module Equinox.FolSat where {- Equinox -- Copyright (c) 2003-2007, Koen Claessen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -} import Form import Name( prim, tr, (%) ) import List hiding ( union, insert, intersect, delete ) import Maybe import Equinox.Fair import Equinox.TermSat hiding ( Lit(..) ) import Equinox.TermSat ( Lit ) import qualified Equinox.TermSat as T import Data.Set( Set ) import qualified Data.Set as S import Data.Map( Map ) import qualified Data.Map as M import IO import Flags import Control.Monad data C = C { realVars :: Set Symbol , unrVars :: Set Symbol , defs :: [(Symbol,Term)] , lits :: [(Symbol,Term)] , eqs :: [(Symbol,Symbol)] } deriving ( Show, Eq ) prove :: Flags -> [Clause] -> IO Bool prove flags cs = run $ do let (ground,clauses) = partition (S.null . realVars) [ cl | c <- cs, Just cl <- [convert c] ] sequence_ [ instantiate [] M.empty c | c <- ground ] sequence_ [ lift $ print c | c <- clauses , S.size (unrVars c) > 0 ] sequence_ [ term M.empty t | c <- clauses , (_,t) <- defs c ++ lits c ] sequence_ [ star `app` [] | noConstants ] let getModelCons = do {- sequence_ [ do tab <- getModelTable f sequence [ lift $ print (f,xs,y) | (xs,y) <- tab ] return tab | f <- [ f | f@(_ ::: (_ :-> _)) <- S.toList syms ] ] -} tabs <- sequence [ getModelTable f | f <- S.toList fs ] return (S.fromList [ c | tab <- tabs, (_,c) <- tab ]) let refineUnrestricted = refines flags getModelCons True True clauses refineLitsNotTrue = refines flags getModelCons True False clauses refineLitsFalse = refines flags getModelCons False False clauses r <- cegar Nothing (return True) -- (createNewTerms clauses) $ cegar (Just 1) refineUnrestricted $ cegar (Just (strength flags)) refineLitsNotTrue $ cegar Nothing refineLitsFalse $ Just `fmap` solve flags [] return (r == Just False) where put v s = when (v <= verbose flags) $ lift $ do putStr s; hFlush stdout putLn v s = when (v <= verbose flags) $ lift $ do putStrLn s; hFlush stdout syms = symbols cs fs' = S.filter (\f -> case f of _ ::: (_ :-> t) -> t /= bool _ -> False) syms star = prim "*" ::: ([] :-> top) noConstants = null [ c | c@(_ ::: ([] :-> _)) <- S.toList fs' ] fs | noConstants = star `S.insert` fs' | otherwise = fs' cegar :: Maybe Int -> T Bool -> T (Maybe Bool) -> T (Maybe Bool) cegar mk refine solve = do mb <- solve case mb of Just True | mk /= Just 0 -> do r <- refine if r then cegar (subtract 1 `fmap` mk) refine solve else return (Just True) _ -> do return mb -- convert :: Clause -> Maybe C convert c = conv 1 [] [] [] (norm c [] []) where norm (Neg (Var x :=: Var y) : ls) ns ps = norm (subst (x |=> Var y) (ls ++ ns ++ ps)) [] [] norm (Neg (t :=: Var y):ls) ns ps = norm ls (Neg (Var y :=: t):ns) ps norm (Neg (Var y :=: t):ls) ns ps = norm ls (Neg (Var y :=: t):ns) ps norm (Pos (t@(Fun _ _) :=: Var y):ls) ns ps = norm ls ns (Pos (Var y :=: t):ps) norm (l:ls) ns ps = norm ls ns (l:ps) norm [] ns ps = ns ++ ps conv _ defs lits eqs [] = Just (C realVars unrVars (topSort S.empty defs []) lits eqs) where realVars = (free [ t | (_,t) <- defs ++ lits ] `S.union` S.fromList [ z | (x,y) <- eqs, z <- [x,y] ]) `S.difference` S.fromList [ x | (x,_) <- defs ] unrVars = realVars `S.difference` restrVars restrVars = fix expand s0 where s0 = free [ t | (_,t) <- lits ] `S.union` S.fromList [ x | (x,_) <- lits ] expand s = s `S.union` S.unions [ free t | (x,t) <- defs, x `S.member` s ] fix f x | x == fx = x | otherwise = fix f fx where fx = f x dxs = S.fromList [ x | (x,_) <- defs ] topSort defd ((x,t):ds) ds' | (free t `S.intersection` dxs) `S.isSubsetOf` defd = (x,t) : topSort (x `S.insert` defd) ds ds' topSort defd (d:ds) ds' = topSort defd ds (d:ds') topSort defd [] [] = [] topSort defd [] ds' = topSort defd ds' [] conv i defs lits eqs (Neg (Var x :=: t) : ls) | not (cyclic S.empty (S.toList (free t))) && x `notElem` map fst defs = conv i ((x,t):defs) lits eqs ls where cyclic vis [] = False cyclic vis (y:ys) | x == y = True cyclic vis (y:ys) | y `S.member` vis = cyclic vis ys cyclic vis (y:ys) = cyclic (y `S.insert` vis) (concat [ S.toList (free t) | (z,t) <- defs, y == z ] ++ ys) conv i defs lits eqs (Neg (Var x :=: t) : ls) = conv i defs ((x,t):lits) eqs ls conv i defs lits eqs (Neg (s :=: t) : ls) = define i t defs $ \(x,defs') -> conv (i+1) defs' ((x,s):lits) eqs ls conv i defs lits eqs (Pos (s :=: t) : ls) | s == t = Nothing conv i defs lits eqs (Pos (Var x :=: Var y) : ls) = conv i defs lits ((x,y):eqs) ls conv i defs lits eqs (Pos (Var x :=: t) : ls) = define i t defs $ \(y,defs') -> conv (i+1) defs' lits ((x,y):eqs) ls conv i defs lits eqs (Pos (s :=: t) : ls) = define i s defs $ \(x,defs') -> define (i+1) t defs' $ \(y,defs'') -> conv (i+2) defs'' lits ((x,y):eqs) ls define i t defs h = case [ x | (x,t') <- defs, t == t' ] of x:_ -> h (x,defs) _ -> h (x,defs ++ [(x,t)]) where x = var top i -- tryAll :: Monad m => [m Bool] -> m Bool tryAll [] = do return False tryAll (m:ms) = do b <- m b' <- tryAll ms return (b || b') -- createNewTerms :: [C] -> T Bool createNewTerms _ = undefined -- refines :: Flags -> T (Set Con) -> Bool -> Bool -> [C] -> T Bool refines flags getCons liberal unrestr cs = do cons <- getCons putLn 1 ( "--> Refining (" ++ concat (intersperse "|" (["liberal" | liberal] ++ ["unrestr"|unrestr])) ++ "), with " ++ show (S.size cons) ++ " domain elements" ) tryAll [ refine (S.toList cons) liberal unrestr c | c <- cs ] where put v s = when (v <= verbose flags) $ lift $ do putStr s; hFlush stdout putLn v s = when (v <= verbose flags) $ lift $ do putStrLn s; hFlush stdout refine :: [Con] -> Bool -> Bool -> C -> T Bool refine cons liberal unrestr cl = match False [] (sortW (defs cl ++ lits cl)) M.empty where match cheated [] [] assign | all (\x -> x `M.member` assign || (unrestr && x `S.member` (unrVars cl))) (S.toList (realVars cl)) = instantiate cons assign cl | otherwise = return False match cheated ((c,Var x):as) ls assign = case M.lookup x assign of Just c' | c /= c' -> return False | otherwise -> match cheated as ls assign Nothing | and [ M.lookup y assign /= Just c | y <- matches x (eqs cl) ] -> match cheated as ls (M.insert x c assign) | otherwise -> return False match cheated ((c,Fun f ts):as) ls assign = do tab <- getModelTable f tryAll [ match cheated (sortW (xs `zip` ts) `mergeW` as) ls assign | (xs,y) <- tab , y == c ] match cheated [] ((x,Fun f ts):ls) assign = do tab <- getModelTable f tryAll $ [ match cheated ((y,Var x) : sortW (xs `zip` ts)) ls assign | (xs,y) <- tab ] ++ [ match cheated [] ls assign | liberal ] ++ [ match True [] ([ (x,t) | (x,t@(Fun _ _)) <- xs `zip` ts ] ++ ls) assign | False , not cheated , not liberal --, isPredSymbol f --, length (eqs cl) <= 1 , x `elem` (map fst (eqs cl) ++ map snd (eqs cl)) , let xs = [ (v % i) ::: V top | let v ::: _ = x, i <- [1..] ] ] matches :: Eq a => a -> [(a,a)] -> [a] matches x xys = [ y | (x',y) <- xys, x == x' ] ++ [ y | (y,x') <- xys, x == x' ] sortW :: [(a,Term)] -> [(a,Term)] sortW = sortBy cmp mergeW :: [(a,Term)] -> [(a,Term)] -> [(a,Term)] mergeW = mergeBy cmp cmp :: (a,Term) -> (a,Term) -> Ordering (_,t1) `cmp` (_,t2) = weight t1 `compare` weight t2 where weight (Var _) = -1 weight (Fun _ xs) = length xs mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a] mergeBy cmp xs [] = xs mergeBy cmp [] ys = ys mergeBy cmp (x:xs) (y:ys) = case x `cmp` y of LT -> x : mergeBy cmp xs (y:ys) _ -> y : mergeBy cmp (x:xs) ys instantiate :: [Con] -> Map Symbol Con -> C -> T Bool instantiate cons sub cl = inst vs sub where vs = [ v | v <- S.toList (unrVars cl) , not (v `M.member` sub) ] inst (v:vs) sub = do lift $ print "unr var" tryAll [ inst vs (M.insert v c sub) | c <- cons ] inst [] sub = do mb <- eval sub case mb of Just True -> return False _ -> do sub <- defns sub (defs cl) ns <- sequence [ do Just a <- term sub (Var x) Just b <- term sub t return (a T.:/=: b) | (x,t) <- lits cl ] ps <- sequence [ do Just a <- term sub (Var x) Just b <- term sub (Var y) return (a T.:=: b) | (x,y) <- eqs cl ] --lift $ putStrLn ("=> " ++ show (ns ++ ps)) addClause (ns ++ ps) return True defns sub [] = do return sub defns sub ((x,t):ds) = do Just c <- term sub t defns (M.insert x c sub) ds eval sub = do sub <- defns sub (defs cl) ns <- sequence [ lit sub l | l <- lits cl ] ps <- sequence [ eqlit sub l | l <- eqs cl ] let ls = map (fmap not) ns ++ ps return $ if Just True `elem` ls then Just True else if all (== Just False) ls then Just False else Nothing where defns sub [] = do return sub defns sub ((x,t):ds) = do mc <- term sub t case mc of Just c -> defns (M.insert x c sub) ds Nothing -> defns sub ds lit sub (x,t) = do ma <- term sub (Var x) mb <- term sub t return (ma =? mb) eqlit sub (x,y) = do ma <- term sub (Var x) mb <- term sub (Var y) return (ma =? mb) Nothing =? Nothing = Nothing Nothing =? Just _ = Just False Just _ =? Nothing = Just False Just a =? Just b = Just (a == b) term sub (Var x) = do return (M.lookup x sub) term sub (Fun f ts) = do mas <- sequence [ term sub t | t <- ts ] if any isNothing mas then do return Nothing else do tab <- getModelTable f case [ y | (xs,y) <- tab, map Just xs == mas ] of y:_ -> return (Just y) _ -> return Nothing term :: Map Symbol Con -> Term -> T (Maybe Con) term sub (Var x) = return (M.lookup x sub) term sub (Fun f ts) = do as <- sequence [ term sub t | t <- ts ] if any isNothing as then return Nothing else Just `fmap` (f `app` [ a | Just a <- as ])