++ x.s2 ++ x.s3}
first = {s1 = "a"; s2 = "b"; s3 = "c"; }
next x = {s1 = "a"++x.s1; s2 = "b"++ x.s2; s3 = "c"++ x.s3; }

1.2 GF in use

In the rest of the thesis we will talk about some usages of GF. GF provides a
framework for producing high-quality automatic translation in limited domains,
which determines the corresponding potential usage. However, since GF is an
open-ended system we can distinguish between the different kinds of usages.

Depending on their competence the GF users fall into one of the categories:
author, grammarian, implementor.

On the first level the user is only allowed to write documents within the pre-
existing grammar set. The graphical user interface (GUI) provided by Java GUI
Syntax Editor described in chapter 2.1 ensures that work on this level will not
require any specific knowledge of GF.

On the next level the user is able to add new grammars. It puts additional
demands: the GF grammar formalism together with some linguistic knowledge.
The grammarian creates a new grammar file in a text editor according to the GF
grammar formalism. However, the grammar development cost can be lowered by
using the resource grammar library, which takes care of the standard grammatical
rules. Chapter 3 is devoted to the development of such a resource grammar
library for Russian.

On these two levels we have some control for example over parsing algorithms
to be used. However, the core of the system with parsing, linearization and other
transformation algorithms are hidden. Parsers for user grammars are generated
automatically. Finally, an implementor is supposed to be a programmer with
fair knowledge of linguistics in general and the GF system in particular. GF is a
really inter-disciplinary project.

We are aiming at creating an Integrated Development Environment (IDE) for
the GF language that contains tools for users on different levels. This document
is a collection of more or less independent reports describing several projects

8 CHAPTER 1. INTRODUCTION

within the GF system reflecting the progress towards our goal. GF is constantly
developing, so the system status described is subject to change.

1.3 Thesis overview

Chapter 2 consists of three parts all related to syntax editing in GF:

• Introductory section tries to address the theoretical issues behind the im-
plementation.

• In the next section we look at GF as a multilingual authoring tool.

• Final section tells about implementing Gramlets — a specialized version of
the GF syntax editor running on PDA and WWW.

Chapter 3 is devoted to resource grammars — a supporting library for the
grammarian. Adding Russian to the resource library is the main result of this
chapter.

Chapter 4 describes out attempt to use GF and Haskell for protein structure
prediction.

The concluding chapter 5 contains a discussion of related work, results and
future plans.

There are four appendixes:

• The command reference for Java GUI syntax editor described in section
2.1.

• Automatically generated test examples (in English and in Russian) from
the resource grammar library described in chapter 3.

• The resource grammar library module types (Russian) containing the de-
scription of word classes and morphological parameters.

• The resource grammar library module syntax (Russian) with syntactic
rules.

The last two appendixes are automatically translated from the GF grammar
format into the latex format using the gfdoc tool.

Chapter 2

Syntax editing

The editing procedure in GF is strongly connected to the concept of interactive
theorem proof construction in proof editors like ALF or Alfa[Mag94, Hal03].

Proof checker and user interface are the two main parts of such a proof edi-
tor, which are usually clearly separated and often even implemented in different
languages. In this chapter we will talk about two programs both written in
Java. The first is a user interface for GF (section 2.1). The second is Gramlets
(section 2.2), where the core-interface division is more subtle.

In the subsequent sections of this chapter we will concentrate on the imple-
mentation and graphical user interface while here we want to be more formal in
presenting the syntax editing semantics. By syntax editing semantics we mainly
mean the one present in Gramlets.

The general theory behind the GF grammar formalism is Martin-Löf’s Type
Theory - a mathematical meta-language (or framework) for representing different
logics and reasoning about them. Axioms and rules of a logic as well as functions,
predicates and theorems - everything is represented as constants. Each constant
has a name, a type and a definition (optional) that represent the meaning (or
semantics) of the constant.

To reason within a logic, which traditionally means to prove some theorems
within the logic, in type theory means to declare constants representing these
theorems, i.e. to specify their name, type and definition. The type reflects the
statement of a theorem while the definition is responsible for the proof. To be
correct the definition (or the proof) should be of the declared type.

Type theory language is expressive - by introducing new constants we can
extend our logic with all the usual inductive data types and logical connectives.

The GF grammar formalism is build upon type theory language. It uses
the notation with predefined keywords (such as cat, fun) to distinguish among
the different sorts of declarations (or judgments). The main division is between
the abstract (corresponds to the type of a constant in type theory) and the
concrete (has no direct analog in type theory) syntax declarations. Each abstract
declaration should be completed with the corresponding concrete declaration.

9

10 CHAPTER 2. SYNTAX EDITING

Abstract and concrete parts should match for the whole constant declaration to
be correct.

Judgments in GF represent grammatical categories and rules. A GF grammar
is a sequence of judgments and can be extended with new declarations.

ALF and Alfa proof editors allow the user to build theories by introducing
new constant declarations in type theory framework. They also provide pretty-
printing facilities - translating type theory into user-friendly notations. New dec-
larations are constructed interactively by top-down step-wise refinement. One
proof(definition)-constructing step corresponds to using an object formation rule
in type theory. The rules are abstraction (introducing a variable, which corre-
sponds to making an assumption) and application (using the constants already
defined in the theory).

Each step is invoked in the editor by an elementary editing command, which is
immediately checked by the type checker - the main part of the framework. If the
step is correct, the corresponding changes are shown on the screen, otherwise an
error message is reported. In this way the framework ensures that the tree built is
type correct (or well-formed), i.e. corresponds to the declared type. To perform
the type checking the framework must consult both the type of the declaration to
be defined and the so called environment - constant definitions already declared in
the current theory. It actually does even more, namely, analyzes the environment
and the type sought and then suggests the next step, by listing the pre-approved
alternatives. In case there is only one possible alternative it can even fill-in the
next step automatically. In non-trivial cases the next step is chosen by the user
and the framework helps by narrowing down the possible choices. Thus, the
framework is assisting to construct the desired definition interactively correcting
and consulting the user at every step.

A similar stepwise interactive procedure is used for editing a multilingual
text in GF. Here, new declarations are simply phrases we want to construct,
which have certain types (such as a sentence or a verb phrase). The environment
consists of the rules (the constants defined already) in a grammar (the current
theory). The type checking and the corresponding next step suggestion list are
also present in the GF syntax editor. Unlike proof editors, in GF the bottom-up
construction is also possible.

Another useful concept borrowed from proof editors is metavariable - a place-
holder for incomplete constant definition ?i :T. It has an expected type T and
an identifier ?i. An identifier consists of a question mark indicating that the
declaration is incomplete, i.e. intended to be replaced by a complete object; and
a number assigned to tell apart different metavariables. All metavariables carry
unique identifiers (numbers).

Metavariables represent the parts of the definition that are not yet refined.
Therefore, a definition-constructing step is basically a metavariable-refinement
step of finding an appropriate instantiation for the metavariable.

Implementation of a type checker is the core of a logical framework. The

11

difficulty of a type checking algorithm depends on the expressiveness of the un-
derlying meta-theory.

When writing a Java GUI Syntax Editor we did not deal with the type check-
ing problem, since all the computations were performed on the Haskell side and
the Java side just displays the result for the user. The type checking algorithm
for the main GF system is outside the scope of this document [Coq96].

In case of Gramlets, which is implemented purely in Java, type checking for
syntax editing is needed. However, a grammar comes to Gramlets compiled into
the canonical form - a simplified (computation-oriented) representation of the
grammar. Further in this section we will speak about syntax editing implemented
in Gramlets although most of it applies to the GF syntax editing in general, since
Gramlets’ functionality is borrowed from the GF Syntax Editor.

The main functionality of Gramlets is syntax editing operations on abstract
syntax tree object. In GF the user is only allowed to edit one object at a time.
It can of course be saved for future references in a file, but otherwise it is not
possible to have several objects during the editing session.

Syntax editing of an abstract syntax tree starts from creating a new syntax
tree object of a certain type. This corresponds to the type declaration during
constant declaration in type theory. Unlike for example Alfa implementation of
the type theory, in GF the user is only allowed to choose among the predefined (in
a grammar) types. No new types can be added on the fly. Thus, the first syntax
editing step is always type declaration of the object to be built. The predefined
types are always primitive in the sense that all the constrains involved are of the
form ?i:T (if no dependent type are introduced, see 2.1.7). Therefore, no further
constraint unification is needed for type checking.

Once the type of the tree is chosen, a new syntax tree object is created. It
only contains a root node, which contains a metavariable to be filled later.

Abstract syntax tree is a data structure, which has a root-node and a focus-
node, where focus node works like a cursor in a text editor and points out where
the current editing takes place. The tree nodes and the focus are parameters that
represent so called editing state. In the full GF the state also includes the current
grammar imported (environment). However, since the grammar is hard-wired in
Gramlets the environment remains unchanged during syntax editing.

A node contains the node information and the pointers to its children- and
parent- nodes. A node information can be either a metavariable (a type dec-
laration) or a function name (constant application), whose arguments are put
in the children-nodes. In figure 2.1 the abstract syntax tree for the expression
0+?1 is shown. Storing the type information in a node is actually needed only
for metavariables, since for applied functions (predefined constants) the type
information can always be looked up in the grammar (type declaration of the
constant). However, we keep the type information even for function-nodes to
improve the performance.

Syntax editing process is replacing (or refining or instantiating) the metavari-

12 CHAPTER 2. SYNTAX EDITING

Figure 2.1: The abstract syntax tree for the expression 0+?1. The root contains
the operation function Plus, which takes two arguments (children nodes) and
returns the result if the type Int. One argument is the function Zero (with Int
result), while the other is not yet known. Therefore, it contains a metavariable
with identifier ?1 of the type Int(Integer). The field with values FUNCTION and
META is used to distinct complete and incomplete nodes.

ables with functions. A syntax tree is completed when there are no metavariables
left. The refinement steps are suggested by the system just as during the proof
construction in a proof editor. To do so the system does a simple type checking
consulting the grammar (the environment) and the focus-node information (the
type declaration).

Traditionally type checking is a program that type annotates abstract syntax
trees parsed from a text input. However, since Gramlets do not deal with parsing,
but only with text generation, the syntax trees are built already containing the
type information from the start. The type-checking operations are, therefore,
localized in the syntax editing commands by which the trees are built. Each
refinement operation is responsible for the type checking necessary for performing
the corresponding operation so that the syntax tree remains well-formed after
the operation is carried out. Such localization is possible, since all the type
information we need to perform a check is localized in the focus-node, not spread
out over the whole tree, so it is sufficient to perform a local type check.

There are five basic syntax editing commands in GF:

• The top-down command refine is a standard function (constant) appli-
cation in proof editors. Here we have to make sure that the type of the
focus-node is the return type of the function. Children nodes containing
the metavariables of the function argument types will be introduced with
this refinement operation if there are any arguments to that function. For

13

example in Fig. 2.2 the focus node of the tree on the top of the picture has
type Exp. We can use function + : Exp → Exp → Exp to refine the focus
node, since the return type of the + is Exp. Two new metavariables are
introduced in the resulting tree. They both have the type Exp, since the
+-function takes two arguments of this type.

• The bottom-up command wrap is used on non-metavariable root- node to
wrap the current tree into a bigger tree. Type checking here is simply
finding the functions (constants), which have arguments of the type of the
focus-node. If there is more than one argument of this type several alterna-
tives will be presented. After wrapping operation the function arguments
different from the focus-subtree if any will be represented by the metavari-
ables of the appropriate types. For example in Fig. 2.2 we can wrap the
focus node of the middle tree with function succ : Exp → Exp. The re-
sulting tree will comprise the + subtree with the succ node on the top. No
extra metavariables are introduced, since succ takes only one argument of
the type Exp.

• ChangeHead is performed on nodes that contain a function that can be
replaced with another function of the same type while keeping the old ar-
gument subtrees. Type checking in this case is comparison of the old and
the new function types. Corresponding argument types as well as the return
type should be the same for both functions. No new metavariable nodes
will be introduced with this operation. For example in Fig. 2.2 function
+ : Exp → Exp → Exp can be replaced by ∗ : Exp → Exp → Exp

function with the same type signature. Arguments stay the same while the
top node + is replaced by ∗. The resulting tree is shown in the right down
corner.

• PeelHead is used if the focus node contains a function of the type: f: A
->A to remove the function while keeping the argument subtrees. Can be
seen as opposite to the wrap command. To perform the peel operation
correctly we need to check that the function actually has such a type. No
new metavariable nodes will be introduced with this operation. For example
in Fig. 2.2 the succ head can be peeled off. This transforms the tree in the
left down corner back into the middle tree.

• Delete (local undo) operation replaces the subtree in focus with a metavari-
able of the proper type. To specify the correct type we need to look up the
type of the function (constant) specified in the focus node. For example in
Fig. 2.2 delete operation performed on the middle tree will lead back to the
tree on the top, so the whole +-subtree will be removed and replaced by a
metavariable of the type Exp.

14 CHAPTER 2. SYNTAX EDITING

Figure 2.2: Examles of 5 basic types of syntax editing commands in GF. Syntax
trees contain hidden parts (shown as roofs) and the focus nodes with its subtrees
(if any). The original abstract syntax tree is the top tree. Arrows show possible
refinement steps. The type of the editing step and the type signature of the
refinement function are shown near the corresponding arrow.

2.1. JAVA GUI SYNTAX EDITOR FOR GF 15

The Gramlets syntax editor only proposes (by showing in the editing menu)
the editing steps that are pre-approved during type checking. The type checking
procedure consists of simply looking at the focus-node type information and then
fetching the appropriate functions (functions with the return type of the focus-
node) from the grammar. Delete and refine operations are standard for proof
editors. The rest of the operations are more specific to GF. For syntax editing
examples using the Java GUI editor see section 2.1.

As we have mentioned Gramlets are only able to work in the direction of text-
generation, not parsing. The process of translating an abstract syntax tree into
a text is called linearization. This is done by single-pass traversal of the syntax
tree by using the canonical GF computational model. Linearization transforms
an abstract syntax tree into sequences of terminals by using linear patterns de-
fined in the linearization rules (constant definitions). The linearization rules are
required to be compositional i.e. the linearization of a constant is a function of
the linearizations of its arguments. This allows us to treat argument variables
as pointers to the linearizations of subtrees, which in turn makes the lineariza-
tion algorithm efficient enough to produce linearizations of trees on the fly. The
linearization of an incomplete abstract syntax tree containing metavariables is
shown to the user as a feedback during the syntax editing of a tree. Update in
a tree invokes the corresponding update in the linearization. Producing a com-
pleted (without metavariables) text from the abstract syntax tree corresponding
to the meaning of the text is the goal of the syntax editing in GF.

The canonical representation of a grammar is essentially a table where we can
easily look-up the type information as well as linearization patterns (constant
definition) needed for type checking and linearization.

Two supporting syntax editing operations undo (chronological) and random
are also implemented in Gramlets. For undo we just keep the record of the trees
at the last editing steps. Random generator makes the choice of the next step
among the pre-approved alternatives until all metavariables are eliminated from
the tree. The random operation is convenient, for example, for the demonstration
and surface testing of a grammar.

Two subsequent sections are about two different syntax editing programs:
Java GUI Syntax Editor (GUI modules in Java) and Gramlets (standalone Java
program). The next section describes the Java GUI Syntax Editor. Syntax
editing operations in Gramlets is a subset of those in Java GUI Syntax Editor,
so to avoid repetition we will just talk about the Gramlets implementation and
general motivation behind the project.

2.1 Java GUI syntax editor for GF

Grammatical Framework (GF) forms a basis on which various Natural Language
Processing (NLP) applications can be built. Java Syntax Editor provides a

16 CHAPTER 2. SYNTAX EDITING

Graphical User Interface (GUI) for GF. Together with the editor the GF system
can be used as a multilingual document authoring tool. The Java GUI Syntax
Editor is intended for work on the author level. This section describes the Java
Syntax Editor program and presents a simple example of the GF syntax editing
session. The content of this section overlaps with [KNR03, Khe02, J.K03].

The main purpose of the Syntax Editor is to construct a text simultaneously
in several natural languages. The author does not have to know all the languages
represented, but the GF system assures that if the output is correct in at least
one of them, including the GF abstract language - language-independent semantic
representation, then it will be syntactically and semantically correct in the rest
of the languages. This reflects the idea of so-called multilingual authoring.

The core of the GF system is written in a functional programming language
Haskell. Actually, there is a number of user interfaces available for the GF:
command line mode, ALFA proof editor, Fudget Syntax Editor and Java Syntax
Editor. The subject of the paper is the latter and the latest one - Graphical User
Interface (GUI) written in an imperative programming language Java. All the
rest belong to functional programming. Java was chosen as an implementation
language for GF user interface due to the following main reasons:

• Cross-platform

• Unicode support

• Extensive GUI libraries

The GF - GUI architecture takes a standard client-server approach (Fig. 2.3).
The GF executable (Haskell source)plays the server role. Java GUI classes in-
terpreted by Java Virtual Machine (JVM) form a client. The communication
protocol consists of GF command string sent by the client, which uses the stan-
dard controls like buttons and menus in order to issue corresponding request, and
GF result string in XML-format. GF commands used are roughly the same as in
the command line mode. The GF result string is processed on the client side to
be fitted into the GUI controls.

2.1.1 Editor’s structure

We will describe the functionality of the Java GUI Syntax Editor by examples.
Before we start with the examples let us look at the general appearance of the
syntax editor in Fig. 2.4.

The main areas are:

• Tree Panel – displays the abstract syntax tree (AST) representation of the
edited object.

2.1. JAVA GUI SYNTAX EDITOR FOR GF 17

Figure 2.3: The communication between GF and Java GUI is performed accord-
ing to the client-server architecture.

Figure 2.4: . Java GUI Syntax Editor’s structure.

18 CHAPTER 2. SYNTAX EDITING

• Linearizations Panel – shows the linearizations corresponding to the AST
in different languages. In Fig. 2.4 there are linearizations in Swedish and
English.

• Editing Menu Panel – contains the refinement options for the current focus.
You can also get the refinement list in a pop-up menu invoked by a mouse
right-click on the chosen tree node.

Other common elements are:

• Topic – says to what domain the current editing object belongs. The topic
is extracted from the grammar file name. In Fig. 2.4 the topic is LETTER,
which means that the user is building a letter according to the GF letter
grammar.

• Focus – Colors background selection marks the editing focus. Focus is high-
lighted both in the tree and the linearizations, since they are just parallel
representations of the same editing object.

• Focus Type – specifies the syntax type of the editing focus. In Fig. 2.4 the
focus type is Ending , which means that the user is now constructing the
final piece of the letter.

For a more systematic explanation of GUI functionality take a look at ap-
pendix A.

2.1.2 Creating a new object

When you start the GF editor the topic and the languages you want to work
with should be chosen. Let us say, we want the LETTER topic in four languages:
English, Swedish, French and Finnish. The topic can be changed later at any
moment. You can create a new editing object by choosing a category from the
New list. For example, to construct a letter, choose the Letter category (Fig. 2.5).
In Fig. 2.6 you can see the created object in the tree form in the left upper part as
well as linearizations in the right upper part. The tree representation corresponds
to the GF language-independent semantic representation, the GF abstract syntax
or interlingua. The linearizations area displays the result of translation of abstract
syntax representation into the corresponding language using the GF concrete
syntax.

2.1.3 Refining the object

According to the LETTER grammar a letter consists of a Heading, a Message and
an Ending, which is reflected in the tree and linearizations structures. However,

2.1. JAVA GUI SYNTAX EDITOR FOR GF 19

Figure 2.5: The New menu shows the list of available categories within the current
topic LETTER. Choosing the category Letter in the list will create an object of
the corresponding type. The linearizations area contains a welcome message when
the GF Editor has just been started.

the exact contents of each of these parts are not yet known. Thus, we can only
see question marks, representing metavariables, instead of language phrases in
the linearizations.

Editing is a process of step-wise refinement, i.e. replacement of metavariables
with language constructions. In order to proceed you can choose among the
options shown in the refinement list. The refinement list is context-dependent,
i.e. it refers to the currently selected focus. For example, if the focus is Heading,
then we can choose among four options. Let us start our letter with the DearRec
structure (Fig. 2.7(a)).

In order to see the linearizations in three languages at the same time we have
to first choose the text mode in the Filter menu, see the upper panel buttons
description. This will make the letter look more compact without extra free lines
between the letter parts. Second, we have to scroll down. Alternatively to the
second step one can switch off the abstract representation: see subsection 2.1.4.

Now we have a new focus - metavariable ?4 of the type Recipient and a new
set of refinement options. We have to decide what kind of recipient the letter has.
Notice that the word Dear in Swedish and French versions is by default in male
gender and, therefore, uses the corresponding adjective form. Suppose we want
to address the letter to a female colleague. Then we choose the ColleagueShe
option (Fig. 2.7(b)).

Notice that the Swedish and French linearizations now contain the female

20 CHAPTER 2. SYNTAX EDITING

Figure 2.6: The Abstract Syntax tree represents the letter structure. The current
editing focus, the metavariable ?1 is highlighted. The type of the current focus
is shown below the linearizations area. The context-dependent refinement option
list is shown in the bottom part.

Figure 2.7: (a) The linearizations are now filled with the first word that corre-
sponds to Dear expression in English, Swedish, French and Finnish. The refine-
ment focus is moved to the Recipient metavariable. (b) The Heading part is now
complete. The adjective form changes to the corresponding gender after choosing
the recipient.

2.1. JAVA GUI SYNTAX EDITOR FOR GF 21

Figure 2.8: (a) The complete letter in four languages. (b) Choosing the plu-
ral male form of the Recipient causes various linguistic changes in the letter as
compared to (a).

form of the adjective Dear , since we chose to write to a female recipient. This
refinement step allows us to avoid the ambiguity while translating from English
to, for example, a Swedish version of the letter.

Proceeding in the same fashion we eventually fill all the metavariables and
get a completed letter like the one shown in Fig. 2.8(a).

There are six types of commands appearing in the Select Action window:

• r (refine) – used on metavariables to refine them.

• w (wrap) – used on non-metavariables to wrap them by functions.

• ch (changeHead) – used on functions to replace the current function with
another function of the same type while keeping the old argument subtrees.

• ph (peelHead) – used on functions of the type: f : A → A to remove them
while keeping the argument subtrees. Can be seen as opposite to the wrap
command.

• d (delete) – used on non-metavariables to delete them.

• s (select) – used after ambiguous parsing or paraphrase.

Refinement steps can also be generated randomly, by clicking on the Random
button.

A completed letter can be modified by replacing parts of it. For instance, we
would like to address our letter to several male colleagues instead. We need first

22 CHAPTER 2. SYNTAX EDITING

Figure 2.9: (a) A refinement step can be done by using the Read button, which
asks the user for a string to parse (only in English in the present version).(b)
When the parsed string in (a) is ambiguous GF presents two alternative ways to
resolve the ambiguity.

to move the focus to the Header node in the tree and delete the old refinement. In
Fig. 2.9(a), we continue from this point by using the Read button, which invokes
an input dialog, and expects a string to parse. Let us type colleagues.

The parsed string was ambiguous, therefore, as shown in Fig. 2.9(b), GF asks
further questions. Notice that after choosing the ColleaguesHe option, not only
the word colleague , but the whole letter switches to the plural, male form, see
Fig. 2.8(b). In the English version only the noun fellow turns into plural, while
in the other languages the transformations are more dramatic. The pronoun you
turns into plural number. The participle promoted changes the number in the
Swedish and French versions. The latter also changes the form of the verb have.
Both the gender and the number affect the adjective dear in French, but only the
number changes in the corresponding Finnish adjective. Thus, the refinement
step has led to substantial linguistic changes.

2.1.4 Adding new languages

So far all the available languages have been displayed. However, some of them
can be switched off using the Languages menu. To add a new language, one has
to work on a concrete syntax. Target languages can be added on the fly: if a new
language is selected from the Language menu, a new view appears in the editor
while other things remain equal, including the document that is being edited.
Fig. 2.10 shows the effect of adding Russian to the above example.

2.1.5 Saving the object to a file

We can save our work by clicking the Save button. In the open dialog we should
specify the name of the file as well as navigate to the directory where the file

2.1. JAVA GUI SYNTAX EDITOR FOR GF 23

Figure 2.10: Now we are able to translate the letter into Russian.

Figure 2.11: Pressing the Save button brings up a file chooser dialog.

24 CHAPTER 2. SYNTAX EDITING

Figure 2.12: Pressing the New Topic button brings up an open dialog to choose
a grammar file.

will be placed. The default directory is the GF directory under Windows plat-
form or the running directory otherwise. We can also choose the saving format:
Text or Term. The Term option will save the abstract syntax representation,
while the Text option – the linearizations displayed at the moment. Both types
of documents can be later opened by the editor. However, it is safer to open
terms, because texts may be impossible to parse since linearization may destroy
important information. For example, is we save the English version of the letter
containing Dear colleague - heading the gender information of the colleague word
will be lost. In Fig. 2.11 we want to save the language-independent, abstract
representation in the file named myLetter in the GF directory.

2.1.6 Changing the topic

The LETTER domain is restricted to constructing letters. Several other sample
grammars are provided with GF and also the user can write his own grammars.
To create a new subject matter (or modify an old one), one has to create (or
edit) an abstract syntax. When you want to work in a different domain, assuming
that the corresponding grammar (both abstract and concrete parts) is written,
you can use the New Topic button. You will get an open dialog, where you

2.1. JAVA GUI SYNTAX EDITOR FOR GF 25

Figure 2.13: GF Syntax Editor after choosing the ARITHM (ARITHMETIC)
grammar.

should navigate to the grammar file and specify the file name. Windows users
have the grammar files stored in the Grammars subdirectory of GF directory.
In Fig. 2.12 we are about to download the grammar from arithmetic.Eng.gf file,
where .gf is the extension of GF grammar files, Eng tells that the file describes
the linearizations in English and logic is the topic name that will be shown on
the upper button panel.

After choosing the file with a new grammar you will get a picture very sim-
ilar to the one in the beginning of this example, except for the different topic
and, correspondingly, a new list of available categories, and a different welcome
message Fig. 2.13.

2.1.7 More syntax editing commands

The ARITHMETIC grammar allows us to illustrate some commands, which were
missing in the previous examples, namely, wrap and peelHead refinement com-
mands as well as three commands from the Modify menu: compute, paraphrase
and solve.

Let us start with a simple construction shown in Fig. 2.14. It contains a
theorem and its proof, which is rather trivial, since it just refers to an axiom
from the grammar.

Notice that unlike the LETTER grammar ARITHMETIC grammar can also
be treated as a formal mathematical theory describing arithmetical domain. The
ARITHMETIC grammar, therefore, contains definitions, axioms and deduction
rules, which allows us to formulate and prove theorems about the arithmetic
domain similarly to what one can do in proof editors [Mag94, Hal03].

The current focus node zero can be wrapped, for example, with succ function.

26 CHAPTER 2. SYNTAX EDITING

Figure 2.14: Zero node can be wrapped with succ function. This is possible, since
the succ function takes a natural number as an argument and returns the result
of the same type.

2.1. JAVA GUI SYNTAX EDITOR FOR GF 27

Figure 2.15: Constraint zero <>?0 is produced by the type-checking procedure
to assure that the theorem type is correct, namely, the proof part contains the
proof of the stated proposition. PeelHead selection option undo the wrapping
operation and restore the proposition in Fig. 2.14. This is only possible for
functions that take only one argument and the types of the argument and of
the result are the same. Paraphrase operation allows us to search for equivalent
expressions.

The result is shown in Fig. 2.15. So, now instead of the statement Zero is even
we have the statement The successor of zero is even. Although, the new state-
ment is correct from the linguistical point of view the mathematical proposition
is wrong and can not be proved within the arithmetic theory supported by the
ARITHMETIC grammar. But what is even more interesting is that we changed
the proposition while the proof part remains the same. However, in the ARITH-
METIC grammar, as in mathematics in general a proof and a proposition in a
theorem are not irrelevant to each other. Namely, the theorem proof should prove
the proposition of the theorem. For this purpose, the dependent types are used.
Thus, the type of proof is dependent on the proposition type. This leads to type-
checking procedure invocation each time we change some part of the theorem.
Type-checking makes sure that the proof and the proposition are still conform
to each other. The result of the type-checking is a number of constraints that
should be met in order to keep the theorem correct. In Fig. 2.15 we can see such
a constraint in the root node of the tree in brackets: zero <>?0. This simply
says that the theorem is correct as soon as zero is equal to the successor of zero.

To go back to the correct proposition we can use the peelHead refinement

28 CHAPTER 2. SYNTAX EDITING

Figure 2.16: There are two versions (synonyms): one and the successor of zero
to choose from.

option, which will basically undo the effect of the wrap operation. However, this
is true only for a wrap function, where both the result and the argument are of
the same type. For example, if we chose to wrap with the sum function, which
takes two arguments, we could not just peel the sum and would have to use the
Undo button to restore the original proposition.

Another operation that can be demonstrated here is paraphrase from the
Modify menu, see Fig. 2.15. As the result of the paraphrase search we get two
selection options, see Fig. 2.16. Namely, we can keep the successor of zero or use
stylistically nicer one instead, see Fig. 2.17. Of course, such variations are possible
due to the corresponding definitions made in the ARITHMETIC grammar. For
instance, the function one is defined as the successor of zero succ zero. If we want
to go back to the longer successor expression we can use the operation compute
from the Modify menu, see Fig. 2.17. It unfolds the function definition if any and
computes the linearization of the result.

Dependent types allows us to even fill parts of a theorem by using the solve
operation from the Modify menu, see Fig. 2.18. Here, we do not have an argument
for the even function, although we have a completed proof, which is dependent
on the proposition. Solve operation resolves the constraint zero <>?0 necessary
for the theorem being correct. In this case it is only possible if the argument to
the even function is zero, which gets us back to Fig. 2.14.

More systematic description of the Java GUI Syntax Editor controls can be
found in the Appendix I. The GF commands that are not accessible via GUI
controls can still be sent to GF as a command line using the GF command
button.

2.2 Gramlets: GF on-line and in the pocket

Gramlet is a Java applet/application with syntax editing functionality (described
in section 2.1) for a specialized grammar [KJR03]. It is another user-related
branch in GF development, whose name is a combination of the words GRAM-
matical framework (GF) and appLETS. The main purpose is to make GF more
accessible for wider audience. This is to be achieved by better portability and

2.2. GRAMLETS: GF ON-LINE AND IN THE POCKET 29

Figure 2.17: Compute operation will unfold the definition of one giving the suc-
cessor of zero.

Figure 2.18: Solve operation will resolve the type constraint zero <>?0 (in the
root node) and fill the metavariable ?0.

30 CHAPTER 2. SYNTAX EDITING

easier installation and usage.
The Gramlets project is the first attempt to implement the GF functional-

ity purely in an imperative programming language, namely, Java known for its
portability. This makes Gramlets more portable, since they do not need the
platform-dependent executable (written in Haskell) necessary for the main GF
system.

Gramlets written in Java are aimed to work on PDA (Personal Digital As-
sistant) devices that support Java. Our target PDA is Sharp Zaurus SL-5500
handheld computer [Zau03], which has a JVM (Java Virtual Machine) compati-
ble with the platform. To easily install and run a Gramlet on a PDA a special
installation package is prepared.

A gramlet as a Java applet can be run in an internet browser (provided that
the corresponding Java Plug-ins are downloaded). Therefore, running Gramlets is
fast and easy. Gramlet example in the MS Internet Explorer is shown in Fig. 2.19
For on-line example visit the Gramlets homepage [Tea03].

A light-weight, portable Java applet of course does not possess the full GF
functionality. It is simply a syntax editor, that can be used as a multilingual au-
thoring tool for a predefined topic. For example in Fig. 2.19 we can see the Health
gramlet (based on the Health grammar given as an example in subsection 3.3.2),
where the user can construct some statements about somebody’s health condi-
tion. Unlike the normal Syntax Editor, where a new grammar can be loaded, the
grammar in a Gramlet is hard-wired. In case one wants to work with a differ-
ent topic one needs to produce another Gramlet specialized for that particular
grammar. Fortunately, producing a new gramlet is an automatic process. A
command script can be used to generate a gramlet given a GF grammar, GF bi-
nary (compiled Haskell) and a number of Java classes from the Gramlets project.
Therefore, one does not need to do any extra programming oneself, just specify
the input grammar and execute the script. One can also produce a gramlet for
a grammar one wrote oneself and run it on PDA or put it on WWW. However,
the grammar used for Gramlets production should not contain dependent types,
since the Gramlets implementation does not have the full strength of the GF
grammar formalism.

2.2.1 Canonical GF

The full GF grammar formalism allows the use of function definitions and pattern
matching mechanism that raise the level of abstraction of the grammarian work.
However, for the simpler computation the grammars in this notation must be
normalized into so called canonical GF by type driven partial evaluation[Ranar].
This format of the GF grammar is produced on GF side, which makes further
processing on the Java side simpler.

The type driven partial evaluation originates as GF itself from the functional
programming and corresponds to program evaluation if the GF grammars are

2.2. GRAMLETS: GF ON-LINE AND IN THE POCKET 31

Figure 2.19: Health gramlet in the Internet Explorer browser.

regarded as functional programs (which they in fact are). In [KJR03] the following
example of partial evaluation is given. Consider the rule DefOneNP:

fun

DefOneNP: CommNounPhrase -> NounPhrase ; -- "the car"

lin

DefOneNP = defNounPhrase Sg ;

oper

defNounPhrase : Number -> CommNounPhrase -> NounPhrase =

\n,car ->

{s = \\c => artDef ++ car.s ! n ! toCase c ; n = n ; p = P3} ;

where the following is predefined:

param

Number = Sg | Pl ;

Gender = NoHum | Hum ;

Case = Nom | Gen ;

Person = P1 | P2 | P3 ;

NPForm = NomP | AccP | GenP | GenSP ;

oper

artDef = "the" ;

32 CHAPTER 2. SYNTAX EDITING

toCase : NPForm -> Case = \c -> case c of

{GenP => Gen ; _ => Nom} ;

CommonNounPhrase: Type = {s : Number => Case => Str; g : Gender} ;

NounPhrase: Type = {s : NPForm => Str ; n : Number ; p : Person} ;

The canonical GF representation of the same function after partial evaluation
will be:

lin DefOneNP = \CN_0 -> { s = table {

NomP => "the" ++ (CN_0.s ! Sg) ! Nom ;

AccP => "the" ++ (CN_0.s ! Sg) ! Nom

GenP => "the" ++ (CN_0.s ! Sg) ! Gen

GenSP => "the" ++ (CN_0.s ! Sg) ! Nom

} ; n = Sg ; p = P3 } ;

The substitutions of known arguments has been made (Sg of the type Number),
the functions applied (detNounPhrase, artdef, toCase) and the table expanded.
The only operations left are concatenation (++), projection (.) and table selection
(!). Function application and table expansion are the corresponding evaluation
procedures for function definitions and pattern matching - two abstraction mech-
anisms in the GF grammar formalism. Such mechanisms help the grammarian
to work on a higher level of abstraction.

Compilation into the canonical form actually does more than partial evalua-
tion. It also represents a grammar in a format adapted for easy usage in syntax
editing implementation. Thus, grammar compilation fills in the gap between the
abstract theory and the implementation.

2.2.2 Implementation

Gramlets generation scheme is shown in Fig. 2.20.
First the grammar files are loaded in the main GF. A special command pro-

duces the XML format of the canonical GF grammar form. After that we leave
the Haskell side and only use the XML output we got from it. Notice that
the original GF grammar can be distributed into several files: one for abstract
language-independent part, and one for each language represented. The XML
canonical grammar representation is put into one output file, since it is not sup-
posed to be read by the user but only by the automatic parser.

The next step is to convert the XML representation into Java grammar object
representation. This is done by the XML parser written in Java. The reason we
have the intermediate XML representation and do not produce the Java grammar
object directly is the efficiency. The size of the automatically generated Java
module to produce a grammar object was too big and, therefore, caused a run-
time error. That is why we have chosen to generate the Java grammar object

2.2. GRAMLETS: GF ON-LINE AND IN THE POCKET 33

Figure 2.20: Gramlets production architecture. Files (shaded rectangles) are
fed into and produced by the processing modules (rounded rectangles). Arrows
indicate the information flow. The resulting run-time system is shown as an
octagon containing the serialized grammar object and the syntax editor. The
generated gramlet can be converted into packages for WWW and PDA.

34 CHAPTER 2. SYNTAX EDITING

separately and then serialize it and store it in another file, so that the run-time
GUI just have to read the Java grammar object from the file instead of creating
it on the fly. With this approach it takes about 20 seconds to start a gramlet on
Zaurus although some very big grammars (using the resource library) produce
the error out of memory on Zaurus.

The GUI duplicates the functionality of the Java GUI Syntax Editor from
section 2.1. However, it differs from the latter in two ways:

• It implements the syntax tree editing operations, while the Java GUI Syntax
Editor just displays what has been sent to it by the main GF. On the other
hand, the Java GUI Syntax Editor has richer functionality regarding both
the layout options and the performed computations.

• The AWT Java GUI library is used for GUI controls on Zaurus instead of
SWING because of limited JVM implementation.

Syntax tree editing operations like navigating the tree, adding and removing
nodes are done using the Zipper structure [Hue97] in the main GF written in
Haskell. Java Gramlets we do not have a similar structure, since pointers (object
references) mechanism is provided in this non-functional language. The elemen-
tary (without dependent types) type checking is done by ordinary statements
if-then-else in the imperative editing procedures.

There are two GUI versions for Gramlets - one using AWT (for Zaurus) and
one using SWING. The first one is not an applet due to some layout problems
with the applet class on Zaurus. The second one is an applet.

The table below gives the figures on each of the Gramlet processing modules:

XML generation(Haskell) XML parsing Canonical GF GUI
Lines 163 750 2300 1750
Total 6100

This code was written during half a year period (not full-time though) with
three active project participants (not including the GF core written previously in
Haskell by Aarne Ranta). The XML generation in Haskell was done by Markus
Forsberg. The Canonical GF classes in Java were written by Kristofer Johannis-
son. The author’s part is the GUI and XML parser modules and also putting
everything together to produce the final result.

The algorithms used are a direct translation from the corresponding Haskell
modules (by Aarne Ranta) into Java. Each structure in the Canonical GF format
is represented as a separate Java class, which gives around 40 classes most of which
are rather trivial, while the same thing in Haskell takes just a couple of pages.
Thus the Canonical GF in Java is a very big and slow structure, which leads
to the efficiency problems (out of memory error on Zaurus with some bigger
grammars).

2.2. GRAMLETS: GF ON-LINE AND IN THE POCKET 35

This explosion effect was expected from the start and it is the reason why
the direct re-implementation of the full GF in Java is infeasible. However, the
Gramlets project is an interesting experiment on porting GF to an imperative
language in principle. Java was chosen because of the portability issues, rich GUI
library and the Unicode usage, which is important for multilingual grammars.
This makes the work relatively straightforward and possible to do in a reasonable
amount of time.

Another convenience brought by writing the whole program in Java is inde-
pendent development. With Java GUI Syntax Editor a special XML protocol has
been developed for communicating between Haskell and Java side. This protocol
is only used for sending the results computed by the main GF system to the Java
GUI for display. A special command shell to be sent in the opposite direction
from Java GUI to the Haskell side was written. Thus, Haskell side and Java GUI
side are highly dependent on each other and a modification of one of them in most
cases requires corresponding updates in the other part. These complications are
avoided in Gramlets, which only uses the XML output file from GF.

Further improvements are possible that can affect the efficiency. Most likely
they have to do with reducing the Canonical representation structure and adjust-
ing it to the imperative programming style.

The XML processing can be made more systematic by using parser genera-
tors and other techniques. This will make the code cleaner and more readable.
However, since the XML processing is separated from the run time process this
will not cause any improvement in the final result although it may speed up the
intermediate step of a grammar object creation, which now takes around one
minute for bigger grammars.

Even the GUI can be made richer or at least attaining the level of the Java
GUI Editor. This of course will not help to solve the efficiency problem.

36 CHAPTER 2. SYNTAX EDITING

Chapter 3

Russian resource library

One of the strong features of GF is separation between the language descrip-
tion (grammars) and the processing engine. Grammars are written using the
GF language and stored in text files. Therefore, grammars can be considered as
programs written in the GF grammar language, which can be compiled and run
by GF system. Just as with ordinary programming languages the efficiency of
programming labor can be significantly increased by reusing previously written
code. For that purpose standard libraries are usually used. To use the library
a programmer only needs to know the type signatures of the library functions.
Implementation details are usually hidden from the user. The GF resource gram-
mar library [Ran02] is aimed to serve as a standard library for the GF grammar
language. Since GF is a multlingual system the library structure has an addi-
tional dimension for different languages. Each language has its own layer and all
layers have more or less similar internal structure. Some parts of the library are
language-independent and shared among the languages.

3.1 Resource grammar library structure

The file structure of a resource grammar layer corresponding to one language is
shown in Fig. 3.1. Arrows indicate the dependencies among the modules.

The shadowed boxes correspond to the high-level modules. Ideally, the gram-
marian should be able to write an application grammar looking only at the
shadowed modules. Resource and Predication modules consist of both language-
independent Abstract part as well as Concrete implementation for every language.
Consulting the Abstract part should be sufficient for writing an application gram-
mar.

The paradigms module unlike the Resource and Predication modules only
contains the Concrete part, since it is responsible for adding new lexical entries,
which are specific for the language. However, it is considered to be high-level,
since it provides an interface for adding the entries without the necessity to know

37

38 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

Figure 3.1: The resource grammar structure (main modules). One language layer.
Shadowed boxes represent high-level of interface modules. White boxes represent
low-level or implementation modules. Arrows show the dependencies.

the GF grammar language details. For examples, see subsection 3.2.2.
White boxes contain low-level functions specific for every language, whose

type signatures are declared in the high-level modules. These files contain the
actual implementation of the resource grammar using the GF grammar language.

The Types module defines morphological parameters and word classes of a
language. However, it only includes those parameters that are not needed for
analyzing individual words: such parameters are defined in Syntax modules. The
type system of a language, in our experience, needs 50–100 lines of GF code. To
get it right is a major design issue of a resource grammar, and the type system
alone gives a good overview of the language.

The Morphology module contains the most common inflectional patterns for
single words and lexical entries. The best approach of all seems to be to start with
a morphology and build a lexicon incrementally as words get used in applications
since typical application grammars are special-purpose grammars using special
vocabulary. The content of the Morphology module can be also extracted from
other sources. For example, the Swedish morphology module in the resource
library is generated automatically from the code of another project called Open-
Source Functional Morphology [Tea02]. Unlike the syntactic descriptions the
morphological descriptions for many languages has been already developed in
other projects. Considerable efforts can be saved by reusing of the existing code.

The heaviest module is the Syntax module, which covers linguistic rules on
the higher sentence level. The resource syntax is an open-ended concept. We

3.2. DESIGNING A RESOURCE GRAMMAR FOR RUSSIAN 39

have built it bottom-up, starting with rules for forming noun phrases and verb
phrases, continuing with relative clauses, questions, imperatives, and coordina-
tion. Some textual and dialogue features might be added, such as contrasting,
topicalization, and question-answer relations. However, it is not clear what be-
longs to a “complete syntax”, in the way it is clear what belongs to a complete
morphology.

What about a resource semantics? We follow a working principle in the
resource grammar project: A resource semantics, defining the meanings of all
words and syntactic structures, will not be built. Instead, semantics is given in
application grammars.

Looking at the resource grammar structure we can see two possible starting
points of designing a new grammar: top-down and bottom-up. The first approach
goes from the high-level Resource grammar and fills the lower level modules
starting from Syntax and eventually defining Types and Morphology modules.
This approach is especially convenient if we are already familiar with the resource
grammar structure or, even better, have written the resource grammar for another
language. However, if we have no such experience it might be easier to move in the
opposite direction: from Types to Morphology and then Syntax as the complexity
grows filling the gaps in the Resource module along the way. In practice we use
the mixture of these methods. The Resource module specifies what is needed
in the low-level modules, but lower level modules need to be implemented first.
It might be even more natural to design the resource grammar library having a
certain application grammar in mind. Then the pieces needed for this grammar
can be the first to work on and a natural testing domain appears.

The modules Predication and Paradigms are built on the basis of Resource
and Morphology modules correspondingly, since they are not used by the rest of
the modules. Many other modules can be derived from the modules shown in
Fig. 3.1.

For testing the resource grammars we have written a small script that pro-
duces a text in a natural language using all the library functions. The output of
the script allows us to discover grammatical errors by proof-reading (see appendix
B).

3.2 Designing a resource grammar for Russian

Russian resource grammar was added after the similar grammars for English,
Swedish, French and German. The language-independent modules representing
the coverage of the resource library, therefore, were ready. The task was to localize
them for Russian having the examples of similar modules for other languages. We
have used several grammar reference books for Russian language [Pul84, She00,
Wad00].

The Russian resource grammar layer has the structure shown in Fig. 3.1.

40 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

The table below gives several size parameters of the low-level or implementation
modules:

Types Morphology Syntax Total
Rules (+lexical items) 40 52(+66) 115 207(+66)

GF code lines 75 1000 393 1468
File length incl. comments 265 1062 892 2219

The next table shows similar information for the high-level or interface mod-
ules:

Resource Paradigms Predication Total
Rules 120 47 22 189

GF code lines 129 152 27 299
File length incl. comments 245 362 39 646

This gives us about 400 rules on both levels. The size of one rule varies from
1 (often) to 35 (rare) GF code lines. Half of the file length is usually taken by
the comments. To get a rough idea about the coverage of the resource grammar
library see appendix B for automatically generated sentence examples in English
used for proof-read testing of the resource grammar library.

Now we will present some rule examples from different Russian resource gram-
mar library parts. The rules are written using the GF grammar language, whose
syntax is close to that of functional programming languages. Let us start with
the language-independent part or API. Here is the list of grammatical categories
and grammar rules from the Abstract syntax module that will be useful for our
final usage example.

First we need to define the grammatical categories - data types representing
parts of speech and syntactic elements:

cat

N ; -- simple common noun, e.g. "car"

NP ; -- noun phrase, e.g. "John", "all cars"

VP ; -- verb phrase, e.g. "switch the light on"

S ; -- sentence, e.g. "John walks"

A grammar rule is defined as a function on the grammatical categories reflect-
ing the functional programming style of the GF grammar language. Here is the
well-known verb phrase predication rule taking a noun phrase (NP) and a verb
phrase (VP) as arguments and returning a sentence (S) as a result:

fun

PredVP : NP -> VP -> S ; -- "John walks"

Now we will look at different language-specific modules of the Russian resource
grammar and give some sample definitions from these modules.

3.2. DESIGNING A RESOURCE GRAMMAR FOR RUSSIAN 41

3.2.1 Types module

The parameters defined in the Types module include well-known gender, number,
person and case values. Parameter definitions start with the reserved word param

and enumerate all the possible values separated by a vertical mark | :

param

Gender = Masc | Fem | Neut ;

Number = Sg | Pl ;

GenNum = ASg Gender | APl ;

Case = Nom | Gen | Dat | Acc | Inst | Prep ;

Person = P1 | P2 | P3 ;

Animacy = Animate | Inanimate ;

There are complex values like GenNum that have more than one constituent:
Asg Gender. Such parameters called hierarchical are combinations of other pa-
rameters. In case of GenNum we have a combination of Number and Gender, which
is used for adjectives, where plural never makes gender distinction. GenNum re-
duces the two dimensional gender-number table by merging the plural forms
into one value APl. In the first value ASg Gender, Asg denotes that the num-
ber is singular, followed by a Gender value, for example, ASg Fem or ASg Masc.
Actually, in such complex parameters the first constituent called constructor is
implemented as a function: ASg : Gender− > GenNum.

The common word classes description includes noun, adjective, verb and
preposition.

Nouns (CommNoun) decline according to number and case. For the sake of
shorter description these parameters are combined in the type SubstForm. Nouns
moreover have inherent gender and animacy parameters that affect verb conju-
gation and adjective declension respectively:

param

SubstForm = SF Number Case ;

oper

CommNoun : Type = {s : SubstForm => Str ; g : Gender ;

anim : Animacy } ;

The parameter SubstFrom is a combination of Number and Case with con-
structor prefix SF. CommNoun definition starts with a reserved word oper. The
word Type between a colon and an equality sign indicates that we are defining
a data type. The data type itself is basically a record of fields, separated by
semicolons. Each field has a name and a type. For example, anim field has type
Animacy. More complex fields can depend on parameters. For example, field
s is a string (Str), which depends on SubstForm parameter. Thus, this field
contains not just one string, but a table of strings. In order to use this string

42 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

we first need to use projection on s field and then we need to make a selection
from the table by specifying the parameter value. For example if we have the
common noun mashina (maxina) corresponding to car in English in order to
get the string maxinam we use the expression mashina.s !(SF Pl Dat), where
dot denotes the projection operation and the exclamation mark denotes the se-
lection operation, SF Pl Dat denotes that we need a plural form in dative case.
See subsection 3.2.2 for the definition of mashina.

Adjective is a special category for the adjectives that are not used in the com-
parative or superlative form. Otherwise the degree parameter would be needed:

param

AdjForm = AF Case Animacy GenNum ;

oper

Adjective: Type = {s : AdjForm => Str} ;

The verb tense system in Russian consists of the present, the past and the
future. The verb in the past tense conjugates according to the parameter GenNum
while in the present and future - according to the parameters Number and Person.
The verb mood can be infinitive, imperative, and indicative. Indicative form has
different tense forms while imperative, infinitive and subjunctive modes do not.
Imperative takes into account the number of the subject, subjunctive conjugates
according to the parameter GenNum while infinitive has no variation at all.

param

VTense = VPresent Number Person | VPast GenNum |

VFuture Number Person ;

VerbConj = VIND VTense | VIMP Number Person | VINF | VSUB GenNum ;

VerbForm = VFORM Voice VerbConj ;

oper

Verbum : Type = { s: VerbForm => Str ; asp : Aspect };

For writing an application grammar one usually does not need the whole in-
flection table, since each verb is used in a particular context that determines some
of the parameters (Tense and Voice while Aspect is fixed from the beginning)
for certain usage. So we define the type Verb, that has these parameters fixed.
The conjugation parameters left (Gender, Number, Person) are combined in the
type VF:

cat

Verb ;

param VF =

VFin GenNum Person | VImper Number Person | VInf | VSubj GenNum;

oper

Verb : Type = {s : VF => Str ; t: Tense ; a : Aspect ; v: Voice} ;

3.2. DESIGNING A RESOURCE GRAMMAR FOR RUSSIAN 43

Prepositions are just strings:

oper

Preposition = Str ;

3.2.2 Morphology and Paradigms modules

Having the inflection patterns as predefined functions we can easily add new
lexical entries. Common inflections patterns are described as functions that take
one or more string arguments and form the corresponding lexical entry.

For example, the function below describes the inflectional table for feminine
inanimate nouns ending with -a in Russian. For nouns such operations take the
root of the word as a string (Str) argument and returns the noun represented by
the type CommNoun. Six cases times two numbers gives us twelve forms plus two
inherent parameters: Animacy and Gender:

oper

aEndInanimateDecl: Str -> CommNoun = \golov -> { s = table

{ SF Sg Nom => golov+"a";

SF Sg Gen => golov+"y";
SF Sg Dat => golov+"e";
SF Sg Acc => golov+"u";
SF Sg Inst => golov+"o½";
SF Sg Prepos => golov+"e";
SF Pl Nom => golov+"y";
SF Pl Gen => golov ;

SF Pl Dat => golov+"am";
SF Pl Acc => golov+ "y ";

SF Pl Inst => golov+"ami";
SF Pl Prepos => golov+"ah"
} ;

g = Fem ;

anim = Inanimate } ;

where \golov is a λ-abstraction, which means that the function argument of
the type Str will be denoted as golov in the definition. The table structure
is straightforward: one line correspond to one table parameter value with =>

separating the parameter value and the corresponding result. Plus sign denotes
string concatenation.

For a higher level access to this function we define another function with
a mnemonic (in Russian though using Latin alphabet) name nGolova in the
Paradigms module:

44 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

oper

nGolova: Str -> N; -- feminine,inanimate,ending with golov-a
nGolova = aEndInanimateDecl ;

The type signature together with the comment is the only thing the user of
the resource grammar needs to know to make a decision of using the function
nGolova. The implementation details are hidden. The type signature from the
Paradigms module, therefore, provides a higher-level access to the resource mor-
phology. For example, we can define the word mashina (maxina) corresponding
to the English word car. Maxina is a feminine, inanimate noun ending with -a.
Therefore, a new lexical entry for the word maxina can be defined by:

oper

mashina = nGolova "maxin”;

The advantage of such higher level access becomes especially significant with
more complex parts of speech like verbs. Here is the definitions of the verbs
corresponding to equal and divide in English using the paradigms function
verbDecl, which takes five strings coresponding to the basic forms and two extra
parameters: Aspect and conjugation type. Aspect can be either Imperfective

or Perfective in Russian. There are two main verb conjugation types in Russian:
the First and the Second:

oper

verbRavnjat = verbDecl Imperfective First

”ravnÂ””»””ravnÂl””ravnÂ½””ravnÂt”;

If we unfold the verbDecl function we get a rather complex definition:

oper

verbDecl: Aspect -> Conjugation -> Str -> Str ->

Str -> Str ->Str -> Verbum =

\a, c, del, sgP1End, sgMascPast, imperSgP2, inf -> case a of

{ Perfective => case c of {

First => mkVerb (perfectiveActivePattern inf imperSgP2

(presentConj1 del sgP1End) (pastConj sgMascPast))

(pastConj sgMascPast);

Second => mkVerb (perfectiveActivePattern inf imperSgP2

(presentConj2 del sgP1End) (pastConj sgMascPast))

(pastConj sgMascPast)

} ;

Imperfective => case c of {

First => mkVerb (imperfectiveActivePattern inf imperSgP2

3.2. DESIGNING A RESOURCE GRAMMAR FOR RUSSIAN 45

(presentConj1 del sgP1End) (pastConj sgMascPast))

(pastConj sgMascPast);

Second => mkVerb (imperfectiveActivePattern inf imperSgP2

(presentConj2 del sgP1End) (pastConj sgMascPast))

(pastConj sgMascPast)

}

};

which takes aspect and the conjugation type together with five basic forms as
arguments. According to the parameters we get a table with four cases altogether
described by the case declarations. In each case the result is using another
function named mkVerb with the corresponding arguments.

Such unfolding process can be continued further on. However, knowing the
implementation details is not necessary for defining a verb entry , since the
verbDecl’ arguments can be easily decided using the comments in the mod-
ule Paradigms having the actual verb to be defined. That is why the function
verbDecl is considered to be a high-level function although its implementation
looks quite complex and uses a lot of other low-level functions describing various
morphological rules. Using such low-level functions directly would be difficult
without getting into the technical implementation details. High level Paradigms
access saves time and effort adding new lexical items.

3.2.3 Syntax module

Syntax module contains syntactic rules for forming syntactic parts NounPhrase

(NP), VerbPhrase (VP) and Sentence (S). Unlike morphology entries such el-
ements can contain more than one word and have some internal structure.

A noun phrase usually serves as a subject or an object in a sentence. For
example, in Mary and John love long walks. both Mary and John and long walks
are noun phrases. The first one serves as a subject, while the second one - as
an object. A noun phrase comprises a noun or a personal pronoun. NP unlike a
CommNoun entry from the lexicon has a fixed number and person parameter. It
also has an extra parameter pron of the type Bool stating if the noun phrase is
expressed by a pronoun, since Russian personal pronouns can act as noun phrases
and have different forms than nouns:

oper

NounPhrase : Type = { s : PronForm => Str ; n : Number ;

p : Person ; g: Gender ; anim : Animacy ; pron: Bool} ;

where

param

PronForm = PF Case AfterPrep Possessive;

46 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

is taken from the module Types. Here Case is a usual noun parameter, while
AfterPrep and Possessive are used only for personal pronouns indicating, which
form should be used in case there is a preposition before the noun phrase or the
noun phrase has a possessive meaning. (Possessive pronouns are regarded as
another morphological form of personal pronouns, since they are inflected just as
personal pronouns according to the parameters Case, Number and Gender).

Verb phrases are discontinuous, namely, the parts of a verb phrase are:

• s — an inflected verb,

• s2 — verb adverbials (such as negation),

• s3 — a complement.

This discontinuity is needed in sentence formation to account for word order
variations.

oper

VerbPhrase : Type = Verb ** {s2 : Str ;

s3 : Gender => Number => Str ; negBefore: Bool};

The sign ** denotes that a VerbPhrase comprises all the Verb’s fields plus
additional fields in the brackets. For example, let us consider the sentence º

ne viжu maxinu (I do not see the car). Here ne viжu maxinu (do not see
the car) is a verb phrase, where viжu(see) together with some extra fields not
shown in the resulting string has the type Verb. ne(do not) is the value of the
field s2. The field negBefore is True, since the negation goes before the verb
(see the rule below). The field s3 contains a table representing maxinu(the car).
However, all the values in the table are the same in this example.

A non-trivial example of such a table can be Maxina - staraÂ (the car is
old). Here the complement field s3 of the verb phrase is formed by an adjective
stary½ (old), which form depends on the gender and the number of the subject
maxina (the car). This agreement is taken care of in the traditional S → NPV P

rule PredVerbPhrase (PredVP):

oper

predVerbPhrase : NounPhrase -> VerbPhrase -> Sentence =

\Ya, tebyaNeVizhu -> { s =

let

{ ya = Ya.s ! (mkPronForm Nom No NonPoss);

ne = tebyaNeVizhu.s2;

vizhu = tebyaNeVizhu.s ! VFin (gNum Ya.g Ya.n) Ya.p;

tebya = tebyaNeVizhu.s3 ! Ya.g ! Ya.n

}

in

3.2. DESIGNING A RESOURCE GRAMMAR FOR RUSSIAN 47

if_then_else Str tebyaNeVizhu.negBefore

(ya ++ ne ++ vizhu ++ tebya)

(ya ++ vizhu ++ ne ++ tebya)

} ;

where the sign ++ denotes concatenation. The function if then else shows how
the value of the parameter negBefore from VerbPhrase affects the word order
in a sentence.

3.2.4 High-level modules

The high-level modules are written on top of the low-level modules. Therefore,
they do not extend the coverage of the resource grammar, but just provide a more
convenient interface for the user. We have already mentioned the Paradigms
module in subsection 3.2.2. Now let us take a look at the concrete part of the
Resource module and Predication modules.

We discussed the abstract part of the resource module or API in the begin-
ning of the section 3.2. The concrete resource module put together the language-
independent API with an implementation for a specific language. Thus the func-
tions and categories declared in the Abstract part get the concrete definitions
(linearizations) in the Resource module using the operations predefined in the
Syntax module:

lincat

N = CommNoun ;

-- = {s : SubstForm => Str ; g : Gender ; anim : Animacy } ;

NP = NounPhrase ;

-- = { s : PronForm => Str ; n : Number ; p : Person ;

-- g: Gender ; anim : Animacy ; pron: Bool} ;

VP = VerbPhrase ;

-- = Verb ** {s2 : Str ; s3 : Gender => Number => Str ;

-- negBefore: Bool} ;

S = Sentence ;

-- = {s : Str} ;

lin

PredVP = predVerbPhrase ;

The language-specific type definitions from low-level modules are put as com-
ments starting by the sign -- for reference purposes. Actually, the user is sup-
posed only to look at the abstract resource module.

The Syntax module contains only the most basic and, so to say, minimal
operations, which are widely applicable. More complex macros derived from the
rules from the syntax modules are however placed in a separate module called

48 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

predication library. For example, constructions with transitive verb like John
loves Mary are very common. They consist of a Subject (John), a Verb (loves)
and an Object (Mary). However, the classical rule PredVP expects only two
arguments: a noun phrase and a verb phrase. Therefore, we can define the
function predV2 that takes three arguments:

oper

predV2 : TV -> NP -> NP -> S ; -- "John loves Mary"

predV2 = \F, x, y -> PredVP x (PosTV F y) ;

whose implementation uses the classical rule PredVP. The resource grammar li-
brary user nevertheless does not need to know the implementation. All he needs
to use the rule is a type signature with a usage comment (first line). This high-
level type signatures are put in the abstract or language-independent part of the
Predication library. The concrete implementation (second line) is put in the con-
crete part and again is not supposed to be consulted by the user. In this way the
predication library provides a high-level access to the resource grammar just as
abstract Resource (API) and Paradigms modules.

3.3 Application grammar examples

3.3.1 Arithmetic grammar: the resource and the non-
resource version

The purpose of the first example is comparing two equivalent grammars written
with and without the resource grammars library. We consider some fragments
from a simple arithmetic grammar, which allows us to construct statements like
one is even or the product of zero and one equals zero.

The abstract part of the resource and non-resource versions are the same
and describe the meaning captured in this arithmetic grammar. This is done by
defining first some categories:

cat

Prop ; -- proposition

Dom ; -- domain of quantification

Elem Dom ; -- individual element of a domain

The category Prop corresponds to the grammatical sentence. The other two
categories define the domain of the arithmetic grammar and its elements. There
are also some functions:

fun

zero : Elem Nat ; -- zero constructor

one : Elem Nat ; -- one constructor

3.3. APPLICATION GRAMMAR EXAMPLES 49

Even : Elem Nat -> Prop ; -- evenness

Prime : Elem Nat -> Prop ; -- primeness

EqNat : (m,n : Elem Nat) -> Prop ; -- equality statement

prod : (m,n : Elem Nat) -> Elem Nat ; -- product

The difference between the resource and non-resource versions appears in the
concrete part of the arithmetic grammar. In the non-resource version we need to
define the linearization types of the categories from scratch:

lincat

Dom = {g : Gen; s : Case => Str } ;

Prop = {s : Str} ;

Elem = {g : Gen; s : Case => Str} ;

All we have to do in the resource version is to use the predefined categories:

lincat

Dom = N ;

Prop = S ;

Elem = NP ;

Using the resource library we can define the functions Even and Prime in the
following way:

oper

Even = predA1(AdjP1(adj1Star "qëtn"));
Prime = predA1(AdjP1 (adj1Molodoj "prost"));

Here predA1, AdjP1, adj1Molodoj and adj1Star are taken from the re-
source library. The functions adj1Molodoj and adj1Star describe the lexical
inflection patterns while the rest work on the syntactic level.

In the non-resource version we have to take care of the lexical inflection tables
ourselves:

lin

Prime n = \n -> { s = case n.g of

neu => n.s ! nom ++ ["- prostoe"];
fem => n.s ! nom ++ ["- prostaÂ"];
masc => n.s ! nom ++ ["- prosto½"] }

Even n = \n -> { s = case n.g of

neu => n.s ! nom ++ ["- qëtnoe"];
fem => n.s ! nom ++ ["- qëtnaÂ"];
masc => n.s ! nom ++ ["- qëtny½"] }

50 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

Notice that the functions Even and Prime are very similar: the inflection pat-
terns of the corresponding adjectives differs only in masculine gender. Therefore,
we have to define basically the same thing twice to reflect this slight grammatical
difference. This sort of redundancy increases as the size of the grammar grows.

This problem is less disturbing in the resource case, since the inflection differ-
ences are already taken into account by choosing the different functions adj1Star
and adj1Molodoj for forming the right forms for the respective adjectives. There-
fore, scaling up the grammar does not lead to the explosion of its size.

The functions zero and one declared in the abstract part are linearized as
follows using the resource library functions:

oper

zero = DefOneNP (UseN nol) ;

one = DefOneNP (UseN edinica) ;

The functions nol and edinica represent lexical entities defined in the mor-
phology module. The function DefOneNP is used to convert a common noun into
a noun phrase, since both zero and one return the noun phrase result although
these noun phrases only consist of one word. Similarly the function UseN is
used to convert a noun lexical entry into a common noun in order to keep the
types compatible. Such compatibility is important if we want to use the resource
grammar library. This requires from the grammarian to be familiar with the type
system of the grammar library as well as the various function signatures and can
considerably slow down the work in the beginning.

In the non-resource case we have to define them as part of the arithmetic
grammar. For every noun zero, one and product we need to define an inflection
table like:

oper

one = {g = masc ; s = table {
nom => "edinica”;
gen => "edinicu”;
dat => "edinice”;
ins => "edinice½”} };

doing the job of the morphology module. Notice that for the purpose of the
arithmetic grammar we describe the inflectional table only partially (not all of
the possible forms are present). The partiality of such ad hoc definitions makes
them unattractive for possible future reuse, since the missing forms can be needed
for another grammar.

oper

prod = appFunColl (funGen proizvedenie) ;

3.3. APPLICATION GRAMMAR EXAMPLES 51

proizvedenie is a lexical entry from the morphology module. In general the
functions starting from a lower case letters are taken from the language specific
syntactic module, while the functions staring with a capital letter are taken from
the language-independent API. funGen forms the function the product of, which
appFamColl applies to two arguments joined by the conjunction and : for example,
the product of one and zero.

The function prod is probably easier to understand (and to write) than its
resource counterpart having that product is a morphological function similar to
one above:

oper

prod m n = { g = neu; s =table {

cas => product!cas ++ m.s!gen ++ "i"++ n.s!gen }} ;

However, it contains low-level operations like ., !, ++, while the resource
version only uses function application.

The most complex function in the resource version is EqNat. See subsec-
tion 3.2.2 for verbRavnjat’s definition). The predicate predV2 was defined in
subsection 3.2.4. mkTV is from Paradigms module takes a Verb, a Preposition

and a Case and returns a transitive verb (TV).

oper

EqNat = predV2 ravnjatsja ;

ravnjatsja : TV = mkTV (extVerb verbRavnjat passive present)

nullPrep dative ;

The non-resource version has a similar structure separating the verb definition
from the rest of the function:

oper

EqNat m n = {s = m.s ! nom ++ equal ! m.g ++ n.s ! dat} ;

equal: Gen => Str = table {masc => "raven"; fem => "ravna"} ;

Writing even a small grammar in inflectionally rich language like Russian
requires a lot of work on morphology. This is the part where using the resource
grammar library may help to speed up, since the resource functions for adding
new lexical entries are relatively easy to use.

Syntactic rules from the library are more tricky and require fair knowledge of
the type system used. However, they heighten the level of the code written by
using only function application. The resource style is also less error prone, since
the correctness of the library functions is presupposed.

52 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

3.3.2 Health grammar in five languages

The purpose of the second example is to show the similarities between the same
grammars written for different languages using the resource grammar library.
Such similarities increase the reuse of the previously written code even across the
languages. Once written for one language the grammar can be ported to another
language relatively easy and fast. The more language-independent API functions
(names starting with a capital letter) the grammar contains the more efficient
the porting becomes.

We will consider a fragment of the Health grammar - a small grammar writ-
ten using the resource grammar library in English, French, Italian, Swedish and
Russian. It allows us to say phrases like she has a cold and she needs a painkiller.
For this purpose we need the following categories and functions:

cat

Patient ; Symptom ; Prop ; Condition ; Medicine ;

fun

And : Prop -> Prop -> Prop ;

ShePatient : Patient ;

CatchCold : Condition ;

BeInCondition : Patient -> Condition -> Prop ;

PainKiller : Medicine ;

NeedMedicine : Patient -> Medicine -> Prop ;

The category Prop denotes complete propositions like she has a cold. We also
have separate categories for smaller parts like Patient, Medicine and Condition.
An object of some type can be formed by applying the function that returns an
object of that type. For example, to get an object of the type Prop one can use
the function BeInCondition. This function takes two arguments of the types
Patient and Condition correspondingly and returns the result of the type Prop.
The abstract syntax determines the class of statements we are able to build within
the grammar. For example, using the functions above we can form the phrase
she has a cold by combining three functions:

BeInCondition ShePatient CatchCold,

where ShePatient and CatchCold take no arguments and return objects of the
types Patient and Condition, which in turn are used as arguments to the func-
tion BeInCondition. The final result is the desired proposition.

The concrete part shared among the languages are all the categories and three
functions that can be written entirely by API functions:

lincat

Patient = NP ;

Condition = VP ;

3.3. APPLICATION GRAMMAR EXAMPLES 53

Medicine = CN ;

Prop = S ;

lin

And = conjS ;

ShePatient = SheNP ;

BeInCondition = PredVP ;

Exactly the same rules work for all five languages, which makes the porting
trivial. However, this is not always the case.

The word painkiller is defined by using the Paradigms module function taking
the corresponding word stem as an argument and doing the necessary type casting
operations in a very similar way in all five languages:

-- English:

PainKiller = cnNonhuman "painkiller" ;

-- French:

PainKiller = mkCN (nReg "calmant" masculine) ;

-- Italian:

PainKiller = mkCN (nSale "calmante" masculine) ;

-- Swedish:

PainKiller = mkCN (nIngenBöjning "smärtstillande") ;

-- Russian:

PainKiller = mkCN obezbolivauchee ;

Porting of the lexical functions is also relatively easy. We just need to provide
the stems for rules from the Paradigms module.

In the remaining three functions we see bigger differences. For example, the
idiomatic expression ”I have a cold”in Swedish and Russian is formed by adjective
predication not with transitive verb like in English, French and Italian. Therefore,
the different functions PosA and PosTV are used. tvHave, tvAvoir and tvAvere

denote the transitive verb have in English, French and Italian. Expressions in the
parentheses are needed for the type compatibility described in subsection 3.3.1:

-- English:

CatchCold = PosTV tvHave (DetNP aDet (cnNoHum "cold"));

-- French:

CatchCold = PosTV tvAvoir (IndefOneNP

(mkCNomReg "rhume" masculine));

-- Italian:

CatchCold = PosTV (tvAvere)(IndefOneNP

(mkCN (nSale "raffreddore" masculine))) ;

-- Swedish:

CatchCold = PosA (adjGrund "förkyld") ;

-- Russian:

CatchCold = PosA prostuzhen ;

54 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

The phrase I need a painkiller is a transitive verb predication together with
complementization rule defined in subsection 3.2.4 in English and Swedish. In
French and Italian , however, we need to use the idiomatic expressions avoir besoin
and averBisogno correspondingly and, therefore, the more basic rule PredVP is
used. In Russian the same meaning is expressed by using adjective predication.
A special predicate is defined in the Russian syntax module and, therefore, the
arguments patient and medicine are omitted in the definition below:

-- English:

NeedMedicine patient medicine = predV2 (mkTransVerbDir

(regVerbP3 "need")) patient (DetNP aDet medicine);

-- Swedish:

NeedMedicine patient medicine = predV2 (mkDirectVerb verbBehova)

patient (DetNP nullDet medicine) ;

-- French:

NeedMedicine patient medicine = PredVP

patient (avoirBesoin medicine) ;

-- Italian:

NeedMedicine patient medicine = PredVP

patient (averBisogno medicine) ;

-- Russian:

NeedMedicine = predNeedShortAdjective True;

Notice, that the medicine argument is used with an indefinite article in English
version, with empty article in Swedish, French and Italian. Russian does not
have any articles although the category Determiner is present for the sake of
consistency with the language-independent API.

The Health grammar example shows that the more similar the languages are
the easier the porting a grammar from one language to another. However, as
with traditional translation the grammarian needs first of all to know the target
language, since it is not clear whether the particular construction is correct in
both languages, especially, when the languages seem to be very similar in general.

3.3.3 Arithmetic grammar usage example

Finally, we give an example of using the whole arithmetic grammar (see also
section 2.1.6). Fig. 3.2 shows a simple theorem proof constructed by using the
arithmetic grammars for Russian and English. The example was built with help
of GF Syntax Editor (see section 2.1).

The implementation of Russian resource grammar proves that GF grammar
formalism allows us to use the language-independent abstract API for describing
sometimes rather peculiar grammatical variations in different languages.

3.3. APPLICATION GRAMMAR EXAMPLES 55

Figure 3.2: Example of a theorem proof constructed using arithmetic grammars
in Russian and English.

56 CHAPTER 3. RUSSIAN RESOURCE LIBRARY

Chapter 4

Functional parsing for
biosequence analysis

In this chapter we try to evaluate the prospects of applying standard functional
parsing techniques to the biosequence analysis problem. It is based on the report
[J.K02] on three-month joint project with Laboratory of Informatics at École
Polytechnique, supported by a grant from École Polytechnique foundation.

Biosequence analysis is one of the most challenging problems in the relatively
new and rather popular field of bioinformatics. The ongoing research at Ecole
Polytechnique (France) takes the grammar approach to the problem of detecting
multi-level protein structure [J.W00, Ber96]. The first order protein structure
is just a sequence of aminoacids. Considering each type of aminoacid as an
alphabet letter, context-free grammars are used for describing the higher level
structures. By parsing of the aminoacid chain we get the higher level structures
of the corresponding protein. In the general case, however, the protein structure
cannot be described by context-free grammars.

Functional languages provide a number of elegant standard methods for build-
ing parsers for both context free and context-dependent grammars. First option
is to use parser generators like Happy [Mar02] with predefined grammar con-
structors. In the next part we will illustrate this approach by Grammatical
Framework (GF), which can be classified as a parser generator. Second option
is to use parser combinator libraries, which offer the full power of the functional
language at user’s disposition. Parsing library written in Haskell is chosen as an
example of the later technique.

4.1 Sample biosequence grammar

The aminoacid sequence describes the so called primary structure of a protein.
According to bioscience theory the primary structure determines the secondary
structure (consisting of sequence of aminoacid groups of different types), which,

57

58CHAPTER 4. FUNCTIONAL PARSING FOR BIOSEQUENCE ANALYSIS

in turn, determines the 3D structure of protein, which, in turn, affects the prop-
erties of a protein. Unfortunately, the exact laws of how to form a higher order
structure from a lower one are unknown, therefore, we can only speak about
protein structure prediction.

Bioscience in general is highly interested in 3D structure predictions, because
they can provide useful hints on various bio-mechanisms: ”double spiral”shape
of DNA (Deoxyribonucleic acid) is an instance in point.

It’s much easier to find the primary than the 3D structure experimentally.
Therefore, the purpose of biosequence analysis is to predict the higher structures
giving the primary structure.

The simplest biosequence grammar model corresponds to the language that
comprise 0 and 1 as the only ”words”(corresponds to hydrophobic and hydrophilic
aminoacids respectively). ”Statements”represent the secondary structure of a
protein. The ”statements”(around 100 word length) are all possible sequences of
the form XYXY...XYX, where

• X - an arbitrary sequence of 0 and 1 usually short (less than 5 digits) or
even empty. This is so called ”noise”.

• Y - is either αn or βm or γk, where

– both α and γ are 5-digit sequences of the known form (namely the
binary representation of numbers: 9, 19, 6, 12, 25, 18 or 4)

– βm is 4-digit sequence of the known form (namely the binary repre-
sentation of numbers 10 or 5)

There are also some restrictions:

• m should be the same for every Y that contains β occurences,

• n should be the same for every Y that contains α occurences (so calles
”coupled”α-sequences),

• k could vary among Ys, that contain γ occurences.

From the description one can see that the grammar is highly ambiguous, but
this is just half the trouble. The main purpose is to find an ”optimal”parsing of
0-1-sequence into α − β − γ representation. The goal function could look like:

• first, maximize [n× the number of αn sequences],

• second, maximize [m× the number of βm sequences]

• finally, maximize
∑

j
ki

According to bioscience theory the optimal parsing represents the real form of
a protein. In fact, finding of an appropriate goal function is itself a big problem
in bioscience. We are satisfied with the choice of the goal function as soon as we
get biologically reasonable results.

4.2. GF AS A FUNCTIONAL PARSER GENERATOR 59

4.2 GF as a functional parser generator

Grammatical Framework (GF)[Ran03] is a multilingual translation system of IN-
TERLINGUA type. It implements the language for expressing grammars using
formalism based on type theory [Ranar]. GF accepts context-dependent gram-
mars due to implemented Context Sensitive Parsing (CSP).

CSP consists of Context Free Parsing and independent filtering or postpro-
cessing. The latter can be compared to so called Context Free Rewriting Systems
(CFRS) although CFRS allows only permutation of the arguments in the oth-
erwise context-free rules while GF also supports more complicated dependencies
like reduplication and suppression.

GF has a rich high-level grammar description language, that allows to express
various features specific to natural languages in a straightforward manner. How-
ever, when it comes to highly ambiguous bioseqience grammars the strong need
for optimizing calculations cannot be satisfied by GF’s limited constructor set.

Lets consider a very simple grammar for β sequences:

S → noise B | B noise | noise B noise

B → B1 | B0

B0 → 0 B1

B1 → 1 B0

B0 → 0101

B1 → 1010

noise → noise noise | 0 | 1

Biosequence analysis could be regarded as translation from aminoacid chain
into combination of higher order protein structures. To implement the translator
we need to describe an abstract syntax, which contains the general description
of the grammar, input and output concrete syntax, which linearize the abstract
part. Input syntax deals with aminoacid chain. Output syntax generates the
position of higher order β-structure.

-- abstract part --

cat S , B , HFil, HFob, BHFil, BHFob, V, Rec ;

fun Zero : HFob;

One : HFil;

VZero : HFob -> V;

VOne : HFil -> V;

Ten: HFob -> HFil -> HFob -> HFil -> HFob -> BHFob;

Twenty: HFil -> HFob -> HFil -> HFob -> HFil -> BHFil;

Fob : BHFil -> BHFob ;

60CHAPTER 4. FUNCTIONAL PARSING FOR BIOSEQUENCE ANALYSIS

Fil : BHFob -> BHFil;

BFil : BHFil -> B ;

BFob : BHFob -> B ;

First : B -> Rec;

Second : B -> B -> Rec;

Third : B -> B -> B -> Rec;

ListLeft : V -> Rec -> S ;

ListRight : V -> Rec -> S ;

ListBoth : V -> V -> Rec -> S ;

ListNone : Rec -> S ;

Noise : V -> V -> V;

-- input concrete part --

include b.Abs.gf ;

lin Zero = { s = "0"} ;

One = { s = "1"} ;

Ten a b c d e = { s = a.s ++ b.s ++ c.s++ d.s ++ e.s } ;

Twenty a b c d e = { s = a.s++ b.s++ c.s++ d.s++ e.s } ;

Fob x = { s = "0"++ x.s } ;

Fil x = { s = "1"++ x.s } ;

VZero x = { s = x.s } ;

VOne x = { s = x.s } ;

BFil x = { s = x.s } ;

BFob x = { s = x.s } ;

First a = { s1= a.s } ;

Second x a = { s1 = a.s ++ x.s } ;

Third k x a = { s1 = k.s ++ a.s ++ x.s } ;

ListRight x a = { s = a.s1 ++ x.s } ;

ListLeft x a = { s = x.s ++ a.s1 } ;

ListBoth x y a = {s = x.s ++ a.s1 ++ y.s};
ListNone a = {s = a.s1 };
Noise x y = { s = x.s ++ y.s } ;

-- output concrete part ---------

include b.Abs.gf ;

lin Zero = { s = "0"} ;

One = { s = "1"} ;

Ten a b c d e = { s = "BBBBB"} ;

Twenty a b c d e = { s = "BBBBB"} ;

Fob x = { s = "B"++ x.s } ;

Fil x = { s = "B"++ x.s } ;

4.2. GF AS A FUNCTIONAL PARSER GENERATOR 61

VZero x = { s = x.s } ;

VOne x = { s = x.s } ;

BFil x = { s = x.s } ;

BFob x = { s = x.s } ;

First a = { s1= a.s } ;

Second x a = { s1 = a.s ++ x.s } ;

Third k x a = { s1 = k.s ++ a.s ++ x.s } ;

ListRight x a = { s = a.s1 ++ x.s } ;

ListLeft x a = { s = x.s ++ a.s1 } ;

ListBoth x y a = {s = x.s ++ a.s1 ++ y.s};
ListNone a = {s = a.s1 };
Noise x y = { s = x.s ++ y.s } ;

Let us generate random aminoacid chain that corresponds to the defined
grammar, then linearize it and finally translate aminoacid chain into sequence
containing β-structure:

> trace gr 1 S | l| t -td2 Bin Bet S

ListRight(VOne One)(First(BFil(Fil(Fob(Fil

(Ten Zero One Zero One Zero))))))

101010101

1BBBBB101

1BBBBBB01

1BBBBBBB1

1BBBBBBBB

10BBBBB01

10BBBBBB1

10BBBBBBB

101BBBBB1

101BBBBBB

1010BBBBB

BBBBB0101

BBBBBB101

BBBBBBB01

BBBBBBBB1

BBBBBBBBB

Since the grammar is ambiguous we get many parsing combinations. Within
GF language there is no mechanism to evaluate, which of them is the best and
therefore it’s impossible to filter the results to reduce the search space. Without
extra calculations the search space quickly becomes exponential and therefore
fails to produce acceptable results for more ambiguous grammars.

62CHAPTER 4. FUNCTIONAL PARSING FOR BIOSEQUENCE ANALYSIS

4.3 Parser combinators

Parser combinators libraries [CM95] are more appealing than parser generators,
since we can use the full power of functional language to extend the capabilities
for expressing grammars.

In the example below we can, for instance, calculate the energy function for
each parsing result and consequently choose one according to this criterion. Such
arithmetic operations were impossible in GF.

Monadic approach [GM96] specific to Haskell allows to write very general
parsers rather elegantly. Nevertheless, in order to cope with exponential growth
we need not only adjust the existing set of parser combinators, but also rewrite
it.

There is a very simple example of biosequence grammar, which uses a little
bit more complex model of aminoacids:

one → noise B noise

B → B0 | B1

B0 → hFob B1

B1 → hFil B0

B0 → hFob hFil hFob hF il hFob

B1 → hFil hFob hF il hFob hF il

hF il → a|r|n|c|g|h|i|l|m|f |s|w|y|v
hFob → a|n|d|q|e|g|h|k|p|s|t
noise → hFob | hFil | noise∗

Unlike the example of the previous section now the alphabet is not restricted
to 1 and 0. Namely, the hydrophobic/hydrophilic property is not just true or false.
Instead each letter represents aminoacid and has a hydrophobicity coefficient. If
this coefficient is close to 0 the corresponding aminoacid could be interpreted
as both hydrophilic and hydrophobic aminoacid. Besides, the minimum length
of β-structure is 5 instead of 4. The parser recognizes β-sequence in the input
aminoacid chain. Here is the code in Haskell:

module Beta where

import List import ParseLib

fone :: (Char, Float) -> Parser (Char, Float)

fone (c, n) = do char c; return (c,n)

hFob :: Parser (Char, Float)

hFob = foldl (+++) mzero (map fone foldl

[(’a’, 0.22),

(’n’, -0.46),

(’d’, -3.08),

4.3. PARSER COMBINATORS 63

(’q’, -2.81),

(’e’, -1.81),

(’g’, 0),

(’h’, 0.46),

(’k’, -3.04),

(’p’, -2.23),

(’t’, -1.90),

(’s’, -0.45)])

hFil :: Parser (Char, Float)

hFil = foldl (+++) mzero (map fone foldl

[(’a’, 0.22),

(’r’, 1.42),

(’n’, -0.46),

(’c’, 4.07),

(’g’, 0),

(’h’, 0.46),

(’i’, 4.77),

(’l’, 5.66),

(’m’, 4.23),

(’f’, 4.44),

(’s’, -0.45),

(’w’, 1.04),

(’y’, 3.23),

(’v’, 4.67)])

beta51 :: Parser (String, Float)

beta51 = do {a1<-hFil;a2<-hFob;a3<-hFil;

a4<- hFob;a5 <- hFil;}
return(("BBBBB"),(snd(a1)-snd(a2)+snd(a3)-snd(a4)+snd(a5)))}

beta50 :: Parser (String, Float)

beta50 = do {a1<-hFob;a2 <-hFil; a3<-hFob;

a4 <-hFil; a5 <- hFob;}
return (("BBBBB"),(snd(a1)-snd(a2)+snd(a3)-snd(a4)+snd(a5)))}

beta1 :: Parser (String, Float)

beta1 = do{a1<-hFil;a2<-beta0;}
return((’B’:fst(a2)),snd(a1)-snd(a2))}+++ beta51

beta0 :: Parser (String, Float)

beta0 = do { a1 <- hFob; a2 <- beta1;}
return ((’B’:fst(a2)),snd(a1)-snd(a2)) } +++ beta50

beta :: Parser (String, Float)

64CHAPTER 4. FUNCTIONAL PARSING FOR BIOSEQUENCE ANALYSIS

beta = beta1 +++ beta0

many0 :: Parser a -> Parser [a]

many0 p = force (many01 p ‘mplus‘ (return []))

many01 :: Parser a -> Parser [a]

many01 p = do { a <- p; as <- many0 p; return (a:as) }

noise1 :: Parser (String, Float)

noise1 = do{ a <- hFob; return ([fst(a)],0) } +++

do { a <- hFil; return ([fst(a)],0) }

helpFun :: (String, Float) -> (String, Float) ->

(String, Float)

helpFun = \ x y -> (fst(x)++fst(y), 0)

noise :: Parser (String, Float)

noise = do {xs <- many0 noise1;

return(foldl helpFun ("",0) xs)}

one :: Parser (String, Float)

one = do { a1 <- noise; a2 <- beta; a3 <- noise;}
return (fst(a1)++(fst(a2)++fst(a3)),snd(a2))

compareBy :: a -> a -> (a -> Float) -> Ordering

compareBy x y f = if (f(x)>f(y)) then LT else

if (f(y)>f(x)) then GT else EQ

better::((String,Float),String)->((String,Float),String)->

Ordering

better x y = compareBy x y (abs.snd.fst)

rightOrder::[((String,Float),String)]->

[((String,Float),String)]

rightOrder l = sortBy better l

final :: String -> [((String, Float),String)]

final s = genericTake 1 (rightOrder (papply one s))

Parser returns the detected structures together with energy value. Because of
the ambiguity there are several parsing results:

Beta> papply one "aarncdqek"

[(("aBBBBBqek",-8.81),""),(("aBBBBBqe",-8.81),"k"),

(("aBBBBBq",-8.81),"ek"),(("aBBBBB",-8.81),"qek"),

(("BBBBBBqek",9.03),""),(("BBBBBBqe",9.03),"k"),

4.4. CONCLUSION 65

(("BBBBBBq",9.03),"ek"),(("BBBBBB",9.03),"qek")]

According to chosen optimization criteria we are interested in the result with
the highest absolute energy value:

Beta> final "aarncdqek"

[(("BBBBBBqek",9.03),"")]

The problem with this example is that the parser evaluates all the results and
then chooses the best. It leads to exponential growth. To deal with the problem
dynamic programming is usually used. It allows to cut non-optimal branches as
early as possible and avoid repetition of the same calculations.

To go further we need a deeper analysis of the domain area. Namely, we need
to be sure that the goal function we use doesn’t cut the results we might be
interested in. The design of goal functions for biosequence analysis is a complex
problem. There exists a number of theories to predict the secondary structure of
proteins given the primary structure. The goal function used above originates in
physics: each aminoacid is assigned an energy value, which characterizes its hy-
drophobicity. The optimal protein secondary structure is the one that maximizes
the total energy value.

4.4 Conclusion

Using both standard ways of functional parsing we can write clear and easy to read
grammars for biosequences. But due to ambiguity of grammars the performance
remains the main obstacle to successful application.

The power of functional programming is based on strong typing. Unfortu-
nately, we are not able to take much advantage of this property due to the very
ambiguous nature of biosequence grammars.

One way to handle the problem is to use controlled dynamic parsing where we
can interfere and cut some parsing branches as well as keep track of calculated
results to avoid doing the same work twice. The main problem is to find a
goal function that allows us to make cutting decisions as early as possible and
that is still able to produce satisfactory results. The choice of goal function is a
well-known problem in bioinformatics irrelative to programming issues. Dynamic
programming and other approaches are used in bioinformatics software [Bio03]
usually implemented in imperative languages like C.

GF can be used for describing biosequence grammars, but the parser routinely
created is too inefficient. A possible approach can be to use GF for description,
and work with specialized parsers.

66CHAPTER 4. FUNCTIONAL PARSING FOR BIOSEQUENCE ANALYSIS

Chapter 5

Conclusion

5.1 Related work

Since GF itself has many different aspects and the present work also deals with
several GF issues we divide the related work accordingly. The resource part and
the authoring part, combined in GF, do not accompany each other in the related
projects. Therefore, it is natural to consider these projects separately. We do
not know about other projects trying to combine bioinformatics and functional
programming, so this part will be left without comparison to related work.

5.1.1 Multilingual authoring

The idea of developing user interface in Java programming language comes from
the CtCoq system [Y. 99].

GF applies formal language technique to natural languages. Syntax editing
procedure is originated from proof editors like Alf [MN94] used for interactive
theorem proving and pretty-printing of the proofs. Constructing a proof in a
proof editor corresponds to constructing an abstract syntax tree in GF. The
concrete part is, however, missing from the proof editors, since the proofs are
usually expressed in a symbolic language of mathematics.

Multilingual authoring approach is similar to the one in the WYSIWYM
tool [vDP00, PS98]. There, Multilingual Natural Language Generation from a
semantic knowledge base expressed in a formal language (non-linguistic source)
is opposed to Machine Translation (MT) (linguistic source).

The language-independent knowledge engineering (building a knowledge dia-
gram) in the WYSIWYM corresponds to the construction of an abstract syntax
tree in GF. The refinement entities called anchors in the WYSIWYM correspond
to the GF meta-variables. Refinement steps are performed by choosing from the
list of available options in both cases. Text generated from the current object
in several languages (English, French and Italian for WYSIWYM) are shown
to the user while editing. The language-independent ontology (domain model,

67

68 CHAPTER 5. CONCLUSION

terminology) in the WYSIWYM corresponds to a grammar (Abstract part) in
GF.

Even the architecture of one of the WYSISYM implementations DRAFTER-
II [PSE98] reminds that of GF in a way that the GUI part is separated from the
processing engine: Prolog is used for both ontology description and generation
while GUI is written in CLIM (Common Lisp Interface Manager).

However, unlike the WYSIWYM the GF architecture has one more separa-
tion, namely a special language (GF grammar formalism) built upon the main
implementation language Haskell. This makes GF more generic compared to
WYSIWYM, where the ontology of concepts is hard-wired. WYSIWYM, there-
fore, corresponds to a Gramlet specialized for one grammar. The WYSIWYM
user is not supposed to change the ontology coverage, he is only allowed to work
on the author level. By contrast, in GF, writing one’s grammars is one of the
main features and even supporting tools like the resource grammar library are
provided for the grammarian.

Besides the design issues the underlying non-linguistic models in the WYSI-
WYM and GF are quite different in nature. The GF model is more semantic
oriented, while the WYSIWYM is focused on syntactic information. Syntax
is more developed and even stylistic issues are addressed in the recent WYSI-
WYM applications [PSH03]. However, a clear semantic representation is work
in progress. The model currently used is mostly of syntactic nature. It consists
of dozens of parameters (features) for each sentence containing both syntactic
(tense, modality etc.) and semantical (actual verb) information.

GF is more versatile in one more respect compared to the WYSIWYM. For
every grammar not only the generator is produced, but also a parser. Thus the
author is allowed to type his input provided that it conforms to the grammar.
This is considered useful for multilingual authoring applications because typing
can speed up the tedious syntax editing procedure.

GF was one of the sources of inspiration for an XML-based multilingual doc-
ument authoring application for pharmaceutical domain developed at XRCE
[BDL00, DLR00]. The grammar formalism used in this system is called In-
teraction Grammars (IG). Like the GF grammar language IG has a separation
between the language-independent interlingua (abstract syntax in GF)and par-
allel realization grammars (concrete syntax in GF) for the languages represented
(English and French). As GF the IG also uses the notions of typing and depen-
dent types and is suitable for both parsing and generation. But unlike GF the IG
comes from the logic programming tradition. It is based on the Definite Clause
Grammars - a unification-based extension of context-free grammars, which has a
build-in implementation in Prolog.

5.1. RELATED WORK 69

5.1.2 Resource grammars

The resource grammar library is related to the Core Language Engine (CLE)
project later used in Spoken Language Translator (SLT) system for Air Travel
Information System (ATIS) domain [MDP+00].

Like the resource grammars in GF the CLE grammars aimed to be domain-
independent, however they were trained upon and built with ATIS corpus in
mind. Domain vocabulary contains around 1000-2500 words. In the SLT sys-
tem there are three main languages: English (coded first), Swedish and French
(adapted from the English version). Spanish and Danish are also present in the
CLE project.

The SLT processing modules, generic in nature, are based on large, linguis-
tically motivated grammars. However, the SLT system uses both grammatical
(hand-coded rules) and statistical knowledge (trained preferences).

Quasi (scope-neutral) Logical Form (QLF) - a feature-based formalism is used
for representing language structures. Due to quality-robustness trade-off the
QLF formalism is deeper than surface constituent trees (for better quality), but
captures only grammatical relations. It represents linguistic meaning, but not
yet an interlingua, since robust parsing would be problematic in this case.

Since the SLT uses a trasfer approach two kinds of rules are needed:

• monolingual (to and from QLF-form) rules that are used for both parsing
and generation.

• bilingual transfer rules.

Both sets are specified in the [MDP+00] using a unification grammars notation
built on top of Prolog syntax (based on Definite Clause Grammars with features).

Both GF and CLE describe their grammars declaratively. Record fields in the
GF type description roughly correspond to features in the CLE. Linearization
(interlingua) rules in GF map to monolingual unification rules in CLE. However,
no part of the GF is similar to the transfer rules set (more than one thousand
rules for each language pair), since GF is an interlingua system.

The syntax coverage of the GF resource grammars is comparable with that of
the CLE grammars (about one hundred rules per language in both cases). CLE
contains some domain-specific rules like noun phrases for various flight codes etc.
Time and date expressions are also treated specially in the CLE. As for GF:

• Numerals are not represented as a grammatical category. Cardinal numer-
als, however, are represented in an application grammar.

• Gerund is not yet covered and past participle is only treated as adjective.

• No complex verb phrases (with more than one verb part (auxiliary, modal,
infinitive)) and also no verb phrase conjunction.

70 CHAPTER 5. CONCLUSION

The same phenomena are not treated in the same way. Prepositional phrases
are handled by TV and Adverb types in GF.

Verb phrase discontinuous constituents are handled by combining the record
fields (see 3.2.3) while there is a special set of ”movement”rules responsible for
word order in the CLE. For example, to process the utterance Are we men? we
need to use the following four rules:

S:[inv=y] -> V:[subcat=List] -- "are"

NP -- "we"

VP: [svi=movedv:[subcat=List]] -- "men"

VP -> V:[subcat=COMPS]

COMPS

V:[subcat=[comp:COMP],svi=movedv:[subcat=[comp:COMP]]] -> []

COMP:[subjform=normal] -> NP

where the first rule is a special rule that takes care of the inverted word order. It
says that the verb (V)[are], which is supposed to be a part of the verb phrase(VP)
[are men] will go first. The rule also duplicates the information about this fronted
verb in the VP’s feature svi, so it can be later used by the second and the third
rules. Second rule forms a verb phrase taking a verb (V) and its complement
(COMP), which are in turn are formed by the third and the forth rules. The third
rule indicates that due to inverted word order (the feature svi) the verb phrase
will appear in the sentence without the verb (since it is already placed in the
front of the sentence). Notice that in case of the non-inversed word order we
would need to use different rules for V and S. The forth rule gives a complement
to the verb phrase expressed by a noun phrase (NPs)[men].

In case of GF the word order issue is taken care of only on the sentence level
by applying a generic rule for handling questions:

questVerbPhrase’ : Bool -> NounPhrase -> VerbPhrase -> Question =

\adv,john,walk -> {s = table {

DirQ => if_then_else Str walk.isAux

(indicVerb (verbOfPhrase walk) john.p john.n ++

john.s ! NomP ++ walk.s2 ! john.n)

(indicVerb verbP3Do john.p john.n ++

john.s ! NomP ++ walk.s ! InfImp ++ walk.s2 ! john.n) ;

5.1. RELATED WORK 71

IndirQ => if_then_else Str adv

[]

(variants {"if" ; "whether"}) ++

(predVerbPhrase john walk).s

}

} ;

For example, in the rule above in the lines four and five we can see that the verb
phrase denoted by walk [be a man] is used twice: in the first word indicVerb

(verbOfPhrase walk) john.p john.n [are] and in the third word walk.s2 !

john.n [men], i.e. the verb phrase is discontinuous: different parts of the verb
phrase are used in different parts of the sentence. By having a structure inside a
verb phrase we avoid introducing special rules for every word order, so the rules
for forming verb phrases do not care about the word order in the final sentence.
It is only on the very top sentence level, where the word order problem arises and
is resolved by using the discontinuous constituents of a verb phrase.

Morphological rules in GF use tables while the corresponding CLE rules use
features. For example, in the sentence ”Are we men? discussed above the word
men should be in plural form, since it needs to agree with the subject [we](in the
rule denoted by john). In GF this is done by selecting (using the exclamation
mark !) the plural form walk.s2 ! john.n from the table walk.s2, where
john.n is the number of the subject, i.e. in this case - plural. In CLE we need
to apply rules to the basic word form in order to get various form of the word,
see example below.

Another difference is that the whole inflection pattern of a word (according to
several parameters) is put in one table in GF (see 3.2.2) while several independent
rules are needed to express a similar pattern in CLE. In CLE one rule can only
take care of one parameter at a time. For example, here are the fragments of two
morphological rules that take care of standard French adjective inflection:

adj:[..., num=p, gen=G] -->

adj:[..., num=s, gen=G],

[s].

adj:[..., num=s, gen=f] -->

adj:[..., num=s, gen=m],

[e].

The first one is responsible for the number parameter. It says, that the plural
form is formed by adding -s to the singular form. The second rule is responsible
for inflecting according to gender. It says, that the feminine form is formed by

72 CHAPTER 5. CONCLUSION

adding -e to the masculine form. As we can see number and gender variations
are described separately. So in order to get a plural feminine form we need to
apply the second and the first rules consequently. Choosing from the inflection
table in GF does not have such restriction, i.e. all the inflection forms of a word
are described in one rule (function).

Such differences are partly due to design decisions, partly hereditary to for-
malism’s expressive means.

Despite these differences the general structure of the GF resource library and
the CLE monolingual rule set match a lot, which is only natural since they both
reflect the structure of the modelled language.

5.2 Results

Our general goal is to improve the GF (re-)usability and portability as an appli-
cation as well as a piece of software.

We use the term portability in several senses:

Multi-lingual

The GF grammar language was used for building grammars in Russian.
The main result in this area is Russian resource grammar library adapted from

the similar libraries for other languages. Such libraries allows the grammarian to
write multilingual application grammars faster by reuse of the previously written,
widely applicable code. Another advantage is that the resource grammars are
tested and, therefore, guarantee that all the library functions are grammatically
correct. (providing that they are properly used, i.e. no type errors and the right
rules are chosen).

Some example application grammars in Russian were also written both from
scratch and using the resource library.

Using Russian in GF also required fixing some technical issues regarding han-
dling the Cyrillic fonts display.

Multi-platform

Platform portability part includes writing the Java GUI Syntax Editor, which
provides a graphical user interface for the GF main system written in Haskell,
as well as working on, so called Gramlets - pure Java programs suitable for PDA
and also able to work as applets on WWW. Gramlets functionality is restricted
to syntax editing and linearizing, but no parsing or dependent types like in GF
written in Haskell.

Using Java programming language makes the code written able to be run on
several platforms (including UNIX, Windows and Mac) without recompilation.

5.3. FUTURE WORK 73

GF (including the Java GUI Syntax Editor) is now integrated (by Kristofer
Johannisson)as a plug-in in the KeY project - a tool for formal software spec-
ification and verification based on the Together commercial case tool [HJR02],
which is also implemented in Java. GF is called from the KeY together with a
UML diagram. The specification authored in the Java GUI Syntax Editor is sent
back. This allows us to look at GF in general and the Java GUI Syntax Editor
in particular as a module or a supplement to another system, thus making GF a
reusable piece of software.

Java GUI together with the communication protocol (XML) turn out to be
quite adaptable for applications other than syntax editing. In Fig. 5.1 we can
see the Numerals application showing numbers in dozens of languages, which
was adapted from the Java GUI Syntax Editor in a couple of hours without any
changes on the GF side.

Multi-domain

We also tried applying GF to a non-linguistic domain, namely bio-informatics.
Functional parsing in general and GF in particular were used for protein grammar
description. What we wanted was to describe the protein structure as a grammar
and try to use parsing for determining the structure of proteins. The problems we
encountered were related to the ambiguity of the protein grammar, that turned
out to be overwhelming for GF designed for natural languages. The results were
not too encouraging, but we certainly have gained some insights on GF strengths
and limitations during the attempts.

5.3 Future work

So far the GF grammars has been developed interactively according to the build-
try-improve circular model. We are aiming at creating an Integrated Development
Environment (IDE) for GF language that contains tools for users on different
levels.

The main direction for future work is to treat the GF grammar formalism itself
as a GF grammar, which means to write a grammar editor that will provide a
convenient environment for writing GF grammars. Some command line tools are
provided by GF for grammar processing, but no integrated graphical development
environment (IDE) for creating grammars exists for the moment. For example,
now written grammars can be type checked together with compilation in a batch
mode. Type checking ensures that no run-time type errors occur, which is the
whole point of using typing in programming languages. However, it would be even
better if a rule could be type checked immediately during the writing process.
Rule construction in such an IDE would become similar to constant definition
construction in a proof editor. Unlike the present Java GUI syntax editor such a

74 CHAPTER 5. CONCLUSION

Figure 5.1: Numerals GUI displays numbers in more than 20 languages. Adapted
from the Java Syntax Editor GUI without disturbing the GF core system.

5.3. FUTURE WORK 75

tool will belong to a higher — grammarian — user level. We would like to explore
the possibility to introduce more visual tools in the editing process. Ability to
perform function search in the resource library will also be of use for grammar
writers.

We think that work on the GF supporting tool functionality will provide room
for more theoretical investigations compared to the work presented. For instance,
in case of writing a GF grammar editor this is caused by less previous work to
build on and by the non-triviality of the implementation task of some desirable
features.

Once written any software needs to be maintained. This means that the work
on the Syntax Editing and the resource libraries will continue.

Among the features to be implemented in Java GUI syntax editor is syntax
editing of text in the linearizations area. The possibility to edit several objects
simultaneously can be of some use, especially in the light of stronger visualization
of the editing process. For example, editing objects in different windows and
then combining them by cut&paste operation sounds like a useful feature. The
present Java GUI module as well as the XML communication protocol can be a
subject to change. The Gramlets performance will probably gain from a different
implementation. After all, despite the strong shift to computational linguistics
field building an NLP system remains, in the first place, a matter of software
engineering when it comes to working applications.

The resource library and its structure can be further extended and modified.
The main purposes of the resource library are language coverage and high-level
API to make it relatively easy-to-use. Writing hand-coded grammars requires
considerable investment of effort and has been strongly challenged by the surface
processing using statistical methods. The GF system argues for high-quality
translation in a limited domain. The resource grammar library motivation is to
lower the grammar development cost without compromising the expressive power
of the GF language formalism.

76 CHAPTER 5. CONCLUSION

Appendix A

Java GUI Editor command
reference

Here we describe the functionality of the editor GUI controls. There are two
main possibilities to access the Editor functions: the menu bar and the button
panels. Some operations are accessible both from the menu and the buttons.
Menu items with three dots like in Open... assume that a file-chooser will appear
before performing reading or writing operation.

A.1 File menu

File menu contains the main operations:

• Open... – Read both a new environment and an editing object from a file.
The current editing will be discarded, but first the user will be prompted
to confirm his/her intentions.

• New Topic... – Read a new environment from a file. The old work will be
dismissed although a warning message will be displayed beforehand.

• Reset – Empty the environment. The objects created previously will be lost.
The user will always be asked for permission to perform the operation.

• Save As... – Write the current editing object to a file in the term or text
format.

• Exit – Quit the editor.

A.2 Languages menu

Languages menu Controls the language settings. First, it contains the list of
available languages including so-called Abstract, language-independent syntax

77

78 APPENDIX A. JAVA GUI EDITOR COMMAND REFERENCE

representation Abs. Only languages with marked checkboxes will be shown in
the linearizations’ display area.

• Add... – Add another language to the current topic by reading the corre-
sponding grammar file.

A.3 View menu

View menu controls the appearance of the editor:

• Tree – Show/hide the tree representation of the current editing object.

• One window – Put all the panels in one window.

• Split windows – Put the editing selection menu in a separate window.

A.4 Upper panel buttons

The operations affecting the environment state:

• New – Start a new goal of the chosen type. The current editing will be
discarded, but first the user will be promted to confirm his/her intentions.

• Open – Read both a new environment and an editing object from file. The
old work will be dismissed although a warning message will be displayed
beforehand. Duplicates the Open... item in the File menu.

• Save – Write the current editing object to a file in the term or text format.
Duplicates the Save... item in the File menu.

• New Topic – Read a new environment from file. The objects created previ-
ously will be lost. The user will always be asked for permission to perform
the operation. Duplicates the New Topic... item in the File menu.

• Filter – Apply the chosen Filter (one of the -filter values) to the linearization
output:

– identity – No change (default).

– erase – Erase the text.

– take100 – Show the first 100 characters.

– text – Format as text (punctuation, capitalization).

– code – Format as code (spacing, indentation).

– latexfile – Embed in a LaTeX file.

A.5. MIDDLE PANEL BUTTONS 79

– structured – show with constituents in brackets.

– unstructured – don’t show brackets (default).

• Menus – Change the display format of the refinement options:

– language – show the menu through linearization in the corresponding
language or as formal object (default).

– short – use short command names (default).

– long – use long command names.

– typed – show types of refinements.

– untyped – don’t show types of refinements (default).

A.5 Middle panel buttons

Here, the buttons related to the tree navigation are collected:

• ?< – Go to the previous metavariable.

• < – Go one step back (up)in the tree.

• Top – Go to the top of the tree.

• > – Go one step ahead in the tree.

• >? – Go to the next metavariable.

A.6 Bottom panel buttons

This panel contains the refinement-related operations:

• GF command – Send a string command to GF. The button is meant for
advanced users. For GF command syntax see [Ran03].

• Read – Read a term or parse a String as a refinement of the current sub
goal. The input can be either typed or read from a file.

• Modify – Transform the current term:

– identity – don’t change (default).

– compute – compute to normal form.

– paraphrase – generate trees with the same normal form.

– typecheck – perform global typecheck.

80 APPENDIX A. JAVA GUI EDITOR COMMAND REFERENCE

– solve – apply global constraint solver.

– context– try to refine with variables bound in context.

The compute and paraphrase commands only have effect if the grammar has
semantic definitions (def judgements). The typecheck and solve commands
only have effect if the grammar has dependent types. The context command
only has effect if the grammar has variable bindings.

• Alpha – Change (alpha convert) a bound variable. The syntax is: ”x 0
y”means to change x 0 to y. This command only has effect if the grammar
has variable bindings, and if the current focus has variable bindings.

• Random – Find a random refinement.

• Undo – Go back in the refinement history.

Appendix B

Automatically generated test
examples

Automatically generated test examples of using the resource grammar library
functions (in English and in Russian) are intended for proof-reading and also
reflect the coverage of the resource library. Similar examples are generated in
other languages (French, German and Italian). In some examples, several lin-
earizations of the same syntax tree (paraphrases) are possible like in the second
example - four variants are present. When working in the Syntax Editor only the
first variant is shown.

Figure B.1: Examples from English resource library.

81

82 APPENDIX B. AUTOMATICALLY GENERATED TEST EXAMPLES

Figure B.2: Examples from English resource library.

83

Figure B.3: Examples from English resource library.

84 APPENDIX B. AUTOMATICALLY GENERATED TEST EXAMPLES

Figure B.4: Examples from English resource library.

85

Figure B.5: Examples from Russian resource library.

86 APPENDIX B. AUTOMATICALLY GENERATED TEST EXAMPLES

Figure B.6: Examples from Russian resource library.

87

Figure B.7: Examples from Russian resource library.

88 APPENDIX B. AUTOMATICALLY GENERATED TEST EXAMPLES

Appendix C

Types module

This is a resource module for Russian morphology, defining the morphological
parameters and word classes of Russian. It is aimed to be complete w.r.t. the
description of word forms. However, it does not include those parameters that
are not needed for analysing individual words: such parameters are defined in
syntax modules.

include ../prelude/prelude.gf ;

C.1 Enumerated parameter types

These types are the ones found in school grammars. Their parameter values are
atomic.

param

Gender = Masc | Fem | Neut ;

Number = Sg | Pl ;

Case = Nom | Gen | Dat | Acc | Inst | Prepos ;

Voice = Act | Pass ;

Aspect = Imperfective | Perfective ;

Tense = Present | Past ;

Degree = Pos | Comp | Super ;

Person = P1 | P2 | P3 ;

AfterPrep = Yes | No ;

Possessive = NonPoss | Poss GenNum ;

Animacy = Animate | Inanimate ;

A number of Russian nouns have common gender. They can denote both
males and females: umnica (a clever person), inжener (an engineer). We over-
look this phenomenon for now. The AfterPrep parameter is introduced in order
to describe the variations of the third person personal pronoun forms depending

89

90 APPENDIX C. TYPES MODULE

on whether they come after a preposition or not. The Possessive parameter is
introduced in order to describe the possessives of personal pronouns, which are
used in the Genetive constructions like moÂ mama (my mother) instead of mama

moÂ (the mother of mine).

C.2 Word classes and parameter types

Real parameter types (i.e. ones on which words and phrases depend) are mostly
hierarchical. The alternative would be cross-products of simple parameters, but
this would usually overgenerate. However, we use the cross-products in complex
cases (for example, aspect and tense parameter in the verb description) where
the relationship between the parameters are non-trivial even though we aware
that some combinations do not exist (for example, present perfective does not
exist, but removing this combination would lead to having different descriptions
for perfective and imperfective verbs, which we do not want for the sake of uni-
formity).

C.2.1 Nouns

Common nouns decline according to number and case. For the sake of shorter
description these parameters are combined in the type SubstForm.

param SubstForm = SF Number Case ;

Substantives moreover have an inherent gender.

oper

CommNoun : Type = {s : SubstForm => Str ; g : Gender ;

anim : Animacy } ;

numSF: SubstForm -> Number = \sf -> case sf of

{

SF Sg _ => Sg ;

_ => Pl

} ;

caseSF: SubstForm -> Case = \sf -> case sf of

{

SF _ Nom => Nom ;

SF _ Gen => Gen ;

SF _ Dat => Dat ;

SF _ Inst => Inst ;

SF _ Acc => Acc ;

SF _ Prepos => Prepos

} ;

C.2. WORD CLASSES AND PARAMETER TYPES 91

C.2.2 Pronouns

oper

Pronoun : Type = { s : PronForm => Str ; n : Number ;

p : Person ; g: PronGen ; pron: Bool} ;

param PronForm = PF Case AfterPrep Possessive;

Gender is not morphologically determined for first and second person pro-
nouns.

PronGen = PGen Gender | PNoGen ;

The following coercion is useful:

oper

pgen2gen : PronGen -> Gender = \p -> case p of {

PGen g => g ;

PNoGen => variants {Masc ; Fem}

-- the best we can do for Â, ty

} ;

oper

extCase: PronForm -> Case = \pf -> case pf of

{ PF Nom _ _ => Nom ;

PF Gen _ _ => Gen ;

PF Dat _ _ => Dat ;

PF Inst _ _ => Inst ;

PF Acc _ _ => Acc ;

PF Prepos _ _ => Prepos

} ;

mkPronForm: Case -> AfterPrep -> Possessive -> PronForm =

\c,n,p -> PF c n p ;

C.2.3 Adjectives

Adjectives is a very complex class. The major division is between the comparison
degrees.

param

AdjForm = AF Case Animacy GenNum ;

92 APPENDIX C. TYPES MODULE

Declination forms depend on Case, Animacy , Gender: novye doma - novyh

domov (new houses - new houses’), Animacy plays role only in the Accusative
case: Â l»bl» novy-e doma − Â l»bl» novy-h muжqin (I love new houses -
I love new men); and on Number: novy½ dom - novye doma (a new house - new
houses). The plural never makes a gender distinction.

GenNum = ASg Gender | APl ;

oper numGNum : GenNum -> Number = \gn ->

case gn of { APl => Pl ; _ => Sg } ;

oper genGNum : GenNum -> Gender = \gn ->

case gn of { ASg Fem => Fem; _ => Masc } ;

oper numAF: AdjForm -> Number = \af ->

case af of { AF _ _ gn => (numGNum gn) } ;

oper caseAF: AdjForm -> Case = \af ->

case af of { AF c _ _ => c } ;

The Degree parameter should also be more complex, since most Russian adjec-
tives have two comparative forms: attributive (syntactic (compound), declinable)
- bolee vysoki½ (corresponds to more high) and predicative (indeclinable)- vyxe

(higher) and more than one superlative forms: samy½ vysoki½ (corresponds to
the most high) - naivysxi½ (the highest). Even one more parameter indepen-
dent of the degree can be added, since Russian adjectives in the positive degree
also have two forms: long (attributive and predicative) - vysoki½ (high) and
short (predicative) - vysok, although this parameter will not be exactly orthog-
onal to the degree parameter. Short form has no case declension, so in principle
it can be considered as an additional case. Note: although the predicative usage
of the long form is perfectly grammatical, it can have a slightly different meaning
compared to the short form. For example: on - bolbno½ (long, predicative) vs.
on - bolen (short, predicative).

oper

AdjDegr : Type = {s : Degree => AdjForm => Str} ;

Adjective type includes both non-degree adjective classes: possesive (mamin

[mother’s], lisi½ [fox’es]) and relative (russki½ [Russian]) adjectives.

Adjective : Type = {s : AdjForm => Str} ;

C.2.4 Verbs

Mood is the main verb classification parameter. The verb mood can be infinitive,
subjunctive, imperative, and indicative. Note: subjunctive mood is analytical,

C.2. WORD CLASSES AND PARAMETER TYPES 93

i.e. formed from the past form of the indicative mood plus the particle li. That
is why they have the same GenNum parameter. We choose to keep the redundant
form in order to indicate the presence of the subjunctive mood in Russian verbs.
Aspect and Voice parameters are present in every mood, so Voice is put before
the mood parameter in verb form description the hierachy. Moreover Aspect
is regarded as an inherent parameter of a verb entry. The primary reason for
that is that one imperfective form can have several perfective forms: lomatb
- s-lomatb - po-lomatb (to break). Besides, the perfective form could be
formed from imperfective by prefixation, but also by taking a completely different
stem: govoritb-skazatb (to say). In the later case it is even natural to regard
them as different verb entries. Another reason is that looking at the Aspect
as an inherent verb parameter seem to be customary in other similar projects:
http://starling.rinet.ru/morph.htm Note: Of course, the whole inflection table
has many redundancies in a sense that many verbs do not have all grammatically
possible forms. For example, passive does not exist for the verb l»bitb (to
love), but exists for the verb lomatb (to break). Depending on the tense verbs
conjugate according to combinations of gender, person and number of the verb
objects. Participles (Present and Past) and Gerund forms are not included in the
current description. This is the verb type used in the lexicon:

oper Verbum : Type = { s: VerbForm => Str ; asp : Aspect };

param

VerbForm = VFORM Voice VerbConj ;

VerbConj = VIND VTense | VIMP Number Person | VINF |

VSUB GenNum ;

VTense = VPresent Number Person | VPast GenNum |

VFuture Number Person ;

For writing an application grammar one usually doesn’t need the whole inflec-
tion table, since each verb is used in a particular context that determines some
of the parameters (Tense and Voice while Aspect is fixed from the beginning) for
certain usage. So we define the Verb type, that have these parameters fixed. The
conjugation parameters left (Gender, Number, Person) are combined in the VF
type:

param VF = VFin GenNum Person | VImper Number Person |

VInf | VSubj GenNum;

oper

Verb : Type = {s : VF => Str ; t: Tense ; a : Aspect ;

v: Voice} ;

extVerb : Verbum -> Voice -> Tense -> Verb = \aller, vox, t ->

94 APPENDIX C. TYPES MODULE

{ s = table {

VFin gn p => case t of {

Present => aller.s ! VFORM vox (VIND (VPresent

(numGNum gn) p)) ;

Past => aller.s ! VFORM vox (VIND (VPast gn))

} ;

VImper n p => aller.s ! VFORM vox (VIMP n p) ;

VInf => aller.s ! VFORM vox VINF ;

VSubj gn => aller.s ! VFORM vox (VSUB gn)

}; t = t ; a = aller.asp ; v = vox } ;

C.2.5 Other open classes

Proper names and adverbs are the remaining open classes.

oper

PNm : Type = {s : Case => Str ; g : Gender} ;

Adverbials are not inflected (we ignore comparison, and treat compared ad-
verbials as separate expressions; this could be done another way).

Adverb : Type = SS ;

C.2.6 Closed classes

The rest of the Russian word classes are closed, i.e. not extensible by new lexical
entries. Thus we don’t have to know how to build them, but only how to use
them, i.e. which parameters they have.

C.2.7 Relative pronouns

Relative pronouns are inflected in gender, number, and case just like adjectives.

RelPron : Type = {s : GenNum => Case => Animacy => Str} ;

C.2.8 Prepositions are just strings.

Preposition = Str ;

Appendix D

A Small Russian Resource
Syntax

This resource grammar contains definitions needed to construct indicative, inter-
rogative, and imperative sentences in Russian.

The following files are presupposed:

include

morpho.RusU.gf ; -- ad hoc morpho rules

../prelude/prelude.gf ; -- language independent prelude

types.RusU.gf ; -- used in functional morphology as well

coordination.gf ; -- language-independent coordination package

D.1 Common Nouns

D.1.1 Common noun phrases

Complex common nouns (Comm’NounPhrase) have in principle the same param-
eters as simple ones.

oper

CommNounPhrase: Type = {s : Number => Case => Str;

g : Gender; anim : Animacy} ;

noun2CommNounPhrase : CommNoun -> CommNounPhrase =

\sb ->

{s = \\n,c => sb.s ! SF n c ;

g = sb.g ;

anim = sb.anim

} ;

95

96 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

commNounPhrase2CommNoun : CommNounPhrase -> CommNoun =

\sb ->

{s = \\sf => sb.s ! (numSF sf) ! (caseSF sf) ;

g = sb.g ;

anim = sb.anim

} ;

n2n = noun2CommNounPhrase;

n2n2 = commNounPhrase2CommNoun ;

D.2 Noun Phrases

oper

NounPhrase : Type = { s : PronForm => Str ; n : Number ;

p : Person ; g: Gender ; anim : Animacy ; pron: Bool} ;

-- A function specific for Russian for setting the gender for

-- personal pronouns in first and second person, singular :

setNPGender : Gender -> NounPhrase -> NounPhrase =

\gen, pronI ->

{ s = pronI.s ; g = gen ; anim = pronI.anim ;

n = pronI.n ; nComp = pronI.nComp ; p = pronI.p ;

pron = pronI.pron } ;

mkNounPhrase : Number -> CommNounPhrase -> NounPhrase =

\n,chelovek ->

{s = \\cas => chelovek.s ! n ! (extCase cas) ;

n = n ; g = chelovek.g ; p = P3 ; pron =False ;

anim = chelovek.anim

} ;

pron2NounPhrase : Pronoun -> Animacy -> NounPhrase =

\ona, anim ->

{s = ona.s ; n = ona.n ; g = pgen2gen ona.g ;

pron = ona.pron; p = ona.p ; anim = anim } ;

D.3 Determiners

Determiners (only determinative pronouns in Russian) are inflected according to
the gender of nouns they determine. The determined noun has the case parameter
specific for the determiner:

Determiner : Type = Adjective ** { n: Number; c : Case } ;

D.3. DETERMINERS 97

anyPlDet = kakojNibudDet ** {n = Pl; c= Nom} ;

detNounPhrase : Determiner -> CommNounPhrase -> NounPhrase =

\kazhduj, okhotnik ->

{s = \\c => case kazhduj.c of {

Nom =>

kazhduj.s ! AF (extCase c) okhotnik.anim

(gNum okhotnik.g kazhduj.n) ++

okhotnik.s ! kazhduj.n ! (extCase c) ;

_ =>

kazhduj.s ! AF (extCase c) okhotnik.anim

(gNum okhotnik.g kazhduj.n) ++

okhotnik.s ! kazhduj.n ! kazhduj.c };

n = kazhduj.n ;

p = P3 ;

pron = False;

g = okhotnik.g ;

anim = okhotnik.anim

} ;

indefNounPhrase : Number -> CommNounPhrase -> NounPhrase =

\n,mashina ->

{s = \\c => mashina.s ! n ! (extCase c) ;

n = n ; p = P3 ; g = mashina.g ; anim = mashina.anim ;

pron = False

} ;

defNounPhrase : Number -> CommNounPhrase -> NounPhrase =

\n,mashina ->

{ s = \\c => mashina.s ! n ! (extCase c) ;

n = n ; p = P3 ; g = mashina.g ;anim = mashina.anim ;

pron = False } ;

Genitives of noun phrases can be used like determiners, to build noun phrases.
The number argument makes the difference between mo½ dom - moi doma (my
house - my houses).

The variation like in the car of John / John’s car in English is not equally
natural for proper names and pronouns and the rest of nouns. Compare dverca

maxiny and maxiny dverca, while Vanina mama and mama Bani or moÂ

mama and mama moya. Here we have to make a choice of a universal form,
which will be moÂ mama - Vani mama - maxiny dverca , which sounds the
best for pronouns, a little worse for proper names and the worst for the rest of

98 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

nouns. The reason is the fact that possession/genetive is more a human category
and pronouns are used very often, so we try to suit this case in the first place.

npGenDet : Number -> NounPhrase -> CommNounPhrase -> NounPhrase =

\n,masha,mashina ->

{s = \\c => case masha.pron of

{ True => masha.s ! (mkPronForm Nom No

(Poss (gNum mashina.g n))) ++

mashina.s ! n ! (extCase c) ;

False => masha.s ! (mkPronForm Gen No

(Poss (gNum mashina.g n))) ++

mashina.s ! n ! (extCase c)

} ;

n = n ; p = P3 ; g = mashina.g ; anim = mashina.anim ;

pron = False

} ;

D.4 Adjectives

D.4.1 Simple adjectives

A special type of adjectives just having positive forms (for semantic reasons) is
useful, e.g. russki½.

oper

extAdjective : AdjDegr -> Adjective = \adj ->

{ s = \\af => adj.s ! Pos ! af } ;

extAdjFromSubst: CommNoun -> Adjective = \ vse ->

{s = \\af => vse.s ! SF (numAF af) (caseAF af) } ;

Coercions between the compound gen-num type and gender and number:

gNum : Gender -> Number -> GenNum = \g,n ->

case n of {Sg => case g of

{ Fem => ASg Fem ;

Masc => ASg Masc ;

Neut => ASg Neut

-- _ => variants {ASg Masc ; ASg Fem}

} ; Pl => APl} ;

D.4. ADJECTIVES 99

D.4.2 Adjective phrases

An adjective phrase may contain a complement, e.g. moloжe Rity. Then it
is used as postfix in modification, e.g. qelovek, moloжe Rity.

IsPostfixAdj = Bool ;

AdjPhrase : Type = Adjective ** {p : IsPostfixAdj} ;

Simple adjectives are not postfix:

adj2adjPhrase : Adjective -> AdjPhrase = \novuj ->

novuj ** {p = False} ;

D.4.3 Comparison adjectives

Each of the comparison forms has a characteristic use:
Positive forms are used alone, as adjectival phrases (vysoki½).

positAdjPhrase : AdjDegr -> AdjPhrase = \bolshoj ->

adj2adjPhrase (extAdjective bolshoj) ;

Comparative forms are used with an object of comparison, as adjectival
phrases (vyxe tebÂ).

comparAdjPhrase : AdjDegr -> NounPhrase -> AdjPhrase =

\bolshoj, tu ->

{s = \\af => bolshoj.s ! Comp ! af ++

tu.s ! (mkPronForm Gen Yes NonPoss) ;

p = True

} ;

Superlative forms are used with a modified noun, picking out the maximal
representative of a domain (samy½ vysoki½ dom).

superlNounPhrase : AdjDegr -> CommNounPhrase -> NounPhrase =

\bolshoj, dom ->

{s = \\pf => bolshoj.s ! Super ! AF (extCase pf) dom.anim

(gNum dom.g Sg) ++ dom.s ! Sg ! (extCase pf) ;

n = Sg ;

p = P3 ;

pron = False;

anim = dom.anim ;

g = dom.g

} ;

100 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

D.4.4 Two-place adjectives

A two-place adjective is an adjective with a preposition used before the comple-
ment. (Rem. Complement = s2 : Preposition ; c : Case).

AdjCompl = Adjective ** Complement ;

complAdj : AdjCompl -> NounPhrase -> AdjPhrase =

\vlublen,tu ->

{s = \\af => vlublen.s ! af ++ vlublen.s2 ++

tu.s ! (mkPronForm vlublen.c No NonPoss) ;

p = True

} ;

D.4.5 Complements

Complement = {s2 : Preposition ; c : Case} ;

complement : Str -> Complement = \cherez ->

{s2 = cherez ; c = Nom} ;

complementDir : Complement = complement [] ;

complementCas : Case -> Complement = \c ->

{s2 = [] ; c = c} ;

D.5 Individual-valued functions

An individual-valued function is a common noun together with the preposition
prefixed to its argument (kl»q ot doma). The situation is analogous to two-
place adjectives and transitive verbs.

We allow the genitive construction to be used as a variant of all function
applications. It would definitely be too restrictive only to allow it when the
required case is genitive. We don’t know if there are counterexamples to the
liberal choice we’ve made.

Function = CommNounPhrase ** Complement ;

The application of a function gives, in the first place, a common noun: kl»q

ot doma. From this, other rules of the resource grammar give noun phrases,
such as kl»qi ot doma, kl»qi ot doma i ot maxiny and kl»q ot doma

i maxiny the latter two corresponding to distributive and collective functions,
respectively). Semantics will eventually tell when each of the readings is mean-
ingful.

D.5. INDIVIDUAL-VALUED FUNCTIONS 101

appFunComm : Function -> NounPhrase -> CommNounPhrase =

\mama,ivan ->

{s = \\n, cas =>

mama.s ! n ! cas ++ mama.s2 ++

ivan.s ! (mkPronForm mama.c No (Poss (gNum mama.g n)));

g = mama.g ;

anim = mama.anim

} ;

It is possible to use a function word as a common noun; the semantics is often
existential or indexical.

funAsCommNounPhrase : Function -> CommNounPhrase = \x -> x ;

mkFun : CommNoun -> Preposition -> Case -> Function =

\f,p,c ->

(n2n f) ** {s2 = p ; c = c} ;

The following is an aggregate corresponding to the original function appli-
cation producing dectvo Ivana and Ivanovo dectvo. It does not appear in
the resource abstract syntax any longer. Both versions return dectvo Ivana

although Ivanovo dectvo must also be included. Such possesive form is only
possible with proper names in Russian :

appFun : Bool -> Function -> NounPhrase -> NounPhrase =

\coll,detstvo, ivan ->

let {n = ivan.n ; nf = if_then_else Number coll Sg n} in

variants {

defNounPhrase nf (appFunComm detstvo ivan) ;

-- detstvoIvana

npGenDet nf ivan detstvo

} ;

The commonest cases are functions with Genitive.

funGen : CommNoun -> Function = \urovenCen ->

mkFun urovenCen [] Gen ;

D.5.1 Modification of common nouns

The two main functions of adjective are in predication (Ivan - molod) and
in modification (molodo½ qelovek). Predication will be defined later, in the
chapter on verbs.

102 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

modCommNounPhrase : AdjPhrase -> CommNounPhrase ->

CommNounPhrase = \khoroshij,novayaMashina ->

{s = \\n, c =>

khoroshij.s ! AF c novayaMashina.anim

(gNum novayaMashina.g n) ++ novayaMashina.s ! n ! c ;

g = novayaMashina.g ;

anim = novayaMashina.anim

} ;

D.6 Verbs

D.6.1 Transitive verbs

Transitive verbs are verbs with a preposition for the complement, in analogy with
two-place adjectives and functions. One might prefer to use the term 2-place verb,
since transitive traditionally means that the inherent preposition is empty and
the case is accusative. Such a verb is one with a direct object. Note: Direct
verb phrases where the Genitive case is also possible (kupitb hleba, ne qitatb
gazet) are overlooked in mkDirectVerb and can be expressed via more a general
rule mkTransVerb.

TransVerb : Type = Verb ** {s2 : Preposition ; c: Case } ;

complementOfTransVerb : TransVerb -> Complement =

\v -> {s2 = v.s2 ; c = v.c} ;

verbOfTransVerb : TransVerb -> Verb = \v ->

{s = v.s; t = v.t; a = v.a ; v = v.v } ;

mkTransVerb : Verb -> Preposition -> Case -> TransVerb =

\v,p,cas -> v ** {s2 = p ; c = cas } ;

mkDirectVerb : Verb -> TransVerb = \v ->

mkTransVerb v nullPrep Acc;

nullPrep : Preposition = [] ;

The rule for using transitive verbs is the complementization rule:

complTransVerb : Bool -> TransVerb -> NounPhrase ->

VerbPhrase = \b,se,tu ->

{s = se.s ; a = se.a ; t = se.t ; v = se.v ;

s2 = negation b ;

s3 = _,_ => se.s2 ++

tu.s ! (mkPronForm se.c No NonPoss) ;

D.6. VERBS 103

negBefore = True } ;

D.6.2 Verb phrases

Verb phrases are discontinuous: the parts of a verb phrase are (s) an inflected
verb, (s2) verb adverbials (such as negation), and (s3) complement. This discon-
tinuity is needed in sentence formation to account for word order variations.

VerbPhrase : Type = Verb ** {s2 : Str ;

s3 : Gender => Number => Str ;

negBefore: Bool} ;

A simple verb can be made into a verb phrase with an empty complement.
There are two versions, depending on if we want to negate the verb.

predVerb : Bool -> Verb -> VerbPhrase = \b,vidit ->

vidit ** {

s2 = negation b ;

s3 = _,_ => [] ;

negBefore = True

} ;

negation : Bool -> Str = backslashb ->

if then else Str b [] "ne”;
Sometimes we want to extract the verb part of a verb phrase.

verbOfPhrase : VerbPhrase -> Verb = \v ->

{s = v.s; t = v.t ; a = v.a ; v =v.v} ;

Verb phrases can also be formed from adjectives (- molod), common nouns
(- qelovek), and noun phrases (- samy½ molodo½). The third rule is overgen-
erating: - kaжdy½ qelovek has to be ruled out on semantic grounds. Note: in
some case we can even omit a dash - : Â duma», qto on horoxi½ qelovek.

predAdjective : Bool -> Adjective -> VerbPhrase = \b,zloj ->

{ s= _ => "-" ;

t = Present ;

a = Imperfective ;

v = Act ;

s2 = negation b ;

s3 = \\g,n => case n of {

Sg => zloj.s ! AF Nom Animate (ASg g) ;

Pl => zloj.s ! AF Nom Animate APl

} ;

negBefore = False

104 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

} ;

predCommNoun : Bool -> CommNounPhrase -> VerbPhrase =

\b,chelovek ->

{ s= _ => "-" ;

t = Present ;

a = Imperfective ;

v = Act ;

s2 = negation b ;

s3 = _,n => (indefNounPhrase n chelovek).s !

(mkPronForm Nom No NonPoss) ;

negBefore = False

} ;

predNounPhrase : Bool -> NounPhrase -> VerbPhrase =

\b,masha ->

{ s= _ => "-" ;

t = Present ;

a = Imperfective ;

v = Act ;

s2 = negation b ;

s3 = _,_ => masha.s ! (mkPronForm Nom No NonPoss) ;

negBefore = False

} ;

-- A function specific for Russian :

predNeedShortAdjective: Bool -> NounPhrase ->

CommNounPhrase -> Sentence = \ b, Jag, Dig -> { s =

let {

mne = Jag.s ! (mkPronForm Dat No NonPoss) ;

nuzhen = need.s ! AF Nom Inanimate (gNum Dig.g Sg) ;

doctor = Dig.s ! Sg ! Nom ;

ne = negation b

} in

mne ++ ne ++ nuzhen ++ doctor

} ;

D.7 Adverbials

adVerbPhrase : VerbPhrase -> Adverb -> VerbPhrase =

\poet, khorosho ->

{s = \\vf => khorosho.s ++ poet.s ! vf ;

D.8. SENTENCES 105

s2 = poet.s2; s3 = poet.s3;

a = poet.a; v = poet.v; t = poet.t ;

negBefore = poet.negBefore } ;

Adverbials are typically generated by prefixing prepositions. The rule for
creating locative noun phrases by the preposition v is a little shaky: v Rossii,
but na ostrove.

locativeNounPhrase : NounPhrase -> Adverb =

ivan ->

{s = "v”++ ivan.s ! (mkPronForm Prepos Yes NonPoss)
} ;

This is a source of the man with a telescope ambiguity, and may produce
strange things, like maxiny vsegda. Semantics will have to make finer distinc-
tions among adverbials.

advCommNounPhrase : CommNounPhrase -> Adverb ->

CommNounPhrase = \chelovek,uTelevizora ->

{s = \\n,c => chelovek.s ! n ! c ++ uTelevizora.s ;

g = chelovek.g ;

anim = chelovek.anim

} ;

D.8 Sentences

We do not introduce the word order parameter for sentences in Russian although
there exist several word orders, but they are too specific to capture on the level
we work here.

oper

Sentence : Type = { s : Str } ;

This is the traditional S -> NP VP rule.

predVerbPhrase : NounPhrase -> VerbPhrase -> Sentence =

\Ya, tebyaNeVizhu -> { s =

let

{ ya = Ya.s ! (mkPronForm Nom No NonPoss);

ne = tebyaNeVizhu.s2;

vizhu = tebyaNeVizhu.s ! VFin (gNum Ya.g Ya.n) Ya.p;

tebya = tebyaNeVizhu.s3 ! Ya.g ! Ya.n

}

in

if_then_else Str tebyaNeVizhu.negBefore

(ya ++ ne ++ vizhu ++ tebya)

106 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

(ya ++ vizhu ++ ne ++ tebya)

} ;

-- A function specific for Russian:

U_predTransVerb : Bool -> TransVerb -> NounPhrase ->

NounPhrase -> Sentence = \b,Ser,Jag,Dig -> { s =

let {

menya = Jag.s ! (mkPronForm Gen Yes NonPoss) ;

bolit = Ser.s ! VFin (gNum Dig.g Dig.n) Dig.p ;

golova = Dig.s ! (mkPronForm Nom No NonPoss) ;

ne = negation b

} in

"u"++ menya ++ ne ++ bolit ++ golova } ;

This is a macro for simultaneous predication and complementation.

predTransVerb : Bool -> TransVerb -> NounPhrase ->

NounPhrase -> Sentence = \b,vizhu,ya,tu ->

predVerbPhrase ya (complTransVerb b vizhu tu) ;

D.8.1 Sentence-complement verbs

Sentence-complement verbs take sentences as complements.

SentenceVerb : Type = Verb ;

To generate skazal, qto Ivan gulÂet / ne skazal, qto Ivan gulÂet:

complSentVerb : Bool -> SentenceVerb -> Sentence ->

VerbPhrase = \b,vidit,tuUlubaeshsya ->

{s = vidit.s ; s2 = negation b ;

s3 = \ , => [" , qto "] ++ tuUlubaeshsya.s ;

t = vidit.t ; v = vidit.v ; a = vidit.a ; negBefore = True } ;

D.9 Sentences missing noun phrases

This is one instance of Gazdar’s slash categories, corresponding to his S/NP. We
cannot have - nor would we want to have - a productive slash-category former.
Perhaps a handful more will be needed.

Notice that the slash category has the same relation to sentences as transitive
verbs have to verbs: it’s like a sentence taking a complement.

D.10. COORDINATION 107

SentenceSlashNounPhrase = Sentence ** Complement ;

slashTransVerb : Bool -> NounPhrase -> TransVerb ->

SentenceSlashNounPhrase = \b,ivan,lubit ->

predVerbPhrase ivan (predVerb b (verbOfTransVerb lubit)) **

complementOfTransVerb lubit ;

D.10 Coordination

Coordination is to some extent orthogonal to the rest of syntax, and has been
treated in a generic way in the module CO in the file coordination.gf. The over-
all structure is independent of category, but there can be differences in parameter
dependencies.

D.10.1 Conjunctions

Coordinated phrases are built by using conjunctions, which are either simple (i,
ili) or distributed (kak - tak, libo - libo).

The conjunction has an inherent number, which is used when conjoining noun
phrases: Ivan i Maxa po»t vs. Ivan ili Maxa poet; in the case of ili,
the result is however plural if any of the disjuncts is.

Conjunction = CO.Conjunction ** {n : Number} ;

ConjunctionDistr = CO.ConjunctionDistr ** {n : Number} ;

D.11 Relative pronouns and relative clauses

oper

identRelPron : RelPron = { s = \\gn, c, anim =>

kotorujDet.s ! (AF c anim gn)} ;

funRelPron : Function -> RelPron -> RelPron =

\mama, kotoruj ->

{s = \\gn,c, anim => let {nu = numGNum gn} in

mama.s ! nu ! c ++

mama.s2 ++ kotoruj.s ! gn ! mama.c ! anim

} ;

Relative clauses can be formed from both verb phrases (vidit Maxu) and
slash expressions (Â viжu).

RelClause : Type = RelPron ;

108 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

relVerbPhrase : RelPron -> VerbPhrase -> RelClause =

\kotoruj, gulyaet ->

{ s = \\gn, c, anim => let { nu = numGNum gn } in

kotoruj.s ! gn ! c ! anim ++ gulyaet.s2 ++

gulyaet.s ! VFin gn P3 ++ gulyaet.s3 ! genGNum gn ! nu

} ;

relSlash : RelPron -> SentenceSlashNounPhrase -> RelClause =

\kotoruj, yaVizhu ->

{s = \\gn, _ , anim => yaVizhu.s2 ++

kotoruj.s ! gn ! yaVizhu.c ! anim ++ yaVizhu.s

} ;

A ’degenerate’ relative clause is the one often used in mathematics, e.g. qislo

x, takoe qto x - qëtnoe.
relSuch : Sentence -> RelClause =

A ->

{s =

gn,c, anim => takoj.s ! AF c anim gn ++ "qto”++ A.s } ;
The main use of relative clauses is to modify common nouns. The result is

a common noun, out of which noun phrases can be formed by determiners. A
comma is used before the relative clause.

modRelClause : CommNounPhrase -> RelClause -> CommNounPhrase =

\chelovek,kotorujSmeetsya ->

{ s = \\n,c => chelovek.s ! n ! c ++ "," ++

kotorujSmeetsya.s ! gNum chelovek.g n ! Nom ! chelovek.anim;

g = chelovek.g ;

anim = chelovek.anim

} ;

D.12 Interrogative pronouns

If relative pronouns are adjective-like, interrogative pronouns are noun-phrase-
like. Actually we can use the very same type!

IntPron : Type = NounPhrase ;

In analogy with relative pronouns, we have a rule for applying a function to
a relative pronoun to create a new one. We can reuse the rule applying functions
to noun phrases!

funIntPron : Function -> IntPron -> IntPron =

appFun False ;

D.12. INTERROGATIVE PRONOUNS 109

There is a variety of simple interrogative pronouns: kakaÂ maxina, kto,
qto.

nounIntPron : Number -> CommNounPhrase -> IntPron = \n, x ->

detNounPhrase (kakojDet ** {n = n; c= Nom}) x ;

intPronKto : Number -> IntPron = \num ->

{ s = table {

PF Nom => "kto”;
PF Gen => "kogo”;
PF Dat => "komu”;
PF Acc => "kogo”;
PF Inst => "kem”;
PF Prepos => "kom”

} ;

g = Masc ;

anim = Animate ;

n = num ;

p = P3 ;

pron = False

} ;

intPronChto : Number -> IntPron = \num ->

{ s = table {

PF Nom => "qto”;
PF Gen => "qego”;
PF Dat => "qemu”;
PF Acc => "qto”;
PF Inst => "qem”;
PF Prepos => "q¾m”

} ;

g = Neut ;

anim = Inanimate ;

n = num ;

p = P3 ;

pron = False

} ;

110 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

D.13 Utterances

By utterances we mean whole phrases, such as ’can be used as moves in a language
game’: indicatives, questions, imperative, and one-word utterances. The rules are
far from complete.

N.B. we have not included rules for texts, which we find we cannot say much
about on this level. In semantically rich GF grammars, texts, dialogues, etc, will
of course play an important role as categories not reducible to utterances. An
example is proof texts, whose semantics show a dependence between premises
and conclusions. Another example is intersentential anaphora.

Utterance = SS ;

indicUtt : Sentence -> Utterance = \x ->

postfixSS "." (defaultSentence x) ;

interrogUtt : Question -> Utterance = \x ->

postfixSS "?" (defaultQuestion x) ;

D.14 Questions

Questions are either direct (ty sqastliv?) or indirect (on sprosil sqastliv

li ty).

param

QuestForm = DirQ | IndirQ ;

oper

Question = SS1 QuestForm ;

D.14.1 Yes-no questions

Yes-no questions are used both independently (ty vzÂl mÂq?) and after inter-
rogative adverbials (poqemu ty vzÂl mÂq?). Note: The particle li can also be
used in direct questions: videl li ty qto-nibudb podobnoe? but we are not
considering this case.

questVerbPhrase : NounPhrase -> VerbPhrase -> Question =

\tu,spish ->

let { vu = tu.s ! (mkPronForm Nom No NonPoss);

spish = spish.s ! VFin (gNum tu.g tu.n) tu.p

++ spish.s2 ++ spish.s3 ! tu.g ! tu.n } in

{ s = table {
DirQ => vu ++ spish ;

IndirQ => spish ++ "li"++ vu

} } ;

D.15. IMPERATIVES 111

D.14.2 Wh-questions

Wh-questions are of two kinds: ones that are like NP - VP sentences, others that
are like S/NP - NP sentences.

intVerbPhrase : IntPron -> VerbPhrase -> Question =

\kto,spit ->

{s = table { _ => (predVerbPhrase kto spit).s }

} ;

intSlash : IntPron -> SentenceSlashNounPhrase -> Question =

\Kto, yaGovoru ->

let { kom = Kto.s ! (mkPronForm yaGovoru.c No NonPoss) ;

o = yaGovoru.s2 } in

{s = table { _ => o ++ kom ++ yaGovoru.s }

} ;

D.14.3 Interrogative adverbials

These adverbials will be defined in the lexicon: they include kogda , gde, kak,
poqemu, etc, which are all invariant one-word expressions. In addition, they can
be formed by adding prepositions to interrogative pronouns, in the same way as
adverbials are formed from noun phrases. N.B. we rely on record subtyping when
ignoring the position component.

IntAdverb = SS ;

A question adverbial can be applied to anything, and whether this makes
sense is a semantic question.

questAdverbial : IntAdverb -> NounPhrase -> VerbPhrase ->

Question = \kak, tu, pozhivaesh ->

{s = \\q => kak.s ++ tu.s ! (mkPronForm Nom No NonPoss) ++

pozhivaesh.s2 ++

pozhivaesh.s ! VFin (gNum tu.g tu.n) tu.p ++

pozhivaesh.s3 ! tu.g ! tu.n } ;

D.15 Imperatives

We only consider second-person imperatives.

Imperative: Type = { s: Gender => Number => Str } ;

imperVerbPhrase : VerbPhrase -> Imperative = \budGotov ->

112 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

{s = \\g, n => budGotov.s ! VImper n P2 ++ budGotov.s2 ++

budGotov.s3 ! g ! n} ;

imperUtterance : Gender -> Number -> Imperative -> Utterance =

\g,n,I -> ss (I.s ! g ! n ++ "!") ;

D.15.1 Coordinating sentences

We need a category of lists of sentences. It is a discontinuous category, the parts
corresponding to ’init’ and ’last’ segments (rather than ’head’ and ’tail’, because
we have to keep track of the slot between the last two elements of the list). A
list has at least two elements.

ListSentence : Type = SD2 ;

twoSentence : (_,_ : Sentence) -> ListSentence = CO.twoSS ;

consSentence : ListSentence -> Sentence -> ListSentence =

CO.consSS CO.comma ;

To coordinate a list of sentences by a simple conjunction, we place it between
the last two elements; commas are put in the other slots, e.g. ty kurix, vy

pbete i Â em.

conjunctSentence : Conjunction -> ListSentence -> Sentence =

\c,xs -> ss (CO.conjunctX c xs) ;

To coordinate a list of sentences by a distributed conjunction, we place the
first part (e.g. kak) in front of the first element, the second part (tak i) between
the last two elements, and commas in the other slots. For sentences this is really
not used.

conjunctDistrSentence : ConjunctionDistr -> ListSentence ->

Sentence = \c,xs ->

ss (CO.conjunctDistrX c xs) ;

D.15.2 Coordinating adjective phrases

The structure is the same as for sentences. The result is a prefix adjective if and
only if all elements are prefix.

ListAdjPhrase : Type =

{s1,s2 : AdjForm => Str ; p : Bool} ;

twoAdjPhrase : (_,_ : AdjPhrase) -> ListAdjPhrase =

D.15. IMPERATIVES 113

\x,y -> CO.twoTable AdjForm x y ** {p = andB x.p y.p} ;

consAdjPhrase : ListAdjPhrase -> AdjPhrase -> ListAdjPhrase =

\xs,x ->

CO.consTable AdjForm CO.comma xs x ** {p = andB xs.p x.p} ;

conjunctAdjPhrase : Conjunction -> ListAdjPhrase -> AdjPhrase

= \c,xs -> CO.conjunctTable AdjForm c xs ** {p = xs.p} ;

conjunctDistrAdjPhrase : ConjunctionDistr -> ListAdjPhrase ->

AdjPhrase = \c,xs ->

CO.conjunctDistrTable AdjForm c xs ** {p = xs.p} ;

D.15.3 Coordinating noun phrases

The structure is the same as for sentences. The result is either always plural or
plural if any of the components is, depending on the conjunction.

ListNounPhrase : Type = { s1,s2 : PronForm =>

Str ; g: Gender ; anim : Animacy ; n : Number ;

p : Person ; pron : Bool } ;

twoNounPhrase : (_,_ : NounPhrase) -> ListNounPhrase =

\x,y ->

CO.twoTable PronForm x y ** {n = conjNumber x.n y.n ;

g = conjGender x.g y.g ; p = conjPerson x.p y.p ;

pron = conjPron x.pron y.pron ;

anim = conjAnim x.anim y.anim } ;

consNounPhrase : ListNounPhrase -> NounPhrase ->

ListNounPhrase = \xs,x ->

CO.consTable PronForm CO.comma xs x **

{n = conjNumber xs.n x.n ; g = conjGender x.g xs.g ;

anim = conjAnim x.anim xs.anim ;

p = conjPerson xs.p x.p; pron = conjPron xs.pron x.pron} ;

conjunctNounPhrase : Conjunction -> ListNounPhrase ->

NounPhrase = \c,xs ->

CO.conjunctTable PronForm c xs **

{n = conjNumber c.n xs.n ; anim = xs.anim ;

p = xs.p; g = xs.g ; pron = xs.pron} ;

conjunctDistrNounPhrase : ConjunctionDistr ->

114 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

ListNounPhrase -> NounPhrase = \c,xs ->

CO.conjunctDistrTable PronForm c xs **

{n = conjNumber c.n xs.n ; p = xs.p ;

pron = xs.pron ; anim = xs.anim ; g = xs.g } ;

We have to define a calculus of numbers of persons. For numbers, it is like
the conjunction with Pl corresponding to False.

conjNumber : Number -> Number -> Number = \m,n ->

case <m,n> of {

<Sg,Sg> => Sg ;

_ => Pl

} ;

For persons, we let the latter argument win (libo ty, libo Â po½du, but
libo Â, libo ty po½dexb). This is not quite clear.

conjPerson : Person -> Person -> Person = _,p -> p ;

For pron, we let the latter argument win - Maxa ili moÂ mama (Nomi-
native case) but - moe½ ili Maxina mama (Genetive case) both corresponds
to Masha’s or my mother), which is actually not exactly correct, since different
cases should be used - Maxina ili moÂ mama.

conjPron : Bool -> Bool -> Bool = _,p -> p ;

For gender in a similar manner as for person: Needed for adjective predicates
like: Maxa ili OlÂ - krasivaÂ, Anton ili Oleg - krasivy½, Maxa ili

Oleg - krasivy½ . The later is not totally correct, but there is no correct way
to say that.

conjGender : Gender -> Gender -> Gender = _,m -> m ;

conjAnim : Animacy -> Animacy -> Animacy = _,m -> m ;

D.16 Subjunction

Subjunctions (kogda, esli, etc) are a different way to combine sentences than
conjunctions. The main clause can be a sentence, an imperative, or a question,
but the subjoined clause must be a sentence.

There are uniformly two variant word orders, e.g. esli ty zakurixb, Â

rasserжusb and Â rasserжusb, esli ty zakurixb.

D.17. ONE-WORD UTTERANCES 115

Subjunction = SS ;

subjunctSentence : Subjunction -> Sentence -> Sentence

-> Sentence = \if, A, B ->

ss (subjunctVariants if A.s B.s) ;

subjunctImperative : Subjunction -> Sentence -> Imperative

-> Imperative =

\if, A, B ->

{s = \\g,n => subjunctVariants if A.s (B.s ! g ! n)} ;

subjunctQuestion : Subjunction -> Sentence -> Question ->

Question = \if, A, B ->

{s = \\q => subjunctVariants if A.s (B.s ! q)} ;

subjunctVariants : Subjunction -> Str -> Str -> Str =

\if,A,B ->

variants {if.s ++ A ++ "," ++ B ; B ++ "," ++ if.s ++ A} ;

D.17 One-word utterances

An utterance can consist of one phrase of almost any category, the limiting case
being one-word utterances. These utterances are often (but not always) in what
can be called the default form of a category, e.g. the nominative. This list is far
from exhaustive.

useNounPhrase : NounPhrase -> Utterance = \masha ->

postfixSS "." (defaultNounPhrase masha) ;

useCommonNounPhrase : Number -> CommNounPhrase ->

Utterance = \n,mashina ->

useNounPhrase (indefNounPhrase n mashina) ;

useRegularName : Gender -> SS -> NounPhrase =

\g, masha ->

nameNounPhrase (case g of

{ Masc => mkProperNameMasc masha.s Animate;

_ => mkProperNameFem masha.s Animate }) ;

Here are some default forms.

defaultNounPhrase : NounPhrase -> SS = \masha ->

ss (masha.s ! PF Nom No NonPoss) ;

116 APPENDIX D. A SMALL RUSSIAN RESOURCE SYNTAX

defaultQuestion : Question -> SS = \ktoTu ->

ss (ktoTu.s ! DirQ) ;

defaultSentence : Sentence -> Utterance = \x -> x ;

Bibliography

[BDL00] C. Brun, M. Dymetman, and V. Lux. Document structure and multi-
lingual authoring. In INLG’2000, Mitzpe Ramon, Israël, pages 24–31,
2000.

[Ber96] K. D. Berndt. Protein Secondary Structure, 1996.

[Bio03] Bioinformatics.Org. Software map, 2003. bioinformatics.org.

[CM95] G. Cousineau and M. Mauny. Approche fonctionnelle de la program-
mation. Ediscience(Collection Informatique), Paris, 1995.

[Coq96] T. Coquand. An algorithm for type checking dependent types. Science
of Computer Programming, 26:167–177, 1996.

[DLR00] M. Dymetman, V. Lux, and A. Ranta. XML and multilingual docu-
ment authoring: Convergent trends. In COLING, Saarbrücken, Ger-
many, pages 243–249, 2000.

[GM96] G.Hutton and E. Meijer. Monadic parser combinators. Technical
report, University of Nottingham, Department of Computer Science,
1996. http://www.cs.nott.ac.uk/~gmh//monparsing.ps

[Hal03] T. Hallgren. Home Page of the Proof Editor Alfa.
http://www.cs.chalmers.se/~hallgren/Alfa, 2003.

[HJR02] R. Hähnle, K. Johannisson, and A. Ranta. An authoring tool for
informal and formal requirements specifications. In R.-D. Kutsche and
H. Weber, editors, Fundamental Approaches to Software Engineering,
volume 2306 of LNCS, pages 233–248. Springer, 2002.

[Hue97] G. Huet. The Zipper. Journal of Functional Programming, 7(5):549–
554, 1997.

[J.K02] J.Khegai. Functional parsing for biosequence analysis. In The Joint
Winter Meeting of Computing Science and Computer Engineering.
Chalmers University of Technology, 2002.

117

118 BIBLIOGRAPHY

[J.K03] J.Khegai. Java GUI syntax editor for GF. In The Joint Winter
Meeting of Computing Science and Computer Engineering. Chalmers
University of Technology, 2003.

[JM00] D. Jurafsky and J. Martin. Speech and language processing. Prentice
Hall, 2000.

[J.W00] J.Waldispuhl. Étude des qualités combinatoire du repliement des
proteines, Rapport de DEA. École Polytechnique, Laboratoire
d’informatique, 2000.

[Khe02] J. Khegai. java GUI Syntax Editor manual.
www.cs.chalmers.se/~aarne/GF/doc/javaGUImanual/javaGUImanual.htm,
2002.

[KJR03] J. Khegai K. Johannisson, M. Forsberg and A. Ranta. From grammars
to gramlets. In The Joint Winter Meeting of Computing Science and
Computer Engineering. Chalmers University of Technology, 2003.

[KNR03] J. Khegai, B. Nordström, and A. Ranta. Multilingual syntax editing
in GF. In A. Gelbukh, editor, CICLing-2003, Mexico City, Mexico,
LNCS, pages 453–464. Springer, 2003.

[Lin95] J. Lindström. Summary on reduplication. LINGUIST List: Vol-6-52.,
1995.

[Mag94] L. Magnusson. The Implementation of ALF - a Proof Editor based on
Martin-Löf ’s Monomorphic Type Theory with Explicit Substitution.
PhD thesis, Department of Computing Science, Chalmers University
of Technology and University of Göteborg, 1994.

[Mar02] S. Marlow. Happy, The Parser Generator for Haskell, 2002.
haskell.cs.yale.edu/happy.

[MDP+00] M.Rayner, D.Carter, P.Bouillon, V.Digalakis, and M.Wirén. The spo-
ken language translator. Cambridge University Press, 2000.

[MN94] L. Magnusson and B. Nordström. The ALF proof editor and its proof
engine. In Types for Proofs and Programs, LNCS 806, pages 213–237.
Springer, 1994.

[PS98] R. Power and D. Scott. Multilingual authoring using feedback texts.
In COLING-ACL 98, Montreal, Canada, 1998.

[PSE98] R. Power, D. Scott, and R. Evans. Generation as a solution to its
own problem. In INLG’98, Niagara-on-the-Lake, Canada, 1998.

BIBLIOGRAPHY 119

[PSH03] R. Power, D. Scott, and A. Hartley. Multilingual generation of con-
trolled languages. In EAMT/CLAW-03, Dublin, Irland, 2003.

[Pul84] I.M. Pulkina. A Short Russian Reference Grammar. Russky Yazyk,
Moscow, 1984.

[Ran02] A. Ranta. The GF Resource grammar library, 2002.
http://tournesol.cs.chalmers.se/aarne/GF/resource/.

[Ran03] A. Ranta. GF Homepage, 2003. www.cs.chalmers.se/~aarne/GF/.

[Ranar] A. Ranta. Grammatical Framework: A Type-theoretical Grammar
Formalism. The Journal of Functional Programming, to appear.

[She00] M.A. Shelyakin. Spravochnik po russkoj grammatike (in Russian).
Russky Yazyk, Moscow, 2000.

[Tea02] Functional Morphology Development Team. Open-Source Functional
Morphology, 2002. www.cs.chalmers.se/~aarne/morphology/.

[Tea03] Gramlets Development Team. Gramlets Homepage, 2003.
www.cs.chalmers.se/~krijo/gramlets.html.

[vDP00] K. van Deemter and R. Power. Multimedia document authoring using
wysiwym editing. In INLG-2000, pages 15–19, Mitzpe Ramon, Israël,
2000.

[Wad00] T. Wade. A Comprehensive Russian Grammar. Blackwell Publishing,
2000.

[Y. 99] Y. Bertot. The CtCoq System: Design and Architecure. Formal
Aspects of Computing, 11:225–243, 1999.

[Zau03] Sharp Zaurus. Sharp Zaurus Homepage, 2003. www.myzaurus.com.

