
Embedded Grammars

Björn Bringert

February 10, 2005

Abstract

This work explores the use of grammars as integral parts of computer programs
and presents a number of tools and methods which facilitate such integration.
An embeddable interpreter for the Grammatical Framework (GF) grammar for-
malism, a compiler from GF grammars to speech recognition grammars, and
methods for writing multimodal grammars in GF are described. It is then
shown how these tools and methods can be used to build multilingual multi-
modal dialog systems and precise domain-specific machine translation systems
for both spoken and written language.

2

Acknowledgments

FIXME: write acknowledgments

3

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Grammatical Framework . 9

2 The Embedded GF Interpreter 11
2.1 Introduction . 11
2.2 Abstract Syntax Terms . 12
2.3 Parsing . 12

2.3.1 Lexical Analysis . 12
2.3.2 CFGM Language . 12
2.3.3 Chart Parsing . 13
2.3.4 Tree Building . 14

2.4 Type Annotation . 16
2.5 Linearization . 17

2.5.1 Canonical GF Term Language 17
2.5.2 Linearization Values . 17
2.5.3 Operational Semantics . 17
2.5.4 Linearization Operator . 19
2.5.5 Unlexing . 20
2.5.6 Implemented Optimizations 20
2.5.7 Future Work . 20

2.6 Translation . 21
2.7 Java API . 21
2.8 Typed Abstract Syntax Trees . 21
2.9 OAA Agent . 22
2.10 Future Work . 22

2.10.1 Flexible Lexing and Unlexing 22
2.10.2 Syntax Editing . 22
2.10.3 Type Checking . 22
2.10.4 Computation . 23
2.10.5 Higher-order Abstract Syntax 23
2.10.6 Reducing GFCM and CFGM File Size 23

3 Multimodal Grammars 24
3.1 Introduction . 24
3.2 Parallel Multimodality . 24

3.2.1 Introduction . 24
3.2.2 Implementation in GF . 24

4

CONTENTS 5

3.3 Integrated Multimodality . 25
3.3.1 Introduction . 25
3.3.2 Implementation in GF . 25

3.4 Future Work . 26

4 Generating Speech Recognition Grammars 27
4.1 Introduction . 27
4.2 Speech Recognition Grammar Formats 27
4.3 Implementation . 27
4.4 Removing Non-speech Modalities 28
4.5 Future Work . 28

4.5.1 Compilation to Finite State Networks 28
4.5.2 Automatic Conversion to Spoken Language Forms 29
4.5.3 Extended Start Category Concept 29

5 Building Dialog Systems with Embedded Grammars 30

6 Example Application: Translation Applet 32

7 Example Application: Automatic Speech Translation 34

8 Example Application: Hello World Dialog System 36
8.1 Introduction . 36
8.2 Grammars . 36

8.2.1 System . 36
8.2.2 User . 37

9 Example Application: Tram Information 38
9.1 Introduction . 38
9.2 Grammar Overview . 38
9.3 Transport Network Grammar . 40

9.3.1 Generic Abstract Syntax for Transport Networks 40
9.3.2 Generic Concrete Syntax for Transport Networks 40
9.3.3 Göteborg Abstract Syntax 40
9.3.4 Göteborg Concrete Syntaxes 40

9.4 Multimodal Input Grammars . 41
9.4.1 Common Declarations . 41
9.4.2 Click Modality . 42
9.4.3 Speech Modality . 42
9.4.4 Indexicality . 43

9.5 Ambiguity . 44
9.6 Multimodal Output . 44

9.6.1 Abstract Syntax for Multimodal Output 44
9.6.2 Map Drawing Concrete Syntax 45
9.6.3 English Concrete Syntax 45

9.7 Example Interaction . 46
9.8 Multilinguality . 47
9.9 Component Overview . 47
9.10 Application Limitations . 48
9.11 Future Work . 48

6 CONTENTS

9.12 Conclusions . 48

10 Grammar Development Tools 49
10.1 Introduction . 49
10.2 Resource Grammars . 49
10.3 Grammar Visualization . 49
10.4 Future Work . 50

10.4.1 Grammar development IDE 50

11 Related Work 51
11.1 Embedded Context-Free Grammars 51
11.2 Attribute Grammars . 51
11.3 Combinatory Categorial Grammars and OpenCCG 51
11.4 Multimodal Grammars . 51
11.5 Generation of Speech Recognition Grammars 52
11.6 External Grammars Tools . 52
11.7 GF Gramlets . 52
11.8 Embedding the Full GF System 52
11.9 Speech Translation . 52

12 Future Work 53
12.1 Non-human Interaction Grammars 53

13 Conclusions 54
13.1 Contributions . 54
13.2 Usefulness of Embedded Grammars 54
13.3 Software Availability and Licensing 55

A Embedded GF Interpreter OAA Agent 59
A.1 Introduction . 59
A.2 Running . 59

A.2.1 Notes . 59
A.3 Solvables . 59

A.3.1 parse . 60
A.3.2 linearize . 61
A.3.3 translate . 61
A.3.4 list grammars . 62
A.3.5 list languages . 62

B Hello World Dialog System Source Code 64

Abbreviations

ABNF Augmented BNF
ATK Application Toolkit for HTK
BNF Backus-Naur Form
CCG Combinatory Categorial Grammar
CFG Context-free grammar
CFGM Multilingual Context-Free Grammar
EBNF Extended Backus-Naur Form
GF Grammatical Framework
GFC Canonical GF
GFCM Multilingual Canonical GF
GPL GNU General Public License
GSL Nuance Grammar Specification Language
ICL Interagent Communication Language
IDE Integrated Development Environment
JSAPI Java Speech API
JSGF JSpeech Grammar Format
LBNF Labeled Backus-Naur Form
MCFG Multiple CFG
OAA Open Agent Architecture
SRG Speech Recognition Grammar
SRGS Speech Recognition Grammar Specification
XML Extensible Markup Language

FIXME: make sure abbreviations list is complete

7

Chapter 1

Introduction

By embedded grammars, we refer to grammars which are used as parts of larger
applications. A grammar is a specification of the values belonging to a lan-
guage. Grammars can be used to describe both natural languages, such as
those spoken and written by humans, and formal languages such as computer
programming languages, document markup languages, mathematical language
and many others. One may even use grammars to describe what many would
not even consider languages, for example drawings and gestures, as long as it
is possible to construct a string encoding of the values in the language. Thus,
any computer program which gets input or produces output in some language
could make use of embedded grammars.

We present a system for using embedded grammars written in the Gram-
matical Framework (GF) formalism, some methods and tools for using such
grammars, and some example applications which use embedded grammars.

This introduction chapter gives some motivation for why embedded gram-
mars are useful and a short introduction to the GF formalism. The following
chapter details the main product of this thesis: the Embedded GF Interpreter.
We then describe a method for writing multimodal grammars in GF. In chap-
ter 4, the transformation of GF grammars to speech recognition grammars is
described. We then give some overview of how to construct dialog systems using
the tools presented in this thesis and describe a few example applications which
we have developed. We then mention some tools which can be used to aid the
development of GF grammars for use in systems such as those described earlier.
Finally, some related work is discussed.

This work has been funded by the EU TALK project, IST-507802.

1.1 Motivation

Many exisiting dialog systems and other systems with natural language in-
terfaces employ statistical language models (SLMs) for speech recognition and
phrase spotting for extracting meaning from utterances. This gives robust sys-
tems which may be able to accept and extract some meaning even from utter-
ances which fall outside of what the system has been explicitly constructed for.
On the other hand, such systems are often not as accurate as one may wish for
when presented with utterances within its intended coverage.

8

1.2. GRAMMATICAL FRAMEWORK 9

Grammars, on the other hand, may be used to get precise semantics for
everything within their coverage, but tend to fail completely for unexpected
inputs. One conclusion that one might draw is that grammars are suitable for
domain-specific or otherwise limited systems. Another approach is to construct
hybrid systems which fall back to SLMs and phrase spotting when the grammar
fails.

Many existing speech recognition systems support the use of simple context-
free grammars for guiding the recognition. On the other hand, parsers which are
intended to capture the semantics of a recognized utterance often use a gram-
mar more suited to that task, as opposed to the simpler recognition problem.
This means that a complete system may involve one grammar for the speech
recognizer, and a separate grammar for parsing. These grammars should ideally
be equivalent in their coverage, and must at least be kept in sync during devel-
opment. It would seem to be more effcient if this could be done automatically,
for example by generating one of the grammars from the other.

In addition to parsing, grammars can also be used for linearization, the gen-
eration of (natural) language strings from some semantic description. Support
for linearization is needed in order to do natural language output.

1.2 Grammatical Framework

Grammatical Framework (GF) is a grammar formalism based on Martin-Löf
type theory [1]. This section is a very short introduction to GF; Aarne Ranta’s
JFP article [2] and the introduction chapter of Peter Ljunglöf’s PhD thesis [3]
give much more information.

GF makes an essential distinction between abstract syntax and concrete syn-
tax. The abstract syntax represents the structure or meaning of values in the
language, whereas the concrete syntax describes their appearance. The idea is
that the abstract syntax is easy to analyze and synthesize in a program, and
thus does not contain any irrelevant details or redundancy. The abstract syntax
might also be shared between grammars for different languages. The concrete
syntax, on the other hand, might be designed for readability or redundancy, or
in the case of natural languages, evolved rather than designed. The distinction
between abstract and concrete syntax is much used in the field of computer
languages, but less so within computational linguistics.

Concrete syntaxes are written as linearization rules for abstract syntax terms.
In other words, the grammar writer defines how each function in the abstract
syntax is converted to a value in the concrete syntax. Using a concrete syntax,
the GF system can both parse input to abstract syntax terms and linearize
abstract syntax terms to values in the concrete syntax.

In GF there may be several concrete syntaxes for a single abstract syntax.
This may be used to produce output or accept input in any of a number of lan-
guages, or to translate between languages. Formal and natural languages might
share a common abstract syntax. This can for example be used to translate
specifications in some formal language to informal natural language specifica-
tions [4].

Another application of multilingual grammars is multilingual syntax edit-
ing, where the user edits a document in multiple languages simultaneously by
manipulating abstract syntax terms and observing the resulting concrete syn-

10 CHAPTER 1. INTRODUCTION

tax output for many languages in parallel. This may involve several natural
languages [5], or both natural and formal languages [6].

GF is a suitable grammar formalism for general embedded grammars since
it is quite powerful while being parsable in polynomial time [3], and since it
can be used for both parsing and linearization. As is shown in chapter 4, other
necessary grammars such as context-free grammars for external systems can be
generated from GF grammars.

Chapter 2

The Embedded GF
Interpreter

2.1 Introduction

The GF system is primarily a command line application for working with GF
grammars. It has a significant amount of functionality, such as parsing, lin-
earization, computation, syntax editing, morphological analysis, compilation of
source grammars to canonical GF grammars, conversion of grammars to various
formats, translation and morphology quizzes, etc. GF has been in development
for a number of years and has grown quite large. It is an excellent environment
for testing and working interactively with grammars. However, GF is more com-
plex than necessary to be used with embedded grammars. We have therefore
developed an interpreter for compiled GF grammars in the Java programming
language, version 1.5 [7]. The goal of the Embedded GF Interpreter is to make
a small and fast implementation of the features necessary for building appli-
cations to make use of embedded grammars. Thus, any functionality which is
only used during the application development has been delegated to the full GF
system.

GF itself is still essential for developing embedded grammars, but it need not
be included in the finished system. GF is used to compile the source grammars
to the various formats used for parsing, linearization and speech recognition by
the finished system.

The full GF system is a rather large executable program, requires a Haskell
implementation for the given platform and has a large memory footprint. The
aim of the Embedded GF Interpreter is to be small, fast and portable. The size
of the compiled interpreter is around 250 kilobytes and it should run on any
platform which has a Java 1.5.0 Runtime Environment.

Following C.A.R. Hoare’s maxim that “premature optimization is the root
of all evil”, the main principle guiding the implementation of the Embedded
GF Interpreter has been to take the simplest and most understandable route
available. After testing has revealed bottlenecks which lead to unacceptable
performance, selected parts have been optimized.

11

12 CHAPTER 2. THE EMBEDDED GF INTERPRETER

2.2 Abstract Syntax Terms

Abstract syntax terms are:

• function applications of the form fA1 . . . An, where f is a function and
A1 . . . An, n ≥ 0 are abstract syntax terms

• string constants

• integer constants

• meta-variables, written as ?

Full GF also supports lambda abstractions and bound variables in abstract
syntax. This is not yet implemented in the Embedded GF interpreter.

2.3 Parsing

The parser computes a set of abstract syntax trees for a given string input. In
the full GF system, parsing is done by using a context-free grammar in which the
productions have labels and profiles [3]. GF first computes a Multiple Context-
Free Grammar (MCFG) from a GF grammar. The MCFG is the converted to
a context-free grammar (CFG). The Embedded GF Interpreter makes use of a
CFG produced by the full GF system.

2.3.1 Lexical Analysis

The first step in parsing input is to divide it into tokens. A simple hard-
coded lexer divides the input into simple words (non-empty sequences of letters
and digits), quoted strings and punctuation. The full GF system allows flags
which specify which of a number of hard-coded lexers and unlexers to use. The
Embedded GF Interpreter does not support these flags, see section 2.10.1.

2.3.2 CFGM Language

The GF system is used to create a context-free grammar with labeled produc-
tions and profiles from a GF grammar. The general form of a production is:

f : C[p] → s

The function f is the name of the function that will be used to construct an
abstract syntax term for the production. The right-hand side s is a sequence
of terminals and non-terminals. The profile p is a sequence of sets of integers
which determine in which position of the function application each sub-term
will be put. The n:th set in the profile contains the indexes of the non-terminals
on the RHS which correspond to the n:th argument to the function f . In
case of suppression, the set for the corresponding function argument will be
empty. A set with more than one member means that that function argument
is reduplicated.

2.3. PARSING 13

2.3.3 Chart Parsing

The parser is a Kilbury bottom-up chart parser, similar to the chart parser
described by Peter Ljunglöf [8]. The algorithm has been modified to support
empty rules and to be better suited to implementation in an imperative lan-
guage.

Below, S is the start symbol of the grammar, A and B are arbitrary non-
terminals, α, β and γ are sequences of zero or more terminals or non-terminals,
t is a terminal, f is an abstract syntax function, and p is a profile.

First the CFGM grammar is transformed so that all rules with terminals on
the RHS have only a single terminal as the RHS. This is done by replacing all
terminals in other rules by a category which has a single production with the
terminal as the RHS.

The grammar rules are divided into three sets:

• Rules of the form f : A[p] → B1 . . . Bn, where n ≥ 1 and B1 . . . Bn are all
non-terminals.

• Rules of the form f : A[p] → ε.

• Rules of the form f : A[p] → t, where t is a terminal. There are three
kinds of terminal rules:

– Constant terminal rules, which match a given string. This can be
compared to keywords in programming language grammars.

– String literal rules which match any token which is not an integer
literal or matched by any constant terminal rule.

– Integer literal rules, which match tokens consisting entirely of decimal
digits.

Given a sequence of n input tokens tk, 1 ≤ k ≤ n, the algorithm constructs
the sets ∆i,j where 0 ≤ i ≤ n and i ≤ j ≤ n. This collection of sets is called a
parse chart. The sets ∆i,j contain dotted rules, which are grammar rules with
a dot indicating how much of the RHS has been matched. We refer to a dotted
rule A → α • β in some set ∆i,j as an edge between nodes i and j. Such an
edge means that the input sub-sequence consisting of tokens ti+1 through tj has
been matched by α. An active edge is a dotted rule which does not have the
dot at the end of the RHS. A passive edge has the dot at the end, and its rule
has thus been fully matched.

Parsing Algorithm

1. Let k := 0.

2. (Scan) If k ≥ 1, then for all rules f : A[p] → tk, add f : A[p] → tk• to
∆k−1,k.

3. For all empty rules f : A[p] → ε, add f : A[p] → • to ∆k,k.

4. For all passive edges f ′ : C[p′] → α• in ∆j,k where 0 ≤ j ≤ k:

(a) (Bottom-up predict) For all rules f : A[p] → Cβ, add edge f : A[p] →
C • β to ∆j,k.

14 CHAPTER 2. THE EMBEDDED GF INTERPRETER

(b) (Combine) For all active edges f : A[p] → β • Cγ in ∆i,j , where
0 ≤ i ≤ j, add edge f : A[p] → βC • γ to ∆i,k.

5. Repeat step 4 until no new edges are added.

6. If k < n, then let k := k + 1 and go to step 2.

7. Parsing was successful if f : S[p] → α• ∈ ∆0,n.

The algorithm uses a bottom-up prediction step in order for it to build all
sub-parses even if there is no complete parse. This feature is currently not used,
but in the future it could be exploited to produce at least some result even if
the entire input cannot be understood. This could for example be useful when
combined with syntax editing. The user could type in a phrase which, if not
parsed completely, would produce some abstract syntax terms for parts of the
input. Using syntax editing, these terms could then be used to construct the
full term which the user intended. Another use might be in a dialog system
which can ask for clarification of the parts which it did not understand.

Implemented Optimizations

The Predict step is optimized by keeping a multimap which maps categories to
all the rules which start with that category.

Future Work

The parsing algorithm and its implementation could potentially be optimized
in a number of ways:

• The Scan step is currently implemented using linear search through the
terminal rules. For a grammar with a large number of terminal produc-
tions, using a trie to look up terminal productions would improve the
algorithmic complexity of this step.

• Each ∆i,j set could be split into two sets: one for passive and one for
active edges. This could make iteration through the sets faster, as no step
uses both active and passive edges.

• In step 3 above, edges for all empty rules are added to each of the n + 1
sets ∆k,k. The set of such edges is the same for each node and it is
independent of the input tokens. Thus this set could be precomputed
and shared between the nodes and between invocations of the parsing
algorithm.

2.3.4 Tree Building

After a successful parse, we need to build abstract syntax trees for the input.
The tree building algorithm uses the chart produced by the parsing algorithm
described above. Tree building is done by the mutually recursive functions
buildTree and buildTrees and gives as a result a set of parse trees. To build
the set of abstract syntax trees for the entire input we use buildTree(S, 0, n, ∅),
where S is the start category and n is the number of input tokens.

2.3. PARSING 15

In order to avoid non-termination with circular grammars, a set of used
edges for a given input sub-sequence is kept. No edge can be used more than
once for a given sub-sequence, which means that not all possible parse trees are
generated. This may seem to be too harsh a restriction, but this decision was
made based on the belief that for most applications, cyclic uses of the same rules
are not essential for the semantics. Another possible solution to this problem
would be to build graphs instead of trees. This might seem to be an elegant
solution, but traversing such graphs could lead to non-termination if special care
is not taken.

The buildTree Function

The function buildTree builds the set of abstract syntax trees in category C
for the input between nodes i and j, i.e. for the input consisting of tokens ti+1

through tj .
buildTree(C, i, j, used):

1. Let T := ∅

2. For each passive edge E = f.C[p] → α• ∈ ∆i,j ,

(a) If α = ε, then let T := T ∪ {f ?1 . . .?n}, where ?1 . . .?n are fresh
meta-variables and n = length(p), i.e. the arity of f .

(b) If α = t, where t is a string or integer literal terminal, then let
T := T ∪ {tj}. FIXME: why is f not used?

(c) If α = t, where t is a constant terminal, then let T := T ∪ {f}.
(d) If α = A1...Ak and E /∈ used, then:

i. Let used′ := used ∪ {E}.
ii. For each s ∈ buildTrees(α, i, j, used′):

A. Let s′ := s with terminals removed.
B. If there are c1 . . . cn such that n = length(p) and ck =

unifyAll({s′[x]|x ∈ p[k]}), then let T := T ∪ {f c1 . . . cn}.

3. Return T .

The buildTrees Function

The function buildTrees builds a set of sequences of abstract syntax trees for a
non-empty sequence of categories 〈C1 . . . Cn〉, where n >= 1, using tokens ti+1

through tj .
buildTrees(〈C1 . . . Cn〉, i, j, used):

1. If n = 1, then return {〈h〉 | h ∈ buildTree(C1, i, j, used)}

2. If n > 1, then:

(a) Let R := ∅.
(b) For each k such that i ≤ k ≤ j:

i. Let H = buildTree(C1, i, k, used′), where used′ = used if k = j
and used′ = ∅ otherwise.

16 CHAPTER 2. THE EMBEDDED GF INTERPRETER

ii. Let T = buildTrees(〈C2 . . . Cn〉, k, j, used′), where used′ = used
if k = i and used′ = ∅ otherwise.

iii. Let R := R ∪ {〈h, t1 . . . tn〉 | h ∈ H, 〈t1 . . . tn〉 ∈ T}.
(c) Return R.

Unification

The unification function used in buildTree is defined below. In the function
definitions, ? is a fresh meta-variable. Note that the unification function is
partial.

unifyAll(∅) = ?
unifyAll({x} ∪ T) = unify(x, unifyAll(T))

unify(?, y) = y
unify(x, ?) = x
unify(f a1 . . . an, f b1 . . . bn) = f unify(a1, b1) . . . unify(an, bn)
unify(s, s) = s
unify(i, i) = i

Implemented Optimizations

In order to speed up the iteration through the passive edges in step 2 of
buildTree, the edge sets in the chart keep the edges indexed by their LHS
category.

Future Work

The tree building algorithm produces all parse trees at once. Since the number
of parse trees may be very large, and we may only be interested in some of
them, this can be inefficient. Peter Ljunglöf describes a more efficient way of
handling parse forests [3] which could be implemented also in the Embedded
GF Interpreter.

2.4 Type Annotation

All meta-variables are annotated with their type. This is a prerequisite for
syntax editing. Note that the type annotation only uses non-dependent types,
and thus all types are categories. We write a meta-variable ? as ? : C when
annotated with the type C. Type annotation of the abstract syntax term T in
category C is done by the function ann(T,C), shown below.

ann(f A1 . . . An, C) = f ann(A1, C1) . . . ann(An, Cn)
ann(?, C) = ? : C
ann(s, C) = s
ann(i, C) = i

Above, f has the type C1 . . . Cn → C, s is a string constant, and i is an
integer constant.

2.5. LINEARIZATION 17

2.5 Linearization

In GF, linearization refers to the inverse of parsing, i.e. the process of producing
a string in the concrete syntax from an abstract syntax term.

For linearization, the Embedded GF Interpreter uses a Canonical GF (GFC)
grammar, which is produced from a source grammar by the GF system. Canon-
ical GF can be seen as a simple total functional language. This section only
considers the sub-language of Canonical GF used for concrete and abstract mod-
ules. Canonical GF can also be used to describe resource modules, but these
are not used directly in linearization.

This section defines the sets of GFC terms and values, a relation ⇓ which
evaluates terms to values and finally how these are used in the linearization of
abstract syntax terms.

2.5.1 Canonical GF Term Language

The GFC term language supported by the Embedded GF Interpreter is defined
by the EBNF grammar in figure 2.1. This grammar describes the abstract rather
than the concerete syntax of GFC; see the LBNF [9] grammar for GFC included
in the Embedded GF Interpreter source distribution for the complete grammar.

〈Term 〉 ::= { (〈Ident 〉 = 〈Term 〉)* }
| table { 〈Case 〉* }
| 〈Term 〉 . 〈Ident 〉
| 〈Term 〉 ! 〈Term 〉
| < 〈Ident 〉 〈Term 〉* >
| 〈Term 〉 ++ 〈Term 〉
| variants { 〈Term 〉* }
| []
| 〈Token 〉
| 〈Variable 〉

Figure 2.1: The set of GFC terms.

In figures 2.1 and 2.2, we use C* to denote a possibly empty sequence of
Cs. The 〈Token 〉 category contains ordinary string tokens and prefix-dependent
choice tokens. Prefix-dependent choice is handled by the unlexer, but is not
further described in this thesis. The language described above is a subset of the
full GFC language as it does not support higher-order abstract syntax.

2.5.2 Linearization Values

The set of values to which abstract syntax terms can be linearized is shown in
figure 2.2.

2.5.3 Operational Semantics

We define an evaluation relation ⇓ for evaluating a GFC term to a value. The
definition of ⇓ is shown in figure 2.3.

18 CHAPTER 2. THE EMBEDDED GF INTERPRETER

〈Value 〉 ::= [〈Token 〉*]
| table { 〈Case 〉* }
| { (〈Label 〉 = 〈Value 〉)* }
| < 〈CIdent 〉 〈Value 〉* >

Figure 2.2: The set of linearization values.

Record construction
t1 ⇓ v1 . . . tn ⇓ vn

{l1 = t1; . . . ; ln = tn} ⇓ {l1 = v1; . . . ; ln = vn}

Table construction
t1 ⇓ v1 . . . tn ⇓ vn

table T {p1 ⇒ t1; . . . ; pn ⇒ tn} ⇓ table {p1 ⇒ v1; . . . ; pn ⇒ vn}

Record projection
t ⇓ {. . . ; l = v; . . . }

t.l ⇓ v

Table projection
t ⇓ table {. . . ; 〈. . . | p | . . . 〉 ⇒ v′; . . . } t′ ⇓ v v matches p

t!t′ ⇓ v′

Parameter construction
t1 ⇓ v1 . . . tn ⇓ vn

〈i t1 . . . tn〉 ⇓ 〈i v1 . . . vn〉

Concatenation
t ⇓ [v1, . . . , vn] u ⇓ [w1, . . . , wm]
t + +u ⇓ [v1, . . . , vn, w1, . . . , wm]

Non-empty variants
n ≥ 1 t1 ⇓ v

variants {t1 . . . tn} ⇓ v

Empty token list

[] ⇓ []

Token
t is a token

t ⇓ [t]

Figure 2.3: Definition of the GFC term evaluation relation ⇓.

2.5. LINEARIZATION 19

Function application
lin f = λx0 . . . xn → t t[x0 = a◦0; . . . ;xn = a◦n] ⇓ v

(f a0 . . . an)◦ = v

Integer constant
i is a integer n is the decimal string representation of i

i◦ = {s = [n]}

String constant
a is a string

a◦ = {s = [a]}

Meta-variable
v is a string representation of ? : T

(? : T)◦ = {s = [v]}

Figure 2.4: Definition of the linearization operator ◦.

Note on Empty Variants

Note that the evaluation relation is partial even for well-typed terms, since an
empty variants term cannot be evaluated. This is intentional, as there can be
abstract syntax terms which cannot be represented in a given concrete syntax.
For example, in some languages, certain word forms do not exist, even though
one might expect them to. In Swedish, certain adjectives such as rädd (“afraid”)
do not have a neuter form, which makes some very reasonable constructions
impossible.

Note on Free Variation

Note that the semantics that we give to free variation mean that we always
choose the first alternative. This was done for simplicity and predictability. One
possible design desicion could have been to make the choice non-deterministic,
or to make linearization ambiguous, i.e. to have linearization produce a set of
values. In the latter case there are two alternative ways to handle lineariza-
tion of reduplicated terms. In each linearization, a reduplicated term may be
linearized using the same variant for each occurrence. Alternatively, each lin-
earization could contain all combinations of the possible variants. Ljunglöf [3]
refers to these interpretations as intensional disjunction and extensional dis-
junction respectively and argues that the latter constitutes a strict extension of
GF by making the formalism more powerful. The full GF system interprets free
variation as extensional disjunction.

2.5.4 Linearization Operator

We use a◦ to denote the linearization of the abstract syntax term a using a
given concrete syntax. The linearization operator ◦ is defined in figure 2.4. In
the figure, t[x = v; . . .] means simultaneous substitution.

Note on Meta-variables

Note that the rule for meta-variables in figure 2.4 is not actually sufficient for
all cases. If the linearization type of T is not {s : Str}, (? : T)◦ will have the

20 CHAPTER 2. THE EMBEDDED GF INTERPRETER

wrong type; see section 2.5.7 for some more information on this topic.

2.5.5 Unlexing

After linearization has produced a list of tokens, the unlexer joins the list to
create a single output string. A näıve unlexer would simply concatenate the
tokens, adding a space character between each token. However, this does not
produce acceptable strings in most languages. For example, in English there
should not be a space before most punctuation characters.

The Embedded GF Interpreter currently uses a fairly simple heuristic for
unlexing. We define two subsets of the set of all characters: those which should
be preceded by a space (essentially all punctuation, closing brackets and clos-
ing parentheses), and those which should not be followed by a space (opening
brackets and parentheses). These sets are used to determine whether to add a
space between two tokens. The full GF system offers some more freedom in the
choice of lexing and unlexing algorithms, see section 2.10.1 for more details.

2.5.6 Implemented Optimizations

Concatenated strings are kept as lists of strings throughout the linearization
algorithm to avoid the Θ(n2) behavior which can occur with left-associated
concatenations.

2.5.7 Future Work

Unimplemented Linearization Features

These features of Canonical GF are not yet implemented in the Embedded GF
Interpreter:

• No resource module functionality is implemented, since a resource module
is not used for linearization without first producing a concrete module
from it.

• The GFC language supports wild-card patterns in tables. However, since
the current GF system always generates fully expanded tables, wild-card
pattern support has not yet been implemented in the Embedded GF In-
terpreter.

• Printnames are used to give human-readable names to functions. This is
useful mainly for syntax editing, which is not yet implemented.

• Tables without patterns, see section 2.10.6, are not implemented yet.

• Higher-order abstract syntax is currently not supported, see section [?].

• The linearization of meta-variables is incomplete, and there is no support
for lindef judgements. Such judgements are used to declare a default
linearization for a category, i.e. how meta-variables in that category are
to be linearized.

2.6. TRANSLATION 21

Further Optimizations

The linearization algorithm could be optimized by replacing parameters by in-
tegers. This can be done since a total ordering of all the parameter values
in a parameter type can be easily constructed. This would allow tables to be
represented as arrays instead of maps.

2.6 Translation

Translation is done by parsing with the source language and linearizing to the
destination language. Since parsing may be ambiguous or fail, translation may
produce zero or more results.

2.7 Java API

The Java API allows the programmer to call the interpreter directly from a Java
program. The Java API supports all functionality, such as grammar loading,
parsing, linearization and translation.

The method createTranslator in the TranslatorFactory class is used to
create a Translator given CFGM and GFCM grammars, and some meta-data.
The Translator class has methods for parsing, linearization and translation.
The parse method takes a language name (the name of a concrete syntax) and
a string, and returns a set of abstract syntax trees. The linearize method
takes a language name and an abstract syntax tree and returns a string. The
translate method takes input and output language names, and a string in the
input language, which it translates to a set of strings in the output language.
There are also versions of the parsing and linearization methods which try to
use all available concrete syntaxes.

More documentation is available in the Embedded GF Interpreter API ref-
erence [10].

2.8 Typed Abstract Syntax Trees

The Java API uses generic untyped syntax terms, where there is a single class
for functions which uses a string for the function name and an array of child
terms. Constructing and analyzing such terms can be quite tedious in Java. An
untyped abstract syntax term is constructed thus:

new Fun("GoTo", new Tree[]{ new Fun("Chalmers"),
new Fun("Valand")});

A tool, Grammar2API, has been written which creates Java classes for repre-
senting a given abstract syntax using typed trees. An abstract class is created
for each category, and a concrete class inheriting from that class is created for
each function in that category.

There is a visitor [11] interface for each category, which has methods for
each function in the category. Code for converting between typed and untyped
trees, as well as typed wrappers around the untyped parsing and linearization

22 CHAPTER 2. THE EMBEDDED GF INTERPRETER

methods are also generated. The abstract syntax tree above can be built by
simply using the constructors of the generated classes:

new GoTo(new Chalmers(), new Valand());

2.9 OAA Agent

To allow the GF interpreter to be used in multi-agent systems and from pro-
grams written in languages other than Java, an Open Agent Architecture (OAA) [12]
wrapper has been written.

OAA is a framework for multi-agent systems. Communication between the
agents is done by sending terms in the Interagent Communication Language
(ICL), a subset of Prolog. There are OAA interfaces for several programming
languages, including Java.

The GF OAA agent has solvables (methods) for parsing, linearization, trans-
lation, listing languages and grammars. Since OAA uses a unification-based
approach to method calls, the GF agent solvables can be used quite flexibly.
For example, if the language argument to the parsing solvable is uninstantiated
(i.e. it is a variable), all available languages in the given grammar will be tried.
The fact that an OAA agent can return multiple solutions to a request is used to
return ambiguous parse results. When the language argument is uninstantiated,
the parser tries to parse with all available concrete syntaxes.

The solvables are documented in detail in appendix A.

2.10 Future Work

2.10.1 Flexible Lexing and Unlexing

The hard-coded lexer and unlexer might be insufficient for some formal lan-
guages, or natural languages with certain lexical features. The full GF system
has a similar problem, since while flags in the grammar can be used to specify
which of the available hard-coded lexers and unlexers to use, there is no flexible
way to give a specification of the lexical features in the grammar. Extending
GF to allow specifying lexical rules could solve this problem. Such rules would
have to be reversible to allow them to be used for both lexing and unlexing.

2.10.2 Syntax Editing

GF grammars can be used for syntax editing [13, 14]. In order to support this,
some functionality for keeping track of the current position and for editing and
navigation commands would have to be implemented.

2.10.3 Type Checking

GF abstract syntax terms can be dependently typed. Dependent types are
are not used when GF grammars are translated to context-free grammars for
parsing. Instead, an over-generating grammar is created, and ill-typed terms
may be discarded by type checking after parsing. We have made a preliminary

2.10. FUTURE WORK 23

implementation of a slight variation on Thierry Coquand’s algorithm for type-
checking dependent types [15], but due to lack of time, this has not yet been
implemented in the Embedded GF Interpreter.

2.10.4 Computation

GF grammars may contain computation rules. This has not been implemented
in the Embedded GF Interpreter yet. Having support for computation would
allow more of the application to be put in the grammar and is neccessary for a
complete implementation of dependent type checking.

2.10.5 Higher-order Abstract Syntax

In full GF, abstract syntax terms may have function types. Such terms are
constructed using lambda expressions and can be used for binding constructs
such as universial quantification. Such higher-order abstract syntax requires
support in the GFC term and value languages and in the GFC interpreter. This
has not yet been implemented in the Embedded GF Interpreter.

2.10.6 Reducing GFCM and CFGM File Size

The GFCM and CFGM files produced by the GF system can become rather
large for certain grammars. GFCM files are mainly made large because of the
fact that all operations are fully evaluated and all tables are fully expanded,
including fully qualified parameter patterns for each table entry. The category
names in CFGM files are constructed from category, parameter and field names
from the original GF grammars. This means that category names can be become
quite long. Certain GF grammar feature may also cause the size of the generated
context-free grammar to explode [3]. For the reasons above, a large number of
sub-strings of CFGM and GFCM files are repeated many times, making such files
highly compressible. One approach to reducing the size of the files would thus
be to compress them using some general purpose text compression algorithm.
Another method could be to change the GFCM and CFGM formats so that they
contain less redundant information. The full GF system implements such an
optimization where tables can be produced completely without patterns. This
can be done since the tables are always fully expanded and an ordering of the
table parameters can be constructed. This optimization is optional in GF, and
the grammars produced cannot yet be used by the Embedded GF Interpreter.

Chapter 3

Multimodal Grammars

3.1 Introduction

The most natural method of communication between humans is not always spo-
ken natural language. For example, people may draw maps or point when asked
to describe how to get to a certain place. Different modes of communication,
such as speech, drawing, pointing are referred to as modalities. It will be shown
in this chapter how GF grammars can be used to describe other modalities than
speech, and how multimodal grammars can be written.

Since GF grammars can in themselves only describe strings, we use some
string encoding for all non-string domains.

We distinguish between parallel and integrated multimodality. This distinc-
tion is due to Aarne Ranta [16].

3.2 Parallel Multimodality

3.2.1 Introduction

We use the term parallel multimodality to describe a situation where all neces-
sary information is available in each of several modalities. For example, driving
directions given both as a written description of actions to take and as a route
drawn on a map is an instance of parallel multimodality. Figure 3.1 shows an
example of parallel multimodality where an abstract syntax term representing a
route through a tram network is shown both as a natural language description
and a drawing on a map.

3.2.2 Implementation in GF

Parallel multimodality in GF is implemented in the same way as multilingual-
ity. For a given abstract syntax, there is a separate concrete syntax for each
modality. In the driving directions example, the abstract syntax would contain
some abstract description of the route. There would be one concrete syntax in
which the abstract route is linearized to written instructions. Another concrete
syntax would create map drawings by using some drawing language. Section 9.6
describes an example of a GF grammar with parallell multimodality.

24

3.3. INTEGRATED MULTIMODALITY 25

Figure 3.1: An example of parallel multimodality

Figure 3.2: An example of integrated multimodality

3.3 Integrated Multimodality

3.3.1 Introduction

In integrated multimodality, the information in each modality contributes to the
total information. For example, the utterance “turn left at this intersection”
combined with pointing to an intersection on a map gives the complete informa-
tion. The information from each individual modality is insufficient. Figure 3.2
shows an example of integrated multimodality where a natural language phrase
and a pointing gesture together represent an abstract syntax term.

3.3.2 Implementation in GF

Integrated multimodality is implemented by exploiting the fact that GF lin-
earization types are records. An abstract syntax category whose content we
would like to represent with integrated multimodality is given a linearization
type which is a record with one field for each modality. See section 9.4 for an
example of a GF grammar using integrated multimodality.

26 CHAPTER 3. MULTIMODAL GRAMMARS

3.4 Future Work

Currently only speech and click input, and speech and drawing output modali-
ties have been tested. Possibilities for future experiments with other modalities
include:

• More advanced drawing modality support (Petri Mäenpää and Greek
mathematics)

• Drawing input, e.g. “I want to go to this area”.

• User location, “Switch off the light on my right”

• Gestures, “Open that door”.

Chapter 4

Generating Speech
Recognition Grammars

4.1 Introduction

In order to improve recognition accuracy, speech recognition engines often use
grammars to determine which inputs are to be expected. Speech recognition
grammars (SRGs) are often simple context-free grammars. In this application,
the grammar is simply used to determine whether a given string belongs to the
language or not, the so-called recognition problem.

Writing a separate grammar for the speech recognizer, and keeping it in sync
with the grammar used by the parser requires some effort. To eliminate this
problem, a compiler from the internal CFG [3] format used by GF to some
speech generation grammar formats has been implemented.

4.2 Speech Recognition Grammar Formats

There are a number of existing formats for speech recognition grammars:

JSpeech Grammar Format (JSGF) [17] Used in the Java Speech API (JS-
API) [18, 19]. A plain-text language for context-free grammars.

Nuance Grammar Specification Language (GSL) [20] Used by the Nu-
ance [21] speech recognizer. A plain-text language for context-free gram-
mars.

Speech Recognition Grammar Specification (SRGS) [22] There are two
equivalent syntactic forms, Augmented Backus-Naur Form (ABNF) and
XML.

4.3 Implementation

The internal context-free grammar for a given concrete syntax is first trans-
formed to a generic simple context-free format for the speech modality:

27

28 CHAPTER 4. GENERATING SPEECH RECOGNITION GRAMMARS

• Removal of explicit and implicit left recursion by Paull’s algorithm [23].
The algorithm does not preserve the structure of the grammar, but as
speech recognition grammars are not used to produce parse trees, this is
not a problem.

• Removal of productions which use categories in which there are no pro-
ductions (categories with no productions are often the result of removing
non-speech modalities, see section 4.4). This is done by fix-point recursion
as each step may create new empty categories.

The generic context-free speech grammar is then converted to either GSL or
JSGF and printed. Punctuation is removed before printing, as it is not part of
the spoken language, but see section 4.5.2. All upper case characters in tokens
are converted to lower case, for the same reason. If the source grammar contains
punctuation or upper case characters, the CFGM grammar, which is used for
parsing (see section 2.3), will not be able to parse all output from the speech
recognizer. This problem could be solved by having GF remove punctuation and
capitalization before producing the CFGM grammar, instead of when creating
the speech recognition grammar.

Speech recognition grammar compilation has been added to the GF system.
The pg (“print grammar”) command has been given two additional values for
the -printer flag: gsl and jsgf.

4.4 Removing Non-speech Modalities

Since the speech recognition engine is only concerned with the speech modality,
all other modalities should be removed from the grammar before producing a
speech recognition grammar.

This is not an issue for parallel multimodality, since a speech recognition
grammar will only be produced for the concrete syntaxes in the speech modality.

In the case of integrated multimodality, some more work is required. Since
different modalities are encoded in record fields, we need a way to create a speech
recognition grammar just for the speech field. This is achieved by adding new
abstract and concrete module which extend the modules for which we wish to
create a speech recognition grammar. With the new modules, we add a new
(start) category, whose linearization type contains a single string field. The
category contains a single function which takes an element of the start category
of the original concrete syntax. The linearization of the function keeps just the
speech field from the linearization type of the original start category.

4.5 Future Work

4.5.1 Compilation to Finite State Networks

Some speech recognition systems, for example ATK [24], use finite state net-
works instead of context-free grammars to guide speech recognition. It would
be useful to be able to generate finite state approximations of GF grammars for
use with such systems. Since finite-state automata are weaker than GF gram-
mars and context-free grammars, the finite state approximation would have to
be over-generating.

4.5. FUTURE WORK 29

4.5.2 Automatic Conversion to Spoken Language Forms

The orthography of written language is not always optimal for representing spo-
ken language. For example, punctuation in written language might correspond
to various pauses or intonation changes. It might be possible to automatically
transform for example punctuation in the given grammar to the corresponding
features of the spoken language.

4.5.3 Extended Start Category Concept

If GF was extended to allow the start category to be not just a category, but
optionally also a field of the linearization type of a category, stripping non-speech
modalities could be done without adding any new modules.

Chapter 5

Building Dialog Systems
with Embedded Grammars

Figure 5.1 illustrates the architecture of a multimodal dialog system built using
the Embedded GF Interpreter. The Embedded GF Interpreter and the speech
recognition grammar compiler are new components developed as part of this
thesis. For speech recognition and speech synthesis, existing off-the-shelf com-
ponents can be used. The following components are specific to the dialog system
being created:

• Multimodal GF grammars for input and output.

• A dialog manager. The dialog manager can be a simple program written
in a general-pupose programming language as in the examples shown later
in this thesis, or it can be built using a framework such as Trindikit [25].

• Any domain resources for the specific domain (such as databases, sensors,
actuators etc.).

• Any non-speech input devices and their wrappers.

Communication between the components of the system (the solid arrows
in figure 5.1) may be done using normal method calls, or within some agent
framework. As described in sections 2.7 and 2.9, there is a Java API and an
OAA wrapper for the Embedded GF Interpreter.

Note that figure 5.1 does not show a multilingual system. In a multilingual
system, there would be one speech recognition grammar, speech recognizer and
speech syntesizer per language.

FIXME: make diagram larger on page? rotate?
FIXME: make diagram b/w in ps

30

31

Figure 5.1: Architecture of a multimodal dialog system using the Embedded
GF Interpreter

Chapter 6

Example Application:
Translation Applet

The translation applet uses GF grammars to perform translation between a
number of concrete syntaxes which use the same abstract syntax. The user can
specify the input and output languages, or use all available languages.

The applet essentially takes user input and calls the translation function in
the Embedded GF Interpreter to translate it to the desired output language(s).
If the user opts to use all input languages, all the available parsers are tried. If
all output languages are used, as list of linearizations is shown.

Figure 6.1 shows the translator applet being used with the numerals gram-
mars [26].

32

33

Figure 6.1: The GF translation applet using the numerals grammars.

Chapter 7

Example Application:
Automatic Speech
Translation

We have implemented a system for producing domain-specific automatic uni-
directional speech translators. The application uses the translation feature of
the Embedded GF Interpreter, along with off-the-shelf speech recognition and
speech synthesis systems.

An overview of the architecture of the speech translator is shown in figure 7.1.
As might be understood from comparing figures 7.1 and 5.1, a speech translator
can be seen as a special case of a unimodal dialog system, where the dialog
manager is the identity function and the output language is different from the
input language.

To use the translation system for a new domain or language pair, all that is
needed is a bilingual GF grammar, a speech recognizer for the input language
and a speech synthesizer for the output language. The GF system and the speech
recognition grammar compiler (see chapter 4) are used to create grammars for
the speech recognizer, parser and linearizer. The output of the speech recognizer
is translated using the translation function in the Embedded GF Interpreter and
the output is fed to the speech synthesizer.

Implementing the speech translator required less than 100 lines of Java code,
demonstrating the relative ease with which natural language applications can be
developed when using embedded grammars. Of course the real complexity of any
useful translator constructed using this system is in the grammars, but writing
the grammars is essentially the same as specifying the translation function of
the system. The developer need not worry about creating all the supporting
infrastructure.

As fully general speech translation would seem to require artificial intelli-
gence comparable to that of humans, this system cannot be expected evolve
into a Babel fish [27]. However, for restricted domains where grammars with
acceptable coverage can be written, the concept seems promising. So far the sys-
tem has only been tested with very small grammars, and it might be dangerous
to extrapolate from such experiments. For example, if the grammar is ambigu-
ous it can be difficult for the system to present all possible translations in some

34

35

Figure 7.1: Architecture of the GF Speech Translator.

way understandable to the user, not to mention choosing the right alternative.
FIXME: make diagram larger on page? rotate?
FIXME: make diagram b/w in ps

Chapter 8

Example Application: Hello
World Dialog System

8.1 Introduction

The Hello World dialog system is a very simple multilingual single-modality dia-
log system. The system accepts the speech inputs “Here you go” and “Thanks”,
and responds with “Thanks” and “You are welcome”. The user may speak in
English or Swedish, and the system responds in the same language as the user
used.

The purpose of this system is to make a simple dialog system which is small
enough to easily understood. The grammars are extremely basic, but the frame-
work should be sufficient to develop a more sophisticated dialog system. For an
example of a larger system, see chapter 9. The source code of the Hello World
dialog system is shown in appendix B.

8.2 Grammars

8.2.1 System

Abstract Syntax

abstract System = {
cat Output ;
fun Thanks : Output ;
fun Welcome : Output ;

}

English Concrete Syntax

concrete SystemEng of System = {
flags startcat = Output ;
lincat Output = { s : Str } ;
lin Thanks = { s = "thanks" } ;
lin Welcome = { s = "you" ++ "are" ++ "welcome" } ;

}

36

8.2. GRAMMARS 37

Swedish Concrete Syntax

concrete SystemSwe of System = {
flags startcat = Output ;
lincat Output = { s : Str } ;
lin Thanks = { s = "tack" } ;
lin Welcome = { s = "varsågod" } ;

}

8.2.2 User

Abstract Syntax

abstract User = {
cat Input ;
fun HereYouGo : Input ;
fun Thanks : Input ;

}

English Concrete Syntax

concrete UserEng of User = {
flags startcat = Input ;
lincat Input = { s : Str };
lin HereYouGo = { s = "here" ++ "you" ++ "go" } ;
lin Thanks = { s = "thanks" };

}

Swedish Concrete Syntax

concrete UserSwe of User = {
flags startcat = Input ;
lincat Input = { s : Str };
lin HereYouGo = { s = "varsågod" } ;
lin Thanks = { s = "tack" };

}

Chapter 9

Example Application:
Göteborg Tram Information
System (GOTTIS)

9.1 Introduction

The Göteborg Tram Information System (GOTTIS) is a demonstration of a
multilingual multimodal dialog system. It finds the shortest path through (a
subset of) the Göteborg public transportation network. User input consist of
spoken queries along with optional clicks on a map of the transport network.
The system responds with spoken instructions and drawings on the network
map.

The system is easily adaptable to other transport networks or other systems
which can be represented as weighted directed graphs.

The system uses multimodal GF grammars for user and system utterances.
The user modalities are speech and map clicks, and the system modalities are
speech and drawings on the map. Input and output in all the modalities are
handled by multilingual, multimodal grammars. For brevity and clarity, the
following sections show English concrete syntax exclusively. For every concrete
English module shown below, the application also contains a corresponding
module for Swedish concrete syntax.

9.2 Grammar Overview

The user and system grammars are split up into a number of modules in order
to make reuse and modification simpler. Overviews of the query and answer
grammar modules are shown in figures 9.1 and 9.2, respectively. These module
graphs have been produced with a module dependency visualiztion tool devel-
oped as part of this thesis. See section 10.3 for a description of this tool and the
meaning of the different kinds of nodes and edges in the graphs. The following
sections show the details of the grammar modules.

38

9.2. GRAMMAR OVERVIEW 39

Figure 9.1: Query grammar modules

Figure 9.2: Answer grammar modules

40 CHAPTER 9. EXAMPLE APPLICATION: TRAM INFORMATION

9.3 Transport Network Grammar

The transport network is represented by a set of modules which are used in
both the query and answer grammars. Since the transport network is described
in a separate set of modules, the Göteborg transport network may be replaced
easily.

9.3.1 Generic Abstract Syntax for Transport Networks

The interface for transport network grammars is very simple. Such a grammar
simply exports a number of constants in the Stop category:

abstract Transport = {
cat
Stop ;

}

9.3.2 Generic Concrete Syntax for Transport Networks

The English concrete syntax is equally simple. Languages which inflect proper
nouns might need a more complex linearization type for stops.

concrete TransportEng of Transport = {
lincat
Stop = { s : Str } ;

}

9.3.3 Göteborg Abstract Syntax

The abstract syntax for a given transport network lists the stops.

abstract Gbg = Transport ** {
fun Angered : Stop ;
fun AxelDahlstromsTorg : Stop ;
fun Bergsjon : Stop ;
fun Biskopsgarden : Stop ;
...

}

9.3.4 Göteborg Concrete Syntaxes

Since names are not normally translated between languages, they introduce a
problem for speech recognition. We would like the map to show the names of
tram/bus stops in their native orthography. This is done with one concrete
syntax:

concrete GbgNames of Gbg = TransportNames ** {
lin Angered = { s = ["Angered"] } ;
lin Bergsjon = { s = ["Bergsjön"] } ;
lin Biskopsgarden = { s = ["Biskopsgården"] } ;
...

}

9.4. MULTIMODAL INPUT GRAMMARS 41

However, speech recognizers often do not support characters not used in
the language which they recognize. Furthermore, some recognizers, such as
Nuance [21], do not allow capitals in the recognized text [20]. Therefore, we
introduce a different concrete syntax for stop names for each language. In the
English syntax, accented characters have the diacritics removed and all letters
are converted to lower case.

concrete GbgEng of Gbg = TransportEng ** {
lin Angered = { s = ["angered"] } ;
lin Bergsjon = { s = ["bergsjon"] } ;
lin Biskopsgarden = { s = ["biskopsgarden"] } ;
...

}

Since stop names are also used in the click and drawing modalities, we also
need an easily machine readable and writable syntax. This is achieved by re-
moving spaces and diacritics from the stop names:

concrete GbgLabels of Gbg = TransportLabels ** {
lin Angered = { s = ["Angered"] } ;
lin Bergsjon = { s = ["Bergsjon"] } ;
lin Biskopsgarden = { s = ["Biskopsgarden"] } ;
...

}

9.4 Multimodal Input Grammars

User input is done with integrated speech and click modalities. The user may
use speech only, or speech combined with clicks on the map. Clicks are expected
when the user makes a query containing “here” (though “here” might also be
used without a click, see Section 9.4.4).

Clicks are represented as a list of places that the click might refer to. Nor-
mally this is a singleton list containing a single bus/tram stop, but some stops
might be close enough that a click could refer to more than one stop. The set
might also be empty if the click was not close to any stop.

In the concrete syntax, the click data is appended to the speech input to give
the parser a single string to parse. These are some examples using the English
concrete syntax:

• “i want to go from brunnsparken to vasaplatsen;”

• “i want to go from vasaplatsen to here; [Chalmers]”

• “i want to go from here to here; [Chalmers] [Saltholmen]”

9.4.1 Common Declarations

The QueryBase module contains declarations common to all input modalities:

abstract QueryBase = {
cat

42 CHAPTER 9. EXAMPLE APPLICATION: TRAM INFORMATION

Query ; -- sequentialized input representation
Input ; -- user input: parallel text and clicks
Click ; -- map clicks

fun
QInput : Input -> Query ; -- sequentialize user input

}

QueryBase has a single concrete syntax since it is language neutral:

concrete QueryBaseCnc of QueryBase = {
lincat
Query = { s : Str } ;
Input = { s1 : Str ; s2 : Str } ;
Click = { s : Str } ;

lin
QInput i = { s = i.s1 ++ ";" ++ i.s2 } ;

}

9.4.2 Click Modality

Clicks are represented by a list of stops that the click might refer to:

abstract Click = QueryBase ** {
cat
StopList ; -- a list of stop names

fun
CStops : StopList -> Click ;
NoStop : StopList ;
OneStop : String -> StopList ;
ManyStops : String -> StopList -> StopList ;

}

The same concrete syntax is used for clicks in all languages:

concrete ClickCnc of Click = QueryBaseCnc ** {
lincat
StopList = { s : Str } ;

lin
CStops xs = { s = "[" ++ xs.s ++ "]" } ;
NoStop = { s = "" } ;
OneStop x = { s = x.s } ;
ManyStops x xs = { s = x.s ++ "," ++ xs.s } ;

}

9.4.3 Speech Modality

The Query module adds basic user queries and a way to use a click to indicate
a place:

abstract Query = QueryBase ** {
cat

9.4. MULTIMODAL INPUT GRAMMARS 43

Place ; -- any way to identify a place
fun
GoFromTo : Place -> Place -> Input ;
GoToFrom : Place -> Place -> Input ;
PClick : Click -> Place ; -- "here" and a click

}

The corresponding English concrete syntax is:

concrete QueryEng of Query = QueryBaseCnc ** {
lincat
-- speech and click representations of a place
Place = {s1 : Str; s2 : Str} ;

lin
GoFromTo x y = {
s1 = ["i want to go from"] ++ x.s1 ++ "to" ++ y.s1 ;
s2 = x.s2 ++ y.s2

} ;
GoToFrom x y = {
s1 = ["i want to go to"] ++ x.s1 ++ "from" ++ y.s1 ;
s2 = x.s2 ++ y.s2

} ;
PClick c = { s1 = "here" ; s2 = c.s } ;

}

9.4.4 Indexicality

To refer to her current location, the user can use “here” without a click, or omit
either origin or destination. The system is assumed to know where the user is
located. Examples in English concrete syntax:

• “i want to go from here to centralstationen;”

• “i want to go to valand;”

• “i want to come from brunnsparken;”

These are the abstract syntax declarations for this feature (in the Query mod-
ule):

fun
-- indexical "here", without a click
PHere : Place ;
-- "want to come from a" (to where I am now)
ComeFrom : Place -> Input ;
-- "want to go to a" (from where I am now)
GoTo : Place -> Input ;

The English concrete syntax for this is (in the QueryEng module):

lin
PHere = { s1 = "here" ; s2 = [] } ;

44 CHAPTER 9. EXAMPLE APPLICATION: TRAM INFORMATION

ComeFrom x = {
s1 = ["i want to come from"] ++ x.s1 ;
s2 = x.s2

} ;
GoTo x = {
s1 = ["i want to go to"] ++ x.s1 ;
s2 = x.s2

} ;

9.5 Ambiguity

Some strings may be parsed in more than one way. Since “here” may be used
with or without a click, input with two occurrences of “here” and only one click
are ambiguous:

• “I want to go from here to here; [Valand]”

A query might also be ambiguous even if it can be parsed unambiguously,
since one click can correspond to multiple stops:

• “I want go go from Chalmers to here; [Klareberg,Tagene]”

The current application fails to produce any output for ambiguous queries.
A real system should handle this through dialog management.

9.6 Multimodal Output

The system’s answers to the user’s queries are presented with speech and draw-
ings on the map. This is an example of parallel multimodality as the speech
and the map drawings are independent.

The information presented in the two modalities is however not identical as
the spoken output only contains information about when to change trams/buses.
The map output shows the entire path, including intermediate stops.

Parallel multimodality is from the system’s point of view just a form of
multilinguality. The abstract syntax representation of the system’s answers has
one concrete syntax for the drawing modality, and one for each natural language.
The only difference between the natural language syntaxes and the drawing one
is that the latter is a formal language rather than a natural one.

9.6.1 Abstract Syntax for Multimodal Output

The abstract syntax for answers (routes) contains the information needed by all
the concrete syntaxes. All concrete syntaxes might not use all of the information.
A route is a non-empty list of legs, and a leg consists of a line and a list of at
least two stops.

abstract Route = Transport ** {
cat
Route; -- route description
Leg; -- route segment on a single line

9.6. MULTIMODAL OUTPUT 45

Line; -- bus/tram line
Stops; -- list of at least two stops

fun
-- leg followed by a route
Then : Leg -> Route -> Route ;
-- single leg
OneLeg : Leg -> Route ;
-- leg on a line
LineLeg : Line -> Stops -> Leg ;
-- line labelled by a string
NamedLine : String -> Line ;
-- stop followed by some stops
ConsStop : Stop -> Stops -> Stops ;
-- last two stops
TwoStops : Stop -> Stop -> Stops ;

}

9.6.2 Map Drawing Concrete Syntax

The map drawing language contains sequences of labeled edges to be drawn on
the map. The following string:

• “drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2, [Vasaplatsen, Gron-
sakstorget, Brunnsparken]);”

is an example of a string in the map drawing language described by this concrete
syntax:

concrete RouteMap of Route = TransportLabels ** {
lincat
Route = { s : Str } ;
Leg = { s : Str } ;
Line = { s : Str } ;
Stops = { s : Str } ;

lin
Then l r = { s = l.s ++ ";" ++ r.s } ;
OneLeg l = { s = l.s ++ ";" } ;
LineLeg l ss =
{ s = "drawEdge" ++ "(" ++ l.s ++ ","

++ "[" ++ ss.s ++ "]" ++ ")" } ;
NamedLine n = { s = n.s } ;
ConsStop s ss = { s = s.s ++ "," ++ ss.s } ;
TwoStops s1 s2 = { s = s1.s ++ "," ++ s2.s } ;

}

9.6.3 English Concrete Syntax

In the English concrete syntax we wish to list only the first and last stop of each
leg of the route.

concrete RouteEng of Route = TransportNames ** {

46 CHAPTER 9. EXAMPLE APPLICATION: TRAM INFORMATION

lincat
Route = { s : Str } ;
Leg = { s : Str } ;
Line = { s : Str } ;
-- stop list is linearized to its first and last stops
Stops = { start : Str; end : Str } ;

lin
Then l r = { s = l.s ++ "." ++ r.s } ;
OneLeg l = { s = l.s ++ "." } ;
LineLeg l ss =
{ s = "Take" ++ l.s ++ "from" ++ ss.start

++ "to" ++ ss.end } ;
NamedLine n = { s = n.s } ;
ConsStop s ss = { start = s.s; end = ss.end } ;
TwoStops s1 s2 = { start = s1.s; end = s2.s } ;

}

9.7 Example Interaction

The user says “i want to go from chalmers to here” and clicks on Frihamnen.
This is represented by the input string:

• “i want to go from chalmers to here; [Frihamnen]”

The parser produces this abstract syntax representation:

QInput (GoFromTo (PStop Chalmers)
(PClick (CStops (OneStop "Frihamnen"))))

The system responds with this answer:

Then (LineLeg (NamedLine "6")
(TwoStops Chalmers Vasaplatsen))

(Then (LineLeg (NamedLine "2")
(ConsStop Vasaplatsen

(TwoStops Gronsakstorget Brunnsparken)))
(OneLeg (LineLeg (NamedLine "5")

(ConsStop Brunnsparken
(TwoStops LillaBommen Frihamnen)))))

This is linearized to this speech output:

• “Take 6 from Chalmers to Vasaplatsen. Take 2 from Vasaplatsen to
Brunnsparken. Take 5 from Brunnsparken to Frihamnen.”

And to these drawing instructions:

• “drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2, [Vasaplatsen, Gron-
sakstorget, Brunnsparken]); drawEdge (5, [Brunnsparken, LillaBommen,
Frihamnen]);”

The map with this output is shown in figure 9.3.

9.8. MULTILINGUALITY 47

Figure 9.3: The map showing the path from Chalmers to Frihamnen.

9.8 Multilinguality

Currently, speech input and output in English and Swedish are implemented.
The dialog system itself accepts input in either language, but speech recognizers
can often only handle a single language at a time.

System output is linearized using the same language as the speech input was
in.

Adding support for a new language requires writing concrete syntaxes for
the user and system grammars.

9.9 Component Overview

The application consists of a number of OAA [12] agents:

• Speech recognizer - The Nuance [21] speech recognizer using Nuance-
Wrapper [28]. The speech recognition grammar is generated from the
GF user grammar.

• Clickable map + Path drawing - An OAA agent written in Java

• Parser + Linearizer (multilingual and multimodal) - Embedded GF Inter-
preter through its OAA interface.

• Shortest path finder - OAA agent written in Java

• Speech synthesis - FreeTTS [29] over OAA using FreeTTSAgent [30]

48 CHAPTER 9. EXAMPLE APPLICATION: TRAM INFORMATION

9.10 Application Limitations

There is no dialog management in this version. Queries that have do not have
exactly one interpretation are not answered. The purpose of this application is
to demonstrate use of multimodal and multilingual grammars. Adding dialog
management should be orthogonal to this.

There is no handling of departure times, only time between stops. Adding
support for this would be relatively straightforward, but would require some
effort to support time expressions. The shortest-path algorithm would also
need to be changed to take waiting times into account.

The current system is not usable for practical route planning since the
Göteborg public transit network description is incomplete and out of date.

9.11 Future Work

Whereas we have only investigated the use of drawings for system output (and
quite simple ones at that), one could also imagine using them for user input. In
the example system, the user could for example circle a number of stops on the
map to indicate a set of possible origin or destination stops.

9.12 Conclusions

The system presented in this paper makes the combination of information from
different modalities part of the grammar, whereas many other systems do this
in a fairly ad-hoc way.

Since GF warns the user (or gives an error message) when the abstract and
concrete syntaxes are inconsistent, it is easy to keep the grammars in sync during
development.

Automatic generation of speech recognition grammars eliminates the work of
writing a separate grammar for the speech recognizer and keeping it consistent
with the grammar used by the dialog system.

Chapter 10

Grammar Development
Tools

10.1 Introduction

Writing a GF grammar for a new domain or language can be a demanding task,
which may require in-depth knowledge both of the domain and of the target
language. Large grammars can also be fairly complex and difficult to grasp. If
embedded GF grammars are to be useful, it must be feasible to develop new
grammars. This chapter discusses some tools aimed at supporting grammar
writers.

10.2 Resource Grammars

Resource grammars [13] are general grammars for some language, whose writer
is knowledgeable in the grammar of the target language. They contain the
syntactic constructs and morphology of the language, along with general pur-
pose vocabulary. Resource grammars can be used by writers of domain-specific
grammars to avoid reimplementing the basic machinery of the target language.
Resource grammars for a number of languages have already been developed.

10.3 Grammar Visualization

As shown in chapter 9, GF grammars can consist of many modules which may
use each other. In order to give an intuition about the relationships between the
different modules, a tool for visualizing module dependencies has been developed
as part of this thesis. The GF system has been extended to produce a graph
description in the DOT [31] language. The dot program can then be used to
produce images from such descriptions. The module graphs in chapter 9 (figures
9.1 and 9.2) have been produced with this tool.

In the module dependency graphs, nodes with a solid border represent ab-
stract modules and square nodes with a dashed border are concrete modules.
Between a concrete module and the abstract module for which it is the concrete
syntax, a dashed edge is drawn. Solid edges represent module inheritance for

49

50 CHAPTER 10. GRAMMAR DEVELOPMENT TOOLS

both abstract and concrete modules. Dashed round nodes are resource modules
and a dotted edge from one module to another means that the former opens the
latter.

10.4 Future Work

10.4.1 Grammar development IDE

For many programming languages, there are development environments which
assist the developer in writing programs. Some features inspired by such IDEs
may be useful when writing GF grammar. This might include features such
as module overviews, code highlighting, support for testing parsing and lin-
earization, documentation browsers, the ability to chose functions from a list
of available ones and generation of linearization terms by paring and example
string. Janna Khegai has recently demonstated a system with some of these
capabilities.

Chapter 11

Related Work

11.1 Embedded Context-Free Grammars

Parser generators such as Yacc [32] and Happy [33] can be seen as tools for
embedding context-free grammars into applications. Such tools normally sup-
port only context-free grammars, and are aimed at parsing formal languages.
They do generally not support linearization. BNFC [9] is a compiler front-end
generator which supports parsing and linearization of context-free languages.
Compared to such tools, the main advantages of the work described in this
thesis is the power of the GF grammar formalism, and the natural support for
linearization and multilinguality.

11.2 Attribute Grammars

Attribute grammars [34, 35] are context-free grammars where each symbol has
a set of associated attributes. There are semantic rules associated with the
productions which define how the attribute values are computed. Whereas
embedded grammars as described in this thesis are grammars embedded in
programs, attribute grammars can be seen as programs embedded in grammars.

11.3 Combinatory Categorial Grammars and OpenCCG

OpenCCG [36] is a Java library which provides parsing and linearization for
Combinatory Categorial Grammars (CCG) [37]. Compared to GF, the notion
of abstract syntax in CCG is faily tightly coupled to the concrete syntax [3].
This seems to make it difficult to write multiple concrete syntaxes with the same
abstract syntax, something which is essential for the way in which multilingual-
ity is achieved when using GF grammars.

11.4 Multimodal Grammars

Michael Johnston describes unification-based multimodal parsing [38]. His ap-
proach is to extend chart parsing to multiple dimensions and to use unification
to integrate information from different modalities. The approach described in

51

52 CHAPTER 11. RELATED WORK

chapter 3 achieves a similar result by using records along with the existing
unification mechanism for resolving reduplication.

OpenCCG implements multimodal extensions to CCG by Jason Baldridge [39].
FIXME: is this multimodality in the same sense as we mean? I don’t understand
the MMCCG paper.

11.5 Generation of Speech Recognition Gram-
mars

The idea of generating context-free speech recognition grammars from grammars
in a more expressive formalism has been described by Dowding et al [40].

11.6 External Grammars Tools

There are a number of stand-alone grammar tools which implement parsing in
many different grammar formalisms. While these share some features with the
systems described in this thesis, they are often designed for experimenting with
writing grammars in the formalism which they support and seldom meant to be
used in an embedded fashion.

FIXME: examples of external grammar tools

11.7 GF Gramlets

The GF Gramlets [14] system produces syntax editors in the form of Java applets
for a given GF grammar. Gramlets implement syntax editing and linearization
using XML representations of GF grammars. While Gramlets and the Embed-
ded GF Interpreter do not share any code, Gramlets provided inspiration for
and a hint of the usefulness of writing a general GF interpreter in Java. In
the future, we hope to adapt the Gramlets system to use the Embedded GF
Interpreter.

11.8 Embedding the Full GF System

Before this work was started, some applications [5, 6] have been written which
use the full GF system as a resource. This can be done in two ways, either by
communicating with the interactive gf program by using pipes, or by using the
GF Haskell API.

11.9 Speech Translation

FIXME: find some related work on speech translation

Chapter 12

Future Work

Many of the previous chapters list future work to be done in their respective
areas. This chapter will outline some possibilities for future work on embedded
grammars in general.

12.1 Non-human Interaction Grammars

Grammars can be used also for non-human computer interaction tasks, such as
communication between system components or with external systems.

Many communication standards and data formats are described by gram-
mars, and it might be feasible to use embedded grammars to implement support
for such systems.

53

Chapter 13

Conclusions

13.1 Contributions

This thesis has described the following contributions to the area of embedded
grammars:

The Embedded GF Interpreter An embeddable lightweight interpreter for
GF grammars which supports parsing, linearization and translation.

GF to Speech Recognition grammar compiler Compiles GF grammars to
common speech recognition grammar formats to ease integration with
speech recognition and remove the problem of keeping multiple equiva-
lent grammars in sync.

Grammar module visualization tool Visualizes the dependencies between
grammar modules as a directed graph.

Speech translator A general unidirectional speech translator which translates
between any two concrete GF syntaxes which share a common abstract
syntax.

Demonstration of a multimodal multilingual dialog system A multimodal
and multilingual dialog systems based on the use of multimodal and mul-
tilingual grammars.

13.2 Usefulness of Embedded Grammars

Applications such as the GF Speech Translator described in chapter 7 illustrate
the power of embedded grammars. The application source code is essentially
just glue between existing components. Changing the application to a new
domain or language pair only requires new grammars.

As the dialog system example in chapter 9 shows, the use of embedded
grammars reduces the task of creating a multimodal and multilingual natu-
ral language user interface to writing grammars and programs which work on
abstract syntax terms.

54

13.3. SOFTWARE AVAILABILITY AND LICENSING 55

13.3 Software Availability and Licensing

All stand-alone software written as part of this thesis is available from http:
//www.cs.chalmers.se/~bringert/. The parts integrated into the GF system
are available as part of GF from http://www.cs.chalmers.se/~aarne/GF/.

All code written as part of this thesis is distributed under the GNU General
Public License (GPL) [41].

Bibliography

[1] P. Martin-Löf, Intuitionistic Type Theory. Naples: Bibliopolis, 1984.

[2] A. Ranta, “Grammatical Framework, a type-theoretical grammar formal-
ism,” The Journal of Functional Programming, vol. 14, no. 2, pp. 145–189,
2004.

[3] P. Ljunglöf, Expressivity and Complexity of the Grammatical Framework.
PhD thesis, Göteborg University, Gothenburg, Sweden, November 2004.

[4] D. A. Burke, “Improving the natural language translation of formal soft-
ware specifications,” Master’s thesis, Chalmers University of Technology,
December 2004.

[5] J. Khegai, B. Nordström, and A. Ranta, “Multilingual syntax editing in
GF,” in CICLing, pp. 453–464, 2003.

[6] R. Hähnle, K. Johannisson, and A. Ranta, “An authoring tool for infor-
mal and formal requirements specifications,” in Fundamental Approaches
to Software Engineering (R.-D. Kutsche and H. Weber, eds.), no. 2306 in
LNCS, 2002.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specifica-
tion. Sun Microsystems, Inc., third ed., 2005. Proposed third edition: http:
//java.sun.com/docs/books/jls/java_language-3_0-mr-spec.zip.

[8] P. Ljunglöf, “Functional chart parsing of context-free grammars,” The
Journal of Functional Programming, vol. 14, no. 6, pp. 669–680, 2004.

[9] M. Forsberg and A. Ranta, “The BNF Converter: A high-level tool for im-
plementing well-behaved programming languages,” in NWPT’02 proceed-
ings, Proceedings of the Estonian Academy of Sciences, December 2003.

[10] B. Bringert, “Embedded GF Interpreter Java API.” http://www.cs.
chalmers.se/~bringert/gf/gf-java.html.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman Pub-
lishing Co., Inc., 1995.

[12] D. L. Martin, A. J. Cheyer, and D. B. Moran, “The Open Agent Archi-
tecture: A framework for building distributed software systems,” Applied
Artificial Intelligence, vol. 13, pp. 91–128, January-March 1999.

56

BIBLIOGRAPHY 57

[13] J. Khegai, “Language engineering in Grammatical Framework.” Licentiate
Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2003.

[14] M. Forsberg, K. Johannisson, J. Khegai, and A. Ranta, “GF Gramlets.”
http://www.cs.chalmers.se/~krijo/gramlets.html.

[15] T. Coquand, “An algorithm for type-checking dependent types,” Science
of Computer Programming, vol. 26, no. 1-3, pp. 167–177, 1996.

[16] B. Bringert, R. Cooper, P. Ljunglöf, and A. Ranta, “Development of multi-
modal and multilingual grammars: viability and motivation.” Deliverable
D1.2a, TALK Project, IST-507802, December 2004.

[17] A. Hunt, “JSpeech Grammar Format.” W3C Note, June 2000.

[18] Sun Microsystems, Inc., Java Speech API Programmer’s Guide, October
1998.

[19] Sun Microsystems, Inc., Java Speech API Specification, 1998.

[20] Nuance Communications, Inc., 1005 Hamilton Avenue, Menlo Park, CA
94025, USA, Nuance Speech Recognition System 8.5: Grammar Developer’s
Guide, December 2003.

[21] Nuance Communications, Inc., 1005 Hamilton Avenue, Menlo Park, CA
94025, USA, Nuance Speech Recognition System 8.5: Introduction to the
Nuance System, December 2003.

[22] “Speech recognition grammar specification version 1.0.” W3C Recommen-
dation, March 2004.

[23] R. C. Moore, “Removing left recursion from context-free grammars,” in
Proceedings of the first meeting of the North American chapter of the As-
sociation for Computational Linguistics, pp. 249–255, Morgan Kaufmann
Publishers Inc., 2000.

[24] S. Young, ATK - An Application Toolkit for HTK. Machine Intelligence
Laboratory, Cambridge University Engineering Dept, Trumpington Street,
Cambridge, CB2 1PZ, United Kingdom, 1.4.1 ed., July 2004.

[25] S. Larsson and D. Traum, “Information state and dialogue management
in the TRINDI dialogue move engine toolkit,” Natural Language Engineer-
ing Special Issue on Best Practice in Spoken Language Dialogue Systems
Engineering, pp. 323–340, 2000.

[26] H. Hammarström and A. Ranta, “Cardinal Numerals Revisited in GF.”
Abstract accepted to Workshop on Numerals in the World’s Languages,
Dept. of Linguistics Max Planck Institute for Evolutionary Anthropology,
Leipzig, Germany, March 2004.

[27] D. Adams, The Hitchhiker’s Guide to the Galaxy. Pan Macmillan, October
1979.

[28] D. Hjelm, NuanceWrapper manual. Göteborg University, Gothenburg, Swe-
den, June 2004.

58 BIBLIOGRAPHY

[29] Sun Microsystems, Inc., FreeTTS Programmer’s Guide, 2003. http://
freetts.sourceforge.net/docs/ProgrammerGuide.html.

[30] H. Burden, FreeTTS Agent for OAA. Göteborg University, Gothenburg,
Sweden. http://www.ling.gu.se/projekt/talk/software/reports/
freeTTSAgentReport.%pdf.

[31] E. Koutsofios and S. C. North, Drawing graphs with dot. AT&T Bell Lab-
oratories, Murray Hill, NJ.

[32] S. C. Johnson, “Yacc: Yet another compiler compiler,” in UNIX Program-
mer’s Manual, vol. 2, pp. 353–387, New York, NY, USA: Holt, Rinehart,
and Winston, 1979.

[33] A. Gill and S. Marlow, “Happy: The parser generator for Haskell.” http:
//haskell.org/happy/.

[34] D. E. Knuth, “Semantics of context-free languages.,” Mathematical Systems
Theory, vol. 2, no. 2, pp. 127–145, 1968.

[35] D. E. Knuth, “Correction: Semantics of context-free languages.,” Mathe-
matical Systems Theory, vol. 5, no. 1, pp. 95–96, 1971.

[36] “The OpenCCG Homepage.” http://openccg.sourceforge.net/.

[37] M. Steedman, “A very short introduction to CCG.” ftp://ftp.cis.
upenn.edu/pub/steedman/ccg/ccgintro.ps.gz, November 1996.

[38] M. Johnston, “Unification-based multimodal parsing,” in Proceedings of the
36th conference on Association for Computational Linguistics, pp. 624–630,
Association for Computational Linguistics, 1998.

[39] J. Baldridge and G.-J. M. Kruijff, “Multi-modal combinatory categorial
grammar,” in Proceedings of EACL’03: 10th Conference of the European
Chapter of the Association for Computational Linguistics, 2003.

[40] J. Dowding, B. A. Hockey, J. M. Gawron, and C. Culy, “Practical issues in
compiling typed unification grammars for speech recognition,” in Meeting
of the Association for Computational Linguistics, pp. 164–171, 2001.

[41] Free Software Foundation, Inc., GNU General Public License, June 1991.
http://www.fsf.org/licenses/gpl.txt.

Appendix A

Embedded GF Interpreter
OAA Agent

A.1 Introduction

The Open Agent Architecture (OAA) is “a framework for integrating a commu-
nity of heterogeneous software agents in a distributed environment”.

This document describes the GF OAA Agent included with the Embedded
GF Interpreter.

A.2 Running

If the grammar properties file is test.properties and the facilitator is running
on $FAC HOST, port $FAC PORT, the GF agent is started with:

$ java -cp gfc2java.jar:. se.chalmers.cs.gf.oaa.GFAgent \
/test.properties -oaa_connect "tcp(’${FAC_HOST}’,${FAC_PORT})"

A.2.1 Notes

• The path to the properties file is loaded as a java resource, so the leading
slash means to look look at the root of the package hierarchy to find the
file in the current directory.

• The following must be on the classpath:

– OAA 2.3.0 and all its requirements

– The Trindikit Java library (for the OAAAgent class)

A.3 Solvables

The OAA agent declares these solvables:

• parse (cf. Section A.3.1)

• linearize (cf. Section A.3.2)

59

60 APPENDIX A. EMBEDDED GF INTERPRETER OAA AGENT

• translate (cf. Section A.3.3)

• list grammars (cf. Section A.3.4)

• list languages (cf. Section A.3.5)

A.3.1 parse

parse(Grammar,Lang,Text,Tree)

Parameters

Grammar The name of the grammar. This is the value of the name parameter
in the properties file.

Lang The name of the concrete syntax that should be used for parsing. If Lang
is not instantiated, the parser will try all available languages in the given
grammar, and return results for each language that the text can be parsed
in.

Text The text to parse. Must be instantiated.

Tree The parse tree. Normally not instantiated. The parse tree from the parser
is unified with this value. Parse trees are represented as ICL structs.

Examples

• Language given, unambiguous parse:

parse(numerals, german, ’drei hundert’, Tree)
=>
parse(numerals, german, ’drei hundert’,

num(pot2as3(pot2(pot0(n3)))))

• Language uninstantiated, unambiguous parse:

parse(numerals, Lang, ’three hundred’, Tree)
=>
parse(numerals, english, ’three hundred’,

num(pot2as3(pot2(pot0(n3)))))

• Language uninstantiated, parses with several languages to same parse tree:

parse(numerals, Lang, ’tre’, Tree)
=>
parse(numerals, albanian, tre,

num(pot2as3(pot1as2(pot0as1(pot0(n3))))))
parse(numerals, danish, tre,

num(pot2as3(pot1as2(pot0as1(pot0(n3))))))
parse(numerals, italian, tre,

num(pot2as3(pot1as2(pot0as1(pot0(n3))))))
parse(numerals, norwegian_book, tre,

A.3. SOLVABLES 61

num(pot2as3(pot1as2(pot0as1(pot0(n3))))))
parse(numerals, swedish, tre,

num(pot2as3(pot1as2(pot0as1(pot0(n3))))))

• Language uninstantiated, parses with several languages to different parse
trees:

parse(numerals, Lang, ’tres’, Tree)
=>
parse(numerals,catalan,tres,

num(pot2as3(pot1as2(pot0as1(pot0(n3))))))
parse(numerals,danish,tres,

num(pot2as3(pot1as2(pot1(n6)))))
parse(numerals,spanish,tres,

num(pot2as3(pot1as2(pot0as1(pot0(n3))))))

A.3.2 linearize

linearize(Grammar,Lang,Tree,Text)

Parameters

Grammar The name of the grammar. This is the value of the name parameter
in the properties file.

Lang The name of the concrete syntax that should be used for linearization.
If Lang is not instantiated, linearizations for all available languages in the
given grammar will be returned.

Tree The abstract syntax tree to linearize. Must be instantiated.

Text The linearization of the given tree.

Examples

• Language given:

linearize(numerals, english,
num(pot2as3(pot1as2(pot0as1(pot0(n3))))), Str)

=>
linearize(numerals, english,

num(pot2as3(pot1as2(pot0as1(pot0(n3))))), three)

A.3.3 translate

translate(Grammar,FromLang,Input,ToLang,Output)

62 APPENDIX A. EMBEDDED GF INTERPRETER OAA AGENT

Parameters

Grammar The name of the grammar. This is the value of the name parameter
in the properties file.

FromLang The name of the concrete syntax that should be used for parsing
the input text. If Lang is not instantiated, all available languages in the
given grammar will be tried.

Input The input text. Must be instantiated.

ToLang The name of the concrete syntax that should be used for linearizing
the output.

Output The output text. Normally not instantiated.

Examples

• Input language not given:

translate(numerals, Lang, ’tres’, english, Str)
=>
translate(numerals,catalan,tres,english,three)
translate(numerals,danish,tres,english,sixty)
translate(numerals,spanish,tres,english,three)

A.3.4 list grammars

list grammars(Grammars)

Parameters

Grammars The list of available grammars.

Examples

• Get all grammars:

list_grammars(Grammars)
=>
list_grammars([query,answer])

A.3.5 list languages

list languages(Grammar, InputLangs, OutputLangs)

Parameters

Grammar The grammar to get the languages for. If uninstantiated, there will
be one answer for each available grammar.

InputLangs A list of the available input languages for the grammar.

OutputLangs A list of the available output languages for the grammar.

A.3. SOLVABLES 63

Examples

• Get languages for all grammars (Grammar uninstantiated):

list_languages(Grammar, InputLangs, OutputLangs)
=>
list_languages(query,

[’*all*’,’GbgQueryEng’,’GbgQuerySwe’],
[’*all*’,’GbgQueryEng’,’GbgQuerySwe’])

list_languages(answer,
[’*all*’,’GbgRouteEng’,’GbgRouteMap’,
’GbgRouteSwe’],
[’*all*’,’GbgRouteEng’,’GbgRouteMap’,
’GbgRouteSwe’])

• Get languages for the query grammar (Grammar instantiated):

list_languages(’query’, InputLangs, OutputLangs)
=>
list_languages(query,

[’*all*’,’GbgQueryEng’,’GbgQuerySwe’],
[’*all*’,’GbgQueryEng’,’GbgQuerySwe’])

Appendix B

Hello World Dialog System
Source Code

import user.*;
import system.*;
import se.chalmers.cs.gf.util.Pair;
import se.chalmers.cs.gf.dialogutil.*;
import se.chalmers.cs.gf.dialogutil.sr.*;
import se.chalmers.cs.gf.dialogutil.tts.*;

import java.util.List;

/**
* A very simple demo of a single-modality multilingual dialog
* system using GF in Java.
*/
public class SimpleDemo {

private TextListenerList listeners = new TextListenerList();

private UserMain user;

private SystemMain system;

public SimpleDemo(UserMain user, SystemMain system) {
this.user = user;
this.system = system;

}

/**
* Parses the user input, creates system output by calling answer(),
* linearizes the system output in the language that the user used
* and outputs the answer.
*/
private void handleInput(String text) {

64

65

System.err.println("Input: " + text);

// parse the input with all available languages
List<Pair<String,Input>> inputs =

user.parseInputWithAll(text);

// disambiguate the input, do nothing if that fails
Pair<String,Input> p = disambiguate(inputs);
if (p == null)

return;

// get the unambiguous input
String inputLang = p.fst;
Input input = p.snd;
System.err.println("Parsed: " + input + " (" + inputLang + ")");

// figure out answer to user input
String outputLang = getOutputLang(inputLang);
Output output = answer(input);
System.err.println("Output: " + output);

// linearize and output answer
String outputText = system.linearizeOutput(outputLang, output);
System.err.println("Saying: " + outputText);
listeners.fireTextEvent(outputText);

}

/**
* Disambiguate parse results.
* @return The single umabiguous parse result, if any. Otherwise null.
*/
private Pair<String,Input> disambiguate(List<Pair<String,Input>> is) {

if (is.size() == 0) {
System.err.println("No parse");
return null;

} else if (is.size() > 1) {
System.err.println("Ambiguous parse:");
for (Pair<String,Input> i : is)

System.err.println(i.fst + ": " + i.snd);
return null;

}
return is.get(0);

}

/**
* Calculates a system output from a user input.
*/

private Output answer(Input input) {
return input.accept(new Oracle(), null);

66 APPENDIX B. HELLO WORLD DIALOG SYSTEM SOURCE CODE

}

private class Oracle implements Input.Visitor<Output,Object> {
public Output visit(user.Thanks p, Object arg) {

return new Welcome();
}
public Output visit(HereYouGo p, Object arg) {

return new system.Thanks();
}

}

/**
* Gets the output language to use for a given input language.
*/
private String getOutputLang(String inputLang) {

String lang = inputLang.substring(inputLang.length()-3);
return "System" + lang;

}

/**
* Add a source of user input, e.g. a dialog box or a speech
* recognition engine.
*/
public void addInputSource(TextInput inputSource) {

inputSource.addTextListener(new TextListener() {
public void textEvent(TextEvent e) {

handleInput(e.getText());
}

});
}

/**
* Adds a sink to which system output will be sent.
*/
public void addOutputSink(TextListener l) { listeners.add(l); }

public static void main(String [] args) throws java.io.IOException {
UserMain user = new UserMain("/user.properties");
SystemMain system = new SystemMain("/system.properties");

SimpleDemo demo = new SimpleDemo(user, system);

// Get input from a simple dialog
//demo.addInputSource(new DialogInput());

// For Nuance OAA text input
Recognizer recog = new Recognizer("simpledemo", args);
demo.addInputSource(new RecognizerInput(recog));

// Print output to System.err

67

demo.addOutputSink(new ConsoleOutput());

// Speak output with a JSAPI speech synthesizer
demo.addOutputSink(new JavaSpeechOutput());

}

}

