Interactive Multilingual Web Applications with
Grammatical Framework

Moisés Salvador Meza Moreno and Bjorn Bringert

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
meza@student.chalmers.se, bringert@chalmers.se

Abstract. We present an approach to multilingual web content based
on multilingual grammars and syntax editing for a controlled language.
Content can be edited in any supported language and it is automatically
kept within a controlled language fragment. We have implemented a
web-based syntax editor for Grammatical Framework (GF) grammars
which allows both direct abstract syntax tree manipulation and text
input in any of the languages supported by the grammar. With this
syntax editor and the GF JavaScript API, GF grammars can be used
to build multilingual web applications. As a demonstration, we have
implemented an example application in which users can add, edit and
review restaurants in English, Spanish and Swedish.

1 Introduction

Current multilingual web applications store a separate version of their content
for each language. It is difficult to keep the information consistent and, in some
cases, content available in one language is not provided in another. Adding a new
language to the application requires translation of the available content from one
of the existing languages to the new language.

We suggest a different approach to multilingual web applications, where the
content is defined by a multilingual grammar and is created through syntax
editing or parsing. Content created by a user who uses one language is automat-
ically available in all the other languages supported by the grammar, and the
content is consistent at all times. When the grammar is extended to cover a new
language, all existing content is automatically available in that language.

To demonstrate this approach to multilinguality we implemented “The Restau-
rant Review Wiki”, a web-based multilingual application in which users can add,
edit and review restaurants in English, Spanish and Swedish. It uses GF gram-
mars and the GF JavaScript API to provide multilinguality.

2 Grammatical Framework

Grammatical Framework (GF) [1] is a type-theoretical grammar formalism. GF
grammars can describe both formal and natural languages and consist of an ab-
stract syntax and at least one concrete syntax. The abstract syntax defines the

scope of the grammar, i.e. all the expressions that can be built from it. The con-
crete syntax defines how the constructs in the abstract syntax are represented
in a particular language. GF grammars can be multilingual, each language in
the grammar having a separate concrete syntax. For any given grammar, GF
provides parsing (going from a concrete to the abstract syntax) and lineariza-
tion (going from the abstract to a concrete syntax). GF supports dependently
typed and higher-order abstract syntax. These features are used, for example,
to express conditions of semantic well-formedness. However, they are not used
in this article since they are not supported in the implementations described.

GF includes a Resource Grammar Library [2] which defines the basic gram-
mar of (currently) eleven languages. For each language, the Resource Grammar
Library provides the complete morphology, a lexicon of approximately one hun-
dred of the most important structural words, a test lexicon of approximately 300
content words, a list of irregular verbs and a substantial fragment of the syntax.
The Resource Grammar Library has an API (Application Programming Inter-
face) which allows the user to implement grammars for these languages easily.
The API also provides tools to extend the resource grammars, for example, new
words can be added to the lexicon. GF is freely available' and is distributed
under the GNU General Public License (GPL).

2.1 An Example Grammar

To better explain GF grammars, consider a very small grammar that describes
simple restaurant reviews. The abstract syntax defines what can be said in the
grammar in terms of categories (cat) and functions (fun). In the example gram-
mar, the abstract syntax (Figure 1) has four categories: Phrase (the start cat-
egory), ltem, Demonym and Quality. It also has some functions that construct
terms in these categories. For example, the function itemls takes an ltem and a
Quality as arguments and produces a Phrase, and an ltem can be either restaurant
or food. Examples of abstract terms produced by this abstract syntax are itemls
(qualltem mezxican food) (very good) and itemls restaurant expensive.

abstract Restaurant = {

flags startcat = Phrase;

cat Phrase; ltem; Demonym; Quality;

fun itemls : ltem — Quality — Phrase;
restaurant, food : ltem;
qualltem : Demonym — ltem — ltem;
italian, mexican : Demonym;
very : Quality — Quality;
good, bad, cheap, expensive : Quality;

Fig. 1. Abstract syntax for the example grammar.

! nttp://digitalgrammars.com/gf/

The concrete syntax specifies how the different abstract syntax terms are
expressed in a particular language. There is a linearization type (lincat) for every
category in the abstract syntax. The linearization type is the type of the concrete
syntax terms produced for the abstract syntax terms in a category. Similarly,
there is a linearization definition (lin) for every function in the abstract syntax.
A linearization definition is a function from the linearizations of the arguments
of an abstract syntax function to a concrete syntax term.

Figure 2 shows the English concrete syntax for the example grammar. The
linearization type for all categories is {s: Str}, that is, a record with a single
field s of type Str (string). The linearization of the function restaurant is the
concrete syntax term {s = “restaurant” }. The linearization of itemls makes
use of the linearizations of its argument terms of type Item and Quality. The
linearization of the abstract syntax term itemls restaurant expensive is the string
“the restaurant is expensive”.

concrete RestaurantEng of Restaurant = {
lincat Phrase, Item, Demonym, Quality = {s: Str};

lin itemlIs i ¢ = {s = “the” H i.s H “is” H ¢.s5};
restaurant = {s = “restaurant” };
food = {s = “food” };
qualltem d i = {s = d.s H 1.5 };
italian = {s = “Italian” };
mezxican = {s = “Mexican” };
very q = {s = “very” # q.s5};
good = {s = “good” };
bad = {5 = “bad’ };
cheap = {s = “cheap” };
expensive = {s = “expensive” };

Fig. 2. English concrete syntax for the example grammar.

Figure 3 shows the Spanish concrete syntax for the example grammar. This
concrete syntax is more complex because Spanish nouns have an inherent gender
(masculine or feminine). Adjectives are inflected according to the gender of the
noun they modify and the form of the definite article depends on the gender
of the noun it modifies. Thus the category ltem has a linearization type {s:
Str; g : Gender}. In addition to the string field s, the record has a field g of
type Gender, either Masc or Fem. The categories Demonym and Quality have a
linearization type {s:Gender = Str}. The field s is here a function from Gender
to Str. Some helper functions (oper) are also defined. For example, the function
adjective takes a Str and returns a record of type {s: Gender = Str}. The
abstract syntax term itemls (qualltem mezican food) (very good) is linearized
to “la comida mexicana es muy buena’. If we replace the feminine noun food
with the masculine noun restaurant the linearization changes to “el restaurante
mexicano es muy bueno”.

concrete RestaurantSpa of Restaurant = {

lincat Phrase = {s:Str};
Item = {s:5Str; g : Gender};
Demonym, Quality = {s: Gender = Str};
lin itemls i q = {s=defArt!i.g 4+ i.s H# “es” H ¢.sli.g};
restaurant = {s = “restaurante”; g = Masc};
food = {s = “comida”’; g = Fem};
qualltem d i = {s=t.s 4 d.sli.g;9 =1.9};
italian = adjective “italiano”;
mezican = adjective “mexicano”;
very qual = {s =\\g = “muy” +# qual.s!g};
good = adjective “bueno”;
bad = adjective “malo”;
cheap = adjective “barato”;
expensive = adjective “caro”;

param Gender = Masc | Fem;
oper defArt : Gender = Str = table {Masc = “el”; Fem = “la” };
adjective : Str — {s: Gender = Str} =
Az — {s = table {Masc = z;Fem = Predef.tk 1 2 + “a” } };

Fig. 3. Spanish concrete syntax for the example grammar.

To write the Spanish concrete syntax, the grammar writer had to take into
account the morphological and syntactic features of the Spanish language. Even
in this simple example, gender had to be considered; imagine a grammar in which
number plus case is also involved, or polarity, or verb conjugation, or all of them
at once. The larger the scope of the grammar, the harder it gets to properly
handle the features of a language. That is why GF’s Resource Grammar Library
was implemented: to define the low-level morphological and syntactic rules of
languages and allow grammar writers to focus on the domain-specific semantic
and stylistic aspects. The idea is that if a grammar uses the Resource Grammar
Library in a type correct way, it will produce grammatically correct output.
The grammar writer still has to know the target language and the application
domain in order to get the semantics and pragmatics right, since the grammar
library only handles syntax and morphology. Figure 4 shows a Spanish concrete
syntax for the example grammar which uses the Resource Grammar Library. The
categories Phrase, Item, Demonym and Quality have the linearization types Phr
(phrase), CN (common noun), A (one-place adjective) and AP (adjectival phrase),
respectively. All linearizations use functions from the resource grammar, such as
mkN : Str — N, mkA : Str — A and mkNP : Det — N — NP.

3 Syntax Editing

A syntax editor (also known as syntaz-directed editor, language-based editor, or
structure editor) lets the user edit documents by manipulating their underlying

concrete RestaurantSpaRes of Restaurant = open SyntaxSpa, ParadigmsSpa in {
lincat Phrase = Phr; ltem = CN; Demonym = A; Quality = AP;
lin itemlIs i ¢ = mkPhr (mkCl (mkNP defSgDet i) q);

restaurant = mkCN (mkN “restaurante”);
food = mkCN (mkN “comida”);
qualltem d i = mkCN d i;

italian = mkA “italiano”;

mezxican = mkA “mexicano”;

very qual = mkAP very_AdA qual;

good = mkAP (mkA “bueno”);

bad = mkAP (mkA “malo”);

cheap = mkAP (mkA “barato”);
expensive = mkAP (mkA “caro”);

Fig. 4. Spanish concrete syntax using the resource grammar library.

structure. Such editors can be constructed for any type of structured document,
for example computer programs [3], or structured text documents [4].

In the context of GF, a syntax editor lets the user manipulate abstract syn-
tax terms for a particular grammar, while displaying its linearization(s). Syntax
editing with GF grammars is described in more detail by Khegai et al. [5].
To explain GF syntax editing we will make use of the grammar described in
Section 2.1. There are two kinds of abstract syntax terms: complete terms,
e.g. itemls restaurant good and incomplete terms, e.g. itemls food 7. A question
mark in an incomplete term is a metavariable, i.e. a non-instantiated term. The
metavariable in the incomplete term itemls food 7 is of type Quality. Syntax
editing starts with a single metavariable and it is refined step-by-step until the
desired complete term is constructed.

4 GF JavaScript Syntax Editor

This is a syntax editor written in JavaScript that can be used in any JavaScript
enabled web browser. This allows the syntax editor to be embedded into web
applications. It can also be used as a complete application by itself, for example,
to explore, debug or test GF grammars interactively.

4.1 User Interface

The editor interface contains six panels (Figure 5):

Abstract syntax tree panel Shows a tree representation of the abstract syn-
tax term being edited. Selecting a node will highlight both the node in this
panel and its corresponding linearization(s) in the linearization panel.

Linearization panel Shows the linearizations of the current abstract syntax
term in all the available concrete syntaxes. A string representation of the

-
B O English
B the restaurant is very[§
Abstract syntax] Spanish Linearization
tree panel el restaurante es muy [panel
Abstract
(itemis restaurant (very [l)
-
Selscta refinement at random (0)
bad : Quality)
cheap: Quality @)
sxpensive : Quality (3)
. good : Quality @
Actions panel = very : Quality -> Quality (5) Refinements
Refine (R panel

GUI languages
panel |

| Clipboard

Danish[EIER Finnish French German talian Norwegian Russian Spanish Swedish p |
pane

Fig. 5. GF JavaScript syntax editor.

abstract syntax term is also shown. Clicking on a word in a linearization will
select the corresponding node in the tree shown in the abstract syntax tree
panel. Metavariables are linearized as question marks.
Actions panel Used to show the actions available for the selected node (see
Section 4.2). Actions not available for the selected node are grayed out.
Refinements panel Used to show the available refinements or wrappers for
the selected node whenever the “Refine” or “Wrap” action is selected.
GUI languages panel Used to show and select the different languages avail-
able for the GUTI (Graphical User Interface). Currently, three languages are
supported: English, Spanish and Swedish. The goal is to support all the
languages in GF’s Resource Grammar Library. This interface localization is
implemented using the approach described in Section 5.2.

Clipboard panel Used to show the name and type of the term currently stored
in the clipboard. The clipboard only holds one term at any given time.

4.2 Syntax Editing Actions

There are a number of actions that can be performed on abstract syntax terms.
Some of the actions require no further explanation, among those we find: Undo,
Redo, Cut, Copy and Paste. Some of the actions can be easily explained: Delete
replaces an instantiated term with a metavariable, Replace is equivalent to Delete
followed by Refine, except that it is treated as a single action in the edit history
and Refine the node at random and Refine the tree at random respectively in-
stantiate every metavariable in the subtree rooted at the selected node and the
entire abstract syntax tree with type-correct objects selected at random. Finally,
the following actions deserve a more in depth description:

Refine Replaces a metavariable with a function of the appropriate type. The
arguments of the function will all be metavariables. To refine a metavariable

of type Phrase (Figure 6(a)) we need to choose one function from those that
have the return type Phrase. Only the function itemls : ltem — Quality —
Phrase fits this requirement. This refinement will yield a term of the form
itemIs?? where the metavariables are of type Item and Quality (Figure 6(b)).

? : Phrase itemIs : Phrase
? : Item ? : Quality
(a) (b)

Fig. 6. Refining a metavariable of type Phrase.

Wrap Replaces an instantiated term of type T with a function which has at
least one argument of type T and a return type 7. The original term is used
as the child corresponding to the first argument of type T'; the remaining
children will be metavariables. In the example grammar, any term of type
Quality can be wrapped with the function very: Quality — Quality. Wrapping
the term good of type Quality, shown in Figure 7(a), with the function very
(Figure 7(b)) results in the term wvery good of type Quality (Figure 7(c)).
There is one exception: the top level node can be wrapped by any function
which has at least one argument of type T regardless of its return type.

itemIs itemIs

/\ very : Quality /\

restaurant good : Quality ? : Quality restaurant very : Quality

good : Quality

(a) (b) (c)

Fig. 7. Wrapping the abstract term good.

Parse a string Prompts the user for a string and tries to generate a type-
correct subtree by parsing it. On success, the node is instantiated with the
resulting subtree. GF grammars can be ambiguous, i.e. two abstract terms
can have the same linearization. When parsing an ambiguous string, GF
returns a list of abstract terms. In the syntax editor, the different trees
produced when parsing an ambiguous string are displayed in the refinements
panel so that the user can select one.

4.3 Implementation

We have implemented a GF JavaScript API that allows parsing, linearization,
type-annotation of meta-variables, and abstract syntax tree serialization and

deserialization to be done in JavaScript applications. This code is based on the
existing GF JavaScript linearization implementation, which was originally used
for output generation in GF-generated VoiceXML applications [6]. We have ex-
tended it with parsing functionality, by using the active MCFG parsing algorithm
described by Burden and Ljungléf [7].

The GF JavaScript API is now essentially an interpreter for PGF (Portable
Grammar Format) [8]. PGF is a low-level format for type-theoretical grammars,
and the main target of the GF grammar compiler. The GF grammar compiler
has been extended to translate the PGF grammars it produces into a JavaScript
representation, which is used by the GF JavaScript API. The JavaScript repre-
sentation, which is isomorphic to the subset of PGF needed for type-checking,
parsing and linearization, is used instead of the standard PGF form in order to
avoid the extra computation needed to read PGF files directly in JavaScript.

On top of this API, the syntax editor implements the syntax editing actions,
and facilities for supporting the editor user interface. One interesting addition
is the support for associating parts of the linearization output with the abstract
syntax sub-terms which generated them. Each node in the abstract syntax tree
is given an identifier which encodes the path from the root of the tree to the
given node. The linearization algorithm has been modified to tag each token that
results from linearizing a node with that node’s identifier. As a consequence, each
token in the sequence of tokens produced by linearizing an abstract syntax tree
will be tagged with the identifier of the node that produced it, and the identifiers
of all its parent nodes. When the user selects a node in the tree, all tokens tagged
with that node’s identifier are highlighted. When a token is selected, the deepest
node (i.e. longest identifier) which it is tagged with is highlighted.

5 Example Application: The Restaurant Review Wiki

The GF JavaScript API and the syntax editor described in Section 4 can be
used together to build a multilingual web application. This section describes the
Restaurant Review Wiki, a small demo application developed using these tools.

5.1 Description

The Restaurant Review Wiki is a restaurant database that allows users to add
restaurants and reviews and view and edit the information in three languages
(English, Swedish and Spanish). It is available online?.

Users can add new restaurants and edit the information about existing restau-
rants. For each restaurant there is some basic information, such as address and
cuisine, entered using standard HTML forms, and reviews which are created
and edited by using the syntax editor as shown in Figure 8. The restaurant re-
view grammar used in this application is an extended version of the grammar
described in Section 2.1.

2 nttp://csmiscl4.cs.chalmers.se/~meza/restWiki/wiki.cgi/

File Edit View Go Bookmarks Tools Help

LaBamba save this review | cancel |

=l sentence Paragraph had
The_ltem_ls: Phrase RestaurantEng
[] The Food: ltem the food is delicious. | recommend the restaurant.
[Delicious Quality RestaurantSpa "
[=l sentence : Paragraph . L . “
la comida es deliciosa. recomiendo el restaurante.
= |_Recommend: Phrase
[Noadverb : Adverb RestaurantSwe
[] The_Restaurant: Item maten &r lacker. jag rekormmenderar restaurangen ||
[BRErpty_Sentence : Paragraph =

Undo)
Cut (X)
Copy (C)
Delete (D)
Replace (E)
Wrap o)

Bulgarian DanisnFinnish French German Italian Norwegian Russian Spanish Swedish

Fig. 8. Review editing page.

When adding a new review, the abstract syntax term in the syntax editor
is initially a single metavariable of type Paragraph. The user edits a review by
stepwise refining the tree, by parsing a string or by some combination of these.
For example, the user may parse a simple sentence such as “the food is delicious”,
and then use syntax editing commands to elaborate parts of it.

5.2 Implementation

Instead of storing the text in any language, the abstract syntax representation of
the information is stored on the server and it is linearized by the client’s browser
upon request. The algorithms to linearize abstract syntax trees are efficient and
with today’s computing power the user should not be affected by delays caused
by the linearization of the different multilingual elements of a page. Whenever
a page is loaded, a linearizing function is called for every multilingual element
in the page. This function takes the HTML element to linearize, a reference to
the currently selected language and a grammar as arguments. It extracts the
string representation of the abstract syntax term from the element, converts it
into an abstract syntax tree, linearizes the tree using the concrete syntax for the
currently selected language and stores the linearization in the element.

Two GF grammars are used by this application, one that describes the ele-
ments of web pages such as headers, field names, country names, cuisines, etc.,
and another that describes restaurant reviews.

5.3 Discussion

Advantages Since the multilingual information is stored as its abstract syntax
representation, all new content created by users is available for all languages
immediately, and it is thereby consistent in all languages. In existing multilingual
applications such as Wikipedia, multilingual content is created in parallel. This
means that there is a different version of the information for each language and
there is no guarantee that the information available for a particular language
will be available in another nor that they will be consistent.

Having all the information in an abstract representation of a controlled lan-
guage makes it possible to perform operations such as querying precisely and
efficiently. For example, it should be easy to implement functionality that would
let the user search for “cheap Thai restaurants close to the university”.

Adding a language to the application means adding a concrete syntax for
that language to the grammar. Once the concrete syntax is added, all existing
information is automatically available in the new language. There is no need to
translate the existing information by hand.

Disadvantages The content that can be created using this approach is limited
by the coverage of the grammar. This may be too restrictive and it may prevent
users from effectively conveying their ideas through the content they create.

In this version of the application, new content is created by using the syntax
editor, either by stepwise refining the abstract syntax tree or by parsing a string.
The syntax editor has the advantage of generating content within the coverage
of the grammar. The problem is that the editor is not very intuitive and it could
be hard to use without training, a situation that could discourage potential
users. Creating content by parsing is simple, but, if the user is not familiar with
the grammar, producing valid content through parsing might be a difficult task
unless the grammar has a very wide coverage.

Multilingual processing is done in the client rather than on the server. A
JavaScript GF grammar may be larger than 1 MB, which could be a problem
for devices with limited bandwidth or memory, such as PDAs or mobile phones.
Also, devices with limited processing power may experience delays caused by the
linearization of the multilingual elements in pages. Since the current version does
linearization in the client even when viewing existing content, search engines may
not be able to index the page using the linearized content.

If an abstract syntax used in an application is changed and the new version
is not backwards compatible, it may no longer be possible to linearize the stored
abstract syntax terms. If the coverage of the new grammar is a superlanguage
of the old one, this problem can be solved by linearizing each stored term with
the old grammar and parsing it with the new one.

Doing natural language processing client-side tends to stress the web browser
implementations. The current state of web standards compatibility in browsers
may lead to inconsistent behavior or performance in some web browsers.

6 Related Work

The Grammatical Framework (GF) provided, up until this point, two different
syntax editors. The first provides the full functionality of GF but can only be
used in machines that have the full GF system installed [1]. One use of this editor
is as an integral component of the KeY formal program verification system [9].
The second, Gramlets [10], provides no parsing and no support for dependent
types or higher-order functions but can be run on any machine that has a Java
Virtual Machine (JVM) installed or in web browsers which have a JVM plug-in.
Our syntax editor is more portable than the previous GF syntax editors, can be
more easily integrated into web applications, and compared to Gramlets, it offers
more functionality, most notably parsing. The syntax editor does not support
the full GF language yet, as it only allows grammars which have no dependent
types and no higher-order abstract syntax.

WYSIWYM [11] is a structure editor which displays natural language rep-
resentations during editing. It now also has a JavaScript implementation?. Our
editor is driven by a declarative specification of the language structure and gen-
eration rules. In WYSIWYM these components are built into the editor, which
appears to make it more difficult to use the editor for new applications.

7 Future Work

Dependently Typed and Higher-order Abstract Syntax For the syntax
editor to support more advanced grammars, the GF JavaScript API should
be extended to implement parsing, type-checking and linearization for gram-
mars with dependently typed and higher-order abstract syntax.

Syntax Editor User Interface New content is created using the syntax ed-
itor and, as mentioned before, this is too restrictive and could make users
lose interest in the application. There is a need for a more intuitive interface
which still guarantees that the content is within the domain of the grammar.
One way to make the interface more easy to use is to add completion. The
idea is to make the editor display a list of possible ways to complete the
input that the user is typing, as is done in the GF-based WebALT exercise
editor for multilingual mathematical exercises [12].

Server-side Processing Instead of doing the multilingual processing in the
client, it could be done on the server. This would be beneficial for devices with
limited processing power, memory or bandwidth. Especially linearization of
existing content should be off-loaded to the server, as this will also help
search engines index the content.

8 Conclusions

We have implemented a syntax editor which provides the basic functionality of
the Grammatical Framework (GF) in web browsers. It allows the user to stepwise

3 http://wuw.itri.brighton.ac.uk/projects/WYSIWYM/javademo.html

create the abstract syntax trees described by a GF grammar through the use
of special purpose editing actions, while showing linearizations of the trees in
multiple languages. It can be used to test and debug GF grammars, or as a
component in multilingual web-based applications.

To demonstrate how the syntax editor can be used to implement multilin-
gual web applications, we also implemented “The Restaurant Review Wiki”. It
is a multilingual restaurant database in which users can add, edit and review
restaurants in three different languages. The approach to multilinguality that we
suggest makes all information available simultaneously and consistently for all
the supported languages, and adding a new language is only a matter of adding a
concrete syntax for that language to the application grammar. Additional work
is required to make syntax editing more usable for untrained users, and to ensure
that the technique works well in resource-constrained computing devices.

References

1. Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming 14(2) (March 2004) 145-189

2. Ranta, A.: Grammars as software libraries. In Bertot, Y., Huet, G., Lévy, J.J.,
Plotkin, G., eds.: From semantics to computer science: essays in honor of Gilles
Kahn. Cambridge University Press (2008)

3. Teitelbaum, T., Reps, T.: The Cornell program synthesizer: a syntax-directed
programming environment. Commun. ACM 24(9) (September 1981) 563-573

4. Furuta, R., Quint, V., Andre, J.: Interactively Editing Structured Documents.
Electronic Publishing 1(1) (1988) 19-44

5. Khegai, J., Nordstrom, B., Ranta, A.: Multilingual Syntax Editing in GF. In Gel-
bukh, A., ed.: Computational Linguistics and Intelligent Text Processing. Volume
2588 of Lecture Notes in Computer Science. (2003) 199-204

6. Bringert, B.: Rapid Development of Dialogue Systems by Grammar Compilation.
In Keizer, S., Bunt, H., Paek, T., eds.: Proceedings of the 8th SIGdial Workshop
on Discourse and Dialogue, Antwerp, Belgium (September 2007) 223-226

7. Burden, H., Ljunglof, P.: Parsing Linear Context-Free Rewriting Systems. In: Pro-
ceedings of the Ninth International Workshop on Parsing Technology, Vancouver,
British Columbia, Association for Computational Linguistics (2005) 11-17

8. Angelov, K., Bringert, B., Ranta, A.: PGF: A Portable Run-Time Format for Type-
Theoretical Grammars. Manuscript, http://wuw.cs.chalmers.se/~bringert/
publ/pgf/pgf .pdf (2008)

9. Beckert, B., Héhnle, R., Schmitt, P.H., eds.: Verification of Object-Oriented Soft-
ware: The KeY Approach. Volume 4334 of LNCS. Springer-Verlag (2007)

10. Johannisson, K., Khegai, J., Forsberg, M., Ranta, A.: From Grammars to Gramlets.
In: The Joint Winter Meeting of Computing Science and Computer Engineering,
Chalmers University of Technology (2003)

11. Power, R., Scott, D., Evans, R.: What You See Is What You Meant: direct knowl-
edge editings with natural language feedback. In: 13th European Conference on
Artificial Intelligence (ECAI 1998). (1998) 677681

12. Cohen, A., Cuypers, H., Poels, K., Spanbroek, M., Verrijzer, R.: WExEd - WebALT
Exercise Editor for Multilingual Mathematical Exercises. In Seppéla, M., Xambo,
S., Caprotti, O., eds.: WebALT 2006, First WebALT Conference and Exhibition,
Eindhoven, The Netherlands. (January 2006) 141-145

