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Abstract

This paper presents an access control system where file access control
can be based on the identity of the program that a process is running.
This can be used to reduce the need for setuid root programs on UNIX
systems. Instead of changing the user id of the process, the process is
explicitly given access to the files it needs to access.

1 Introduction

In UNIX1 operating systems, there is sometimes a need for unprivileged users
to access files that the standard UNIX access control system does not allow
them to access. One example of this situation is that users should be able to
change their own passwords, but they cannot be given write permissions on the
system password file. This problems is often solved by the use of setuid root
programs, which run as root even if executed by an unprivileged user. If a
setuid root program is vulnerable to, for example, buffer overflow attacks, an
unprivileged user could use it to gain root privileges (commonly by having the
program execute a shell, which will then run as root, Aleph One [1] has detailed
information on how this may be done).

It should be clear that setuid root programs present a serious security prob-
lem and that to minimize the risk of security breaches, as few programs as
possible should be setuid root. Some setuid root programs actually only need
root privileges to access (typically to write to) a few files. Throughout this
paper, we will use passwd(1) as an example of such a program. passwd only
needs to be able to read and write the system password file, which is owned by
root and only allows root to write to it.2

We propose a solution where programs running as unprivileged users can
be granted extra permissions on individual files without being given full root
privileges.

1In this paper, UNIX refers to UNIX
�

and to UNIX-like operating systems such as Linux
�

2This is somewhat simplified. In practice passwd may need to write to other files, such
as temporary files and lock files. We also do not consider systems such as NIS [2], where
passwords are not stored in a local file.
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2 Model

We model our system as an access matrix [3, 4]. The subjects in our access
matrix are executables and the objects are files. Thus, each cell of the access
matrix corresponds to a triple
〈f, e, a〉 : f ∈ files, e ∈ executables, a ∈ ℘({r, w, x}).
We call such a triple an access cell since it corresponds to a cell in the access

matrix. The meaning of an access cell 〈f, e, a〉 is that any process running the
executable e can be granted any set of permissions a′, a′ ⊆ a on the file f .

Executables and files are represented by their absolute pathnames. An exam-
ple of an access cell for passwd could be 〈/etc/passwd, /usr/bin/passwd, {r, w}〉.
This would allow /usr/bin/passwd read and write access to /etc/passwd.

The system is complicated by the fact that one file may have multiple path-
names in UNIX. There can be several names (hard links) to a file and the same
filesystem may be mounted in several places in the directory hierarchy. We
define the function aliases such that:

aliases(f) = {f ′, f ′ ∈ pathnames : file(f) = file(f ′)}
In UNIX filesystems, file ownership and permissions are stored as attributes

of a file, not of the directory entries that point to the file. It would be desirable
that our system also have the property that the permissions on any alias of a
file are identical. Furthermore, our system allows executables extra permissions
in addition to those already given by the standard UNIX access control system.
Thus, given an access matrix M , a process p is granted the permissions a on a
file f if and only if at least one of the following conditions holds:

� p is given the permissions a on f by the standard UNIX access control
system

� ∃〈f ′, e, a′〉 ∈M : f ′ ∈ aliases(f) ∧ e = executable(p) ∧ a ⊆ a′

3 Implementation

The system was implemented by modifying a stock Linux 2.4.20 kernel [5]. In
the Linux kernel, file access control is performed by the permission() function.
This function uses the user id of the current process, the user and group ids of
the file, and the permissions set of the file to decide whether the process should
be granted the requested permissions on a file. The permission() function was
modified to call gran suid permission()3 if the normal permissions checking does
not allow the process access to the file. Since this system can only grant more
permissions than those given by the standard UNIX access controls, we need
only consult the access matrix if the standard acess control system does not
grant access. Thus our system adds virtually no overhead to the common case
where access is granted by the normal UNIX access control system.

gran suid permission() takes a pointer to an inode and a permissions mask
and returns 0 if access should be granted and -EACCES if it should be denied.

3The gran suid part is an artifact from an earlier version of this system.
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The function uses the directory entry cache and the list of mounted filesystems
in the namespace of the process to obtain all aliases of the inode. The name of
the executable is found by examining the virtual memory map of the process.
For each file alias, the permissions for the file alias and the program named are
looked up in the access matrix. Once a set of permissions has been found that
allows the process the requested access to the file, access is granted. If no such
permissions are found, access is denied.

gran suid permission() uses the directory entry cache to obtain the list of
aliases of an inode. However, there is no guarantee that the alias for which
the permissions have been set is in the diretory entry cache. This is a serious
limitation, and it will cause the implementation to yield results that differ from
those mandated by our model when the relevant alias in not in the directory
entry cache. In practice this should not be very significant, since it is expected
that the alias for which permissions have been set is the same one that is used
to access the file. In the process of looking up the inode (which must be done
before permission() can be called), the relevant directory entry must be read
(and thus cached).

The access cells are stored in the kernel in an unbalanced binary search
tree sorted by file and program path. Adding access cells from user space is
done by writing to an entry in the /proc pseudo-filesystem (/proc/gran suid).
The current list of access cells can be obtained by reading from /proc/gran suid.
Only root is allowed to add access cells, but anyone can list them. The following
format is used to represent access cells:

file:program:allow:permissions
where file is an absolute path to a file, program is the absoulte path to an

executable, allow is the string “allow” (included to allow future expansions) and
permissions is any ordered combination of the characters “r”, “w” and “x”, that
is, one of the following strings:

permissions ∈ {“rwx′′, “rw′′, “rx′′, “r′′, “wx′′, “w′′, “x′′, “′′}
The example access cell used above would be written as:
“/etc/passwd:/usr/bin/passwd:allow:rw”
A new access cell specification overrides an existing one with the same file

/ program combination. Thus, the permissions granted by an existing access
cell can be revoked by simply adding a new access cell using the same file /
executable combination, but with empty permissions. In the current implemen-
tation the existing access cell is not removed when an access cell with the same
file and executable but with empty permissions is added; instead it is simply
overwritten.

Because of the simplistic way that entries are parsed, file and program names
that contain the colon (:) character are currently not allowed.

A simple user space utility called set perms has been provided to make
adding permissions easier. It reads the file /etc/perms.conf, removes blank lines
and lines starting with “#”, and writes the results to /proc/gran suid.

The following is a somewhat contrived example session where unprivileged
users running cat(1) are given read access to a file owned by root.

First we create a file /tmp/test owned by, and only readable by, root:
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# echo hello > /tmp/test

# chmod 600 /tmp/test

# ls -l /tmp/test

-rw------- 1 root root 6 Jun 4 11:44 /tmp/test

Then, as an ordinary user, we try to read it:

$ cat /tmp/test

cat: /tmp/test: Permission denied

Now, as root, we add an access cell that gives /bin/cat permission to read
/tmp/test:

# echo "/tmp/test:/bin/cat:allow:r" > /proc/gran_suid

# cat /proc/gran_suid

/tmp/test:/bin/cat:allow:r

Now the ordinary user can read the file:

$ cat /tmp/test

hello

The above example is for demonstration purposes only. Since general pur-
pose utilities like cat can read and write arbitrary information from and to files,
the file owner could just as well have changed the normal permission bits on the
files.

4 Testing

The system was tested by booting a Mandrake Linux 9.1 system, running on
a uniprocessor x86 machine, with our patched 2.4.20 kernel. /usr/bin/passwd
was copied to /tmp/passwd and the setuid bit on the executable was cleared.
strace(1) was then used to determine which files passwd needs to access. The
version of passwd that comes with Mandrake Linux 9.1 uses PAM (Pluggable
Authentication Modules) [6] and the Shadow password suite [7]. In the process
of changing a user’s password, passwd was found to use the files /etc/.pwd.lock,
/etc/shadow (the shadow password file), and /etc/nshadow (the new shadow
file, passwd renames it to /etc/shadow). Since the files /etc/.pwd.lock and
/etc/nshadow are created by passwd, passwd needs to have write and exe-
cute permissions on the /etc directory. Since passwd never actually writes
to /etc/shadow (it simply unlinks it and links /etc/shadow to the newly cre-
ated /etc/nshadow) write permissions on /etc/shadow are not needed. Thus
it should be possible to run /tmp/passwd without it being setuid root if only
〈/etc, /tmp/passwd,wx〉 were added to the access matrix.

In order to test our hypothesis, we first set up a non-setuid version of passwd
and add the access cell:
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# cp /usr/bin/passwd /tmp

# ls -l /tmp/passwd

-r-x--x--x 1 root root 16024 Jun 4 12:30 /tmp/passwd

# echo "/etc:/tmp/passwd:allow:wx" > /proc/gran_suid

# cat /proc/gran_suid

/etc:/tmp/passwd:allow:wx

Now, as an ordinary user, we try to change our password:

$ /tmp/passwd

Changing password for user bjorn.

Changing password for bjorn

(current) UNIX password:

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

The password was successful changed, and can be verified by logging in using
the new password.

5 Advantages

Our system offers distinct advantages over using setuid root executables. If a
flaw in a setuid root program can be exploited, the attacker may be able to
execute arbitrary commands with full root privileges. With our system, the
attacker would only be able to access the files to which the vulnerable program
has been given access. Furthermore, if the attacker executes another executable
(such as a shell), the process will run as the unprivileged user that ran the vul-
nerable program. Thus as standard buffer overflow attack such as that described
by Aleph One [1] will fail to give the attacker a root shell. The executed shell
would not even have the extra permissions granted to the vulnerable program,
as the name of the binary will be different.

6 Drawbacks

If the files that the program is given access to affect system security, the given
permissions could be used to gain root access to the system even if the program
is not run setuid root. For example, a buffer overflow vulnerability in passwd
could allow the attacker to execute code that would change the root password
in the password file. This would be permitted by our system, as passwd has
been given write access to the password file. The attacker could then simply log
in as root using the new password.

Another drawback of the system is that in order to be able to create a file,
the program must be given write permissions on the directory in which the file
is to be created. Having write permissions on a directory allows the process to
delete any file in that directory, something which is not neccessarily desirable.
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If a program is executed setuid root because it needs access to some resource
other than a file (for example if it needs to send a signal to a process not owned
by the current user), our system cannot be used.

If an attacker is able to modify or replace an executable that has been given
extra permissions, the new executable will be given those same permissions.
This attack could be avoided if a system that prevents changes to executables
were used. van Doorn [8] describes such a system for Linux.

Since we have decided to allow a program access to a file if the program
has been given access to any alias of the file, an access matrix lookup must
be performed for all aliases of the file in question. This is likely to degrade
performance.

7 Related work

The Posix 1003.1e and 1003.2c Draft Standards [9, 10] propose a standard for
extended access control. “The Extended attributes and access control lists”
project [11] provides a Linux implementation based on these standards. The
subjects in POSIX access control lists are users and groups, not executables.

The Linux trustees [12] project adds access control list support to linux. The
access control is based on user and group id, not the identity of the executable
that the process is running.

8 Alternative approaches

The normal UNIX access control can be used to provide similar results. For each
file that requires extra privileges to access, we can create a separate group, give
the group the required permissions and make each program that needs extra
privileges on the file be setgid to that group. This approach does not work well
when several programs need to access overlapping sets of files. Because a file
can only be owned by one group and an executable only can be setgid to one
group, all programs that access a given file must be in the same group and all
files that a program accesses must be in the same group.

An access control list [13, 14] system can be used to grant a group access to
a file and then make the program setgid to the group. This scales to multiple
programs and files, but requires that an access control list system, such as
POSIX ACLs [9, 10, 11] or Linux trustees [12] be deployed.

9 Future work

The performance impact of this system is potentially large, as an access matrix
lookup may be performed every time the kernel needs to check whether a process
has some set of permissions on a file. The need to check for permissions on all
aliases of the file adds further overhead. The performance impact of this system
thus needs to be studied.

6



In order to avoid the cost of repeatedly looking up the permissions in the
access matrix, the permissions given to each executable on a file could be stored
as attributes of the file. This would in effect be an access control list system
with executables as subjects. The access control lists could be implemented
using Linux extended attributes [11].

Another possible way of storing the access cells would be to store them as
attributes of the executables, that is, each executable would have a list of files
and permissions. This would essentially be a capability system. This approach
suffers from the same file alias related problems as the system presented in this
paper.

The parsing of access cell specifications needs to be modified to support file-
names that contain colons and other special characters. This could be achieved
by using escape sequences.

Currently the access cells are stored in an unbalanced binary search tree.
This data structure was chosen for ease of implementation rather than perfor-
mance. The unbalanced tree could be replaced by a hash table or balanced tree
to improve its lookup performance.

When an empty access cell overrides an existing one, it would be desirable
that the current cell be removed from the access matrix, and nothing be added.

10 Conclusions

Executable based access control seems to a be a viable approach to reducing the
need for setuid root executables on UNIX systems. This approach is restricted
to cases where the program only needs root privileges to access a predictable
set of files.

It seems likely that a cleaner solution more in line with UNIX philosophy
would be to store the permissions for each executable as attributes of the files
that the executable needs to access. This should also yield better performance
and move the implementation closer to our model.
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