
Chapter 1
Program Testing and the Meaning Explanations
of Intuitionistic Type Theory

Peter Dybjer
Department of Computer Science and Engineering
Chalmers University of Technology
Rännvägen 6, 412 96 Göteborg, Sweden
peterd@chalmers.se

Abstract
The relationship between program testing and Martin-Löf’s meaning explana-

tions for intuitionistic type theory is investigated. The judgements of intuitionistic
type theory are viewed as conjectures which can be tested in order to be corrobo-
rated or refuted. This point of view provides a new perspective on the meaning of
hypothetical judgements, since tests for such judgements need methods for generat-
ing inputs. Among other things, we need to generate function input. The continuity
principle is invoked and the impredicativity of types of functionals is rejected. Fur-
thermore, we provide testing semantics only for decidable identity types.

At the end we turn to impredicative type theories, and discuss possible testing
semantics for such theories. In particular we propose that testing for impredicative
type theory should be based on the evaluation of open expressions. This is in contrast
to our testing semantics for Martin-Löf’s predicative intuitionistic type theory which
is based on the evaluation of closed expressions.

1.1 Introduction

Consider the following often cited remark by Knuth [22]:

Beware of bugs in the above code; I have only proved it correct, not tried it.

How come? If you have proved your program correct, you should be certain that it
works! However, several things can go wrong:

• The formal specification may fail to capture the intended behaviour of the pro-
gram.

• The formal representation of the program in the logical system may fail to cap-
ture what actually happens when you run the program.

1

2 Authors Suppressed Due to Excessive Length

• The proof can be wrong. This easily happens with manual proofs, but even
mechanically assisted proofs can be wrong. The logical principles may not be
implemented correctly.

What does this have to do with the foundations of mathematics? There is yet another
possibility:

• The logical principles employed may themselves be wrong! Maybe the logical
system is inconsistent.

Can you ”test” a logical law? Does the following make sense?

Beware of bugs in the above proof; I have only followed inference rules, not run it.

However, you cannot in general test a proof in the same way as you can test a pro-
gram. For example, how would you “run” a proof in Zermelo-Fraenkel set theory?

On the other hand, in Martin-Löf’s intuitionistic type theory you can run proofs.
In this theory the basic unit is that of a judgement. There are four forms:A type,A =
A′, a ∈ A, a = a′ ∈ A. Each of these can be hypothetical, that is, depend on a
context x1 ∈ A1, . . . , xn ∈ An. I shall argue that the following makes sense:

When you’ve made your judgement evident to yourself, then you’d better run it, to make
sure it’s valid!

I shall explain what I mean by this, and let me immediately say that I do not mean
running the type-checking algorithm used by proof assistants based on intuitionistic
type theory! Instead I will base the discussion on the computation of closed expres-
sions to canonical form, which underlies Martin-Löf’s meaning explanations from
the paper Constructive Mathematics and Computer Programming [26]. We shall see
how the testing point of view provides a way to reformulate the meaning explana-
tions using vocabulary from programming rather than from philosophy and logic.
In other words, we look at the meaning explanations from the point of view of the
computer programmer (or better the computer user) rather than from the point of
view of the constructive mathematician.

Originally, the testing point of view that we explore in this paper was not meant
to provide alternative meaning explanations of intuitionistic type theory, only an
alternative presentation of these meaning explanations. Nevertheless, it seems that
my interpretation of both hypothetical judgements and of type equality differs from
Martin-Löf’s [26, 27]. A consequence is that I only provide meaning to identity
types I(A, a, b) if the equality on A is a decidable, but not otherwise, for example,
when A is a function type N → N .

Another aim has been to pave the way for meaning explanations for other sys-
tems than Martin-Löf type theory. If the essence of the meaning explanations is that
they explain how to test judgements, then we can ask ourselves whether we can
write testing manuals for other logical systems than intuitionistic type theory. As
an example, we shall discuss how to test the judgements of Coquand and Huet’s
Calculus of Constructions [10], an impredicative intuitionistic type theory.

In the future I hope to provide testing interpretations of systems including coin-
ductive types and partial types and functions. It would also be interesting to rephrase

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 3

insights about the computational content of classical logic [9] as Martin-Löf style
meaning explanations. A research program with this aim is Hayashi’s Limit Com-
putable Mathematics: ”To test formalization of proofs by experiments (animation)
via Gold’s limiting recursive functions” [17]. Already in the 1980s Hayashi pio-
neered the idea of proof animation, whereby he utilized the Curry-Howard isomor-
phism to test formal proofs in his system PX [18] in much the same way as one tests
computer programs [19]. Limit Computable Mathematics is the extension of this
idea to classical logic. Hayashi’s ideas have been an important source of inspiration
for the present work.

Plan of the paper

In Section 2 we review the meaning explanations for intuitionistic type theory with-
out committing ourselves to either a pre-mathematical or a meta-mathematical in-
terpretation. In Section 3 we recall a meta-mathematical realizability interpretation
following Allen [4]. The reader who is familiar with the meaning explanations can
skip Sections 2 and 3 and go straight to Section 4 which is the principal part of the
paper. There we propose a pre-mathematical testing interpretation involving evalua-
tion of terms and generation of inputs. In Section 5 we briefly discuss the possibility
of a pre-mathematical testing interpretation for the Calculus of Constructions.

1.2 Meaning explanations

History

Martin-Löf’s meaning explanations for intuitionistic type theory were first presented
in 1979 in the paper Constructive mathematics and computer programming [26].
These ideas were elaborated on in the book Intuitionistic Type Theory [27]. In both
works meaning explanations are used to justify an extensional polymorphic version
of intuitionistic type theory. Another useful reference for the philosophical basis of
meaning explanations is On the meaning of the logical constants and the justifi-
cation of the logical laws [28] from 1983, although this is concerned with meaning
explanations for ordinary intuitionistic predicate logic (without formal proof objecs)
rather than for intuitionistic type theory.

The meaning explanations are also refered to as direct semantics, intuitive se-
mantics, informal semantics, standard semantics, or the syntactico-semantical ap-
proach to meaning theory. Semantics is here understood pre-mathematically rather
than meta-mathematically, as is clear from the following quotation from the first
paragraph of Intuitionistic Type Theory.

4 Authors Suppressed Due to Excessive Length

Mathematical logic and the relation between logic and mathematics have been interpreted
in at least three different ways:

1. mathematical logic as symbolic logic, or logic using mathematical symbolism;
2. mathematical logic as foundations (or philosophy) of mathematics;
3. mathematical logic as logic studied by mathematical methods, as a branch of mathemat-

ics.

We shall here mainly be interested in mathematical logic in the second sense. What we shall
do is also mathematical logic in the first sense, but certainly not in the third.

In the present paper we shall also do mathematical logic in the third sense, when
we interpret the meaning explanations meta-mathematically in Section 3. Hilbert’s
original use of the word meta-mathematics assumed that only finitistic methods
were used on the meta-level. However, in Section 3 we assume that general math-
ematical (classical set-theoretic) methods are available, although we could argue
informally that we only use parts of set theory which are constructively valid. In
Section 4, we shall interpret the meaning explanations in the second sense, that is,
pre-mathematically, which means that we restrict ourselves to everyday concepts
relating to programming: running a program, observing its result, generating input,
etc.

The meaning explanations were a profound contribution to the semantics of intu-
itionistic type theory (and to intuitionism in general) when they were first presented
in 1979. Prior versions of intuitionistic type theory did not come with such meaning
explanations, but were justified by normalization proofs. Consistency then follows
from the Church-Rosser property. The first version, A theory of types from 1971
[24], which had an axiom that there is a type of all types, was actually inconsis-
tent, although it was proved to have the normalization property. The problem was
that the meta-theory of the normalization proof was itself inconsistent. This problem
was rectified in An intuitionistic theory of types from 1972 [29], where the type of all
types was replaced by a type of small types (a universe), and a correct normalization
proof was provided. The first published version of type theory An intuitionistic the-
ory of types: predicative part from 1973 [25] had an infinite sequence of universes
and contained a proof of normalization by an intuitionistic, but meta-mathematical,
model construction.

Terms and computation rules

We shall now give an informal account of Martin-Löf’s meaning explanations for the
fragment of his intuitionistic type theory where the only types are natural numbers
N , identity types I(A, a, b), cartesian products of families of types Π(A,B), and a
universe of small types U . These type formers suffice to illustrate the main points.
The discussion of other type formers is analogous.

We shall stay rather close to the accounts given in Constructive Mathematics and
Computer Programming [26] and Intuitionistic Type Theory [27], although there
will be three (relatively minor) differences:

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 5

• We will present type theory based on a theory of expressions (as proposed in
the preface of Intuitionistic Type Theory [27], see also [31]). This choice is
inessential; similar meaning explanations can be provided for both earlier and
later versions of intuitionistic type theory, and can also be extended to deal with
other types if details are modified suitably.

• Another inessential difference is that we will present both computation rules
and meaning explanations using inference rule notation, although such notation
is not employed in [26, 27]. Later on we will discuss in detail how to read these
inference rules both meta-mathematically (Section 3) and pre-mathematically
(Section 4).

• Martin-Löf [26, 27] actually considers an extensional type equality: two canon-
ical types are equal iff they have equal objects and equal object equality. How-
ever, in our testing semantics it will be easier to justify an intensional type equal-
ity, where two canonical types are equal only if they begin with the same type
constructor. Both extensional and intensional type equality were previously dis-
cussed by Allen [5, 4].

The theory of expressions is nothing but the simply typed lambda calculus with one
base type ι. The types are called “arities” to distinguish them from the types of type
theory which will be introduced later. Abstraction in the theory of expressions is
written (x)a, and application is written f(a). Furthermore, we add constants for the
type formers, and for the canonical and non-canonical term constructors. The arities
of the constants in our fragment of intuitionistic type theory are

N : ι
0 : ι
s : ι→ ι

R : ι→ ι→ (ι→ ι→ ι)→ ι

I : ι→ ι→ ι→ ι

r : ι
J : ι→ ι→ ι

Π : ι→ (ι→ ι)→ ι

λ : (ι→ ι)→ ι

Ap : ι→ ι→ ι

U : ι

We abbreviate f(a1, . . . , .an) = f(a1) · · · (an). Moreover, (λx)a = λ((x)a) and
(Πx ∈ A)B = Π(A, (x)B).

Universes are formulated à la Russell [27] and there is a common syntactic cate-
gory of types and terms.

Judgements are interpreted in terms of the relation a ⇒ v between closed terms
of base arity, meaning ”a has canonical form v”. Canonical forms are lazy:

v ::= Π(a, a) |λ(a) | 0 | s(a) | I(a, a, a) | r |U | · · ·

6 Authors Suppressed Due to Excessive Length

where a ranges over arbitrary, not necessarily canonical, terms. The canonical form
relation is given by the following computation rules:

c⇒ 0 d⇒ v

R(c, d, e)⇒ v

c⇒ s(a) e(a,R(a, d, e))⇒ v

R(c, d, e)⇒ v

c⇒ r d⇒ v

J(c, d)⇒ v

c⇒ λ(b) b(a)⇒ v

Ap(c, a)⇒ v

in addition to the rule
v ⇒ v

stating that a canonical term has itself as value.

The meaning of judgement forms

The general principle is that if A is a type, then it has a canonical type as value:

A⇒ C(a1, . . . , am) · · ·
A type

where C is an m-place type constructor and · · · stand for additional requirements
on a1,am, which are part of the definition of what it means to be a type.

The types A and A′ are equal if their canonical forms begin with the same type
constructor:

A⇒ C(a1, . . . , am) A′ ⇒ C(a′
1, . . . , a

′
m) · · ·

A = A′

where · · · stand for additional requirements on a1, a
′
1, . . . , am, a

′
m,. (Note again

that this an intensional notion of type equality which differs from the extensional
type equality in Martin-Löf’s [26] meaning explanations.)

Furthermore, a is an element of A provided

A⇒ C(a1, . . . , am) a⇒ c(b1, . . . , bn) · · ·
a ∈ A

where c is an n-place term constructor for C, and where · · · stand for additional
requirements on a1, . . . , am, b1, . . . , bn.

The elements a and a′ are equal elements of A provided

A⇒ C(a1, . . . , am) a⇒ c(b1, . . . , bn) a′ ⇒ c(b′1, . . . , b
′
n) · · ·

a = a′ ∈ A

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 7

and where · · · stand for additional requirements on a1, . . . , am, b1, b
′
1 . . . , bn, b

′
n.

General schema for type formers

Martin-Löf does not elaborate on what is allowed as · · · in the schematic rules
above. The schema for inductive-recursive definitions [12, 13, 14] provides a general
form which covers most type formers existing in the literature. Beyond that, Setzer
has proposed several proof-theoretically stronger types: a Mahlo universe [37] and
in unpublished work an autonomous Mahlo universe and a Π3-reflecting universe.
We hope that the present article helps explaining what is involved in claiming that
these large types are constructively valid, and why their justification is predicative,
although we do not discuss their testing semantics explicitly.

In this article, however, we restrict ourselves to a few crucial instances of canon-
ical types: N, I(A, a, b), Π(A,B), and U .

Natural numbers

A⇒ N

A type

A⇒ N A′ ⇒ N

A = A′

A⇒ N a⇒ 0
a ∈ A

A⇒ N a⇒ s(b) b ∈ N
a ∈ A

A⇒ N a⇒ 0 a′ ⇒ 0
a = a′ ∈ A

A⇒ N a⇒ s(b) a′ ⇒ s(b′) b = b′ ∈ N
a = a′ ∈ A

Identity types

A⇒ I(B, b, b′) b ∈ B b′ ∈ B
A type

A⇒ I(B, b, c) A⇒ I(B′, b′, c′) B = B′ b = b′ ∈ B c = c′ ∈ B
A = A′

A⇒ I(B, b, b′) a⇒ r b = b′ ∈ B
a ∈ A

8 Authors Suppressed Due to Excessive Length

A⇒ I(B, b, b′) a⇒ r a′ ⇒ r b = b′ ∈ B
a = a′ ∈ A

Remarks on the meaning of identity types

Note that the judgement A = A′ presupposes the judgements A,A′ type, since the
former judgement can be valid only if the latter are. Similarly, a ∈ A presupposes
A type, and a = a′ ∈ A presupposes a, a′ ∈ A, and A type. We do not write out
presupposed judgements in the rules.

Note that r ∈ I(B, b, b′) iff b = b′ ∈ B. Hence these meaning explanations
justify the rule

Γ ` c ∈ I(B, b, b′)
Γ ` b = b′ ∈ B

which is present in extensional type theory, but not in intensional type theory [29,
25, 31].

Note that we can form the type I(B, b, b′) for any type B in intuitionistic
type theory [25, 26, 27], and that this construction will be validated by the meta-
mathematical model construction (realizability) in the next section. However, this
rule will not be validated by our pre-mathematical testing semantics for general B,
only for B with decidable equality. (This does not mean that we cannot define a
type expressing the extensional equality of two functions, only that this type is not
primitive.)

Function types

A⇒ Π(B,C) y ∈ B ` C(y) type
A type

A⇒ Π(B,C) A′ ⇒ Π(B′, C ′) B = B′ y ∈ B ` C(y) = C ′(y)
A = A′

A⇒ Π(B,C) a⇒ λ(c) y ∈ B ` c(y) ∈ C(y)
a ∈ A

A⇒ Π(B,C) a⇒ λ(c) a′ ⇒ λ(c′) y ∈ B ` c(y) = c′(y) ∈ C(y)
a = a′ ∈ A

Note that some premises are hypothetical judgements. For example, y ∈ B `
C(y) type means that C(y) is a type under the assumption that y ∈ B. At this point
we shall not discuss the meaning of hypothetical judgements further. The reader is
referred to Section 3 for a meta-mathematical interpretation and to Section 4 for
a pre-mathematical interpretation. Note that we have again omitted presupposed
judgements, and that if x ∈ A is an assumption in a valid hypothetical judgement,
then A type is also valid and can be presupposed.

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 9

The universe (à la Russell) of small types

A⇒ U

A type

A⇒ U A′ ⇒ U

A = A′

A⇒ U a⇒ N

a ∈ A
A⇒ U a⇒ I(b, c, d) b ∈ U c, d ∈ b

a ∈ A
A⇒ U a⇒ Π(b, c) b ∈ U y ∈ b ` c(y) ∈ U

a ∈ A
A⇒ U a⇒ N a′ ⇒ N

a = a′ ∈ A
A⇒ U a⇒ I(b, c, d) a′ ⇒ I(b′, c′, d′) b = b′ ∈ U c = c′ ∈ b d = d′ ∈ b

a = a′ ∈ A
A⇒ U a⇒ Π(b, c) a′ ⇒ Π(b′, c′) b = b′ ∈ U y ∈ b ` c(y) = c′(y) ∈ U

a = a′ ∈ A

Other inductive and inductive-recursive types

Analogous rules can be given for the remaining type formers of intuitionistic type
theory [26, 27]. Even more, analogous rules can be given for inductive types and
inductive-recursive types [12, 13]. It would be interesting to discuss the rules for
inductive and inductive-recursive families [12, 14] from the testing point of view,
but this is outside the scope of the present paper.

1.3 Meta-mathematical reading - realizability

We shall now interpret the meaning explanations meta-mathematically, using set
theory as meta-language and essentially following Allen [5, 4]. It is sometimes said
that the meaning explanations are nothing but a realizability interpretation (in the
sense of Kleene), but this is fundamentally misleading. Realizability provides a
meta-mathematical and not a pre-mathematical interpretaion! Nevertheless, it helps
us to be precise and to understand the details involved in the meaning explanations.

Realizability interpretations of intuitionistic type theory go back to Aczel [2, 3],
Beeson [6], and Smith [38]. Note that Aczel [3], Beeson [6], and Allen [5, 4] are
”semantic” interpretations where set theory is the meta-language, whereas Aczel [2]
and Smith [38] provide syntactic translations into versions of intuitionistic predicate
logic. Allen’s version is closest to Martin-Löf’s meaning explanations; it is a rather
direct mathematical interpretation of the relevant passages in [26, 27].

10 Authors Suppressed Due to Excessive Length

In the meta-mathematical interpretation, the set of terms and the arity relation
are defined inductively (as usual for the simply typed lambda calculus). Further-
more, the canonical terms is an inductively defined subset of the set of terms and
the canonical form relation is an inductively defined relation between terms and
canonical terms of arity ι.

The question is then how to give a meta-mathematical interpretation of the rules
providing the meaning of the judgements? A first try would be to let them induc-
tively generate four relations on terms – one for each form of judgement. However,
this would not yield a positive inductive definition, since the ∈-relation appears neg-
atively in the rules for Π and U . To turn these rules into a meaningful set-theoretic
definition is the main problem which was solved in different ways by Aczel, Beeson,
and Allen.

Allen uses the fact that it suffices to interpret the judgement a = a′ ∈ A; the
interpretation of the other judgement can then also be derived, like in other work on
partial equivalence relation (per) models. He defines a relation El ⊆ Λ × P(Λ2),
such that a = a′ ∈ A is valid in the model iff there is an R such that (A,R) ∈ El
and (a, a′) ∈ R. In other words, El is the graph of the function which maps a type
A to its notion of element equality, a partial equivalence relation on Λ. With this
method the rules can be understood as the rules of a positive inductive definition of
El.

Allen follows Martin-Löf [26] and interprets type equality extensionally: two
types are equal iff they have the same canonical elements and the same equal canon-
ical elements. However, he points out that if we want to interpret a theory with inten-
sional type equality then we should instead inductively generate El ⊆ Λ2 ×P(Λ2),
but does not present the details. However, since our testing interpretation in the next
section naturally gives rise to intensional type equality we shall sketch its realizabil-
ity counterpart here.

The El-relation interprets an auxiliary heterogenous equality judgement:

• A ∈ a = a′ ∈ A′ is valid in the model iff there is anR such that ((A,A′),R) ∈
El and (a, a′) ∈ R.

El is the graph of a function which maps equal types to the per they denote. The
domain of this function is a per ∼ which will interpret type equality:

• A = A′ is valid in the model iff here is anR such that ((A,A′),R) ∈ El.

The other judgement forms are interpreted as follows:

• A type is interpreted as A = A;
• a = a′ ∈ A is interpreted as A ∈ a = a′ ∈ A;
• a ∈ A is interpreted as a = a ∈ A;

The interpretation of a hypothetical judgement is

• x1 ∈ A1, . . . , xn ∈ An ` J is interpreted as whenever a1 ∈ A1, . . . , an ∈ An

then J [a1/x1, . . . , an/xn].

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 11

We will use Aczel’s rule sets [1] to present the inductive definition of El. In this
setting an inductive definition is given by a set of rules, where a rule on a set V is
a pair X

x , such that X ⊆ V and x ∈ V . A set A ⊆ V is closed under this rule iff
X ⊆ A implies x ∈ A. A is said to be inductively generated by a set of rules Φ iff
it is the least set closed under all rules in Φ. (Aczel’s notion of inductive definition
given by rule sets is equivalent to the notion given by monotone operators.)

To interpret N we inductively generate the per N of equal natural numbers. The
rule set is

{ ∅
(a, a′)

| a⇒ 0, a′ ⇒ 0} ∪ {{(b, b
′)}

(a, a′)
| a⇒ s(b), a′ ⇒ s(b′)}

To interpret Π-types, we define the cartesian product of a doubly indexed famiy
of pers. Let be a per, andR(y, y′) be a per for y, y′ such that yy′. Then∏

(,R) = {(a, a′)|a⇒ λ(c), a′ ⇒ λ(c′), (∀yy′)c(y)R(y, y′)c′(y′)}

To interpret I-types we let be a per, and define the per of identity proofs:

I(, b, c) = {(a, a′)|a⇒ r, a′ ⇒ r, bc}

To interpret the type of small types U we first inductively generate the relation
T ⊆ Λ2 × P(Λ2), the graph of the function mapping two equal small types to the
per they denote.

{ ∅
((A,A′),N)

|A⇒ N,A′ ⇒ N}

∪

{{((B,B
′),)} ∪ {((C(y), C ′(y′),R(y, y′))|yy′}

((A,A′),
∏

(,R))
|A⇒ Π(B,C), A′ ⇒ Π(B′, C ′)}

∪

{ {((B,B′),)}
((A,A′), I(, b, c))

|A⇒ I(B, b, c), A′ ⇒ I(B′, b′, c′), bb′, cc′}

We then interpret U as the per U of equal small types, that is, the domain of T :

U = {(A,A′)|∃R.(A,A′)T R}

Finally we inductively generate El ⊆ Λ2 × P(Λ2), the graph of the function
mapping two equal possibly large types to the per they denote. The rules for El is
the union of the rule set for T and the rule set

{ ∅
((A,A′),U)

|A⇒ U,A′ ⇒ U}

As explained above we can interpret all the judgement forms of intuitionistic type
theory using El, and also show that all the inference rules of this theory are valid.

12 Authors Suppressed Due to Excessive Length

However, we refer to Allen for the details and limit ourselves to validate the rule of
N -elimination:

C(x) type a ∈ N d ∈ C(0) x ∈ N, y ∈ C(x) ` e(x, y) ∈ C(s(x))
R(a, d, e) ∈ C(a)

We have here omitted the context Γ which is common to the premises and the con-
clusion.

To prove the validity of this rule we do induction on N , the interpretation of N .
We know that if a ∈ N is valid, then either a⇒ 0 or a⇒ s(b) where b ∈ N is valid.
If a⇒ 0 then R(a, d, e)⇒ v iff d⇒ v. Thus d ∈ C(0) implies R(a, d, e) ∈ C(a),
since ∈ is invariant under evaluation: if a ⇒ v and a′ ⇒ v′ then a ∈ C(a′) iff
v ∈ C(v′) (a lemma to be proved). The validation of the case where a ⇒ s(b) is
similar.

1.4 Pre-mathematical reading - a testing manual for
intuitionistic type theory

The meta-mathematical reading of the meaning explanations does not have founda-
tional significance. To prove that mathematical induction (N -elimination) is valid
in the model we rely on (something more complex than) the principle of mathemat-
ical induction in the meta-language. Similarly, to justify the correctness of proof-
theoretically strong extensions of Martin-Löf type theory, such as Setzer’s Mahlo
universe [37], autonomous Mahlo universe, and Π3-reflecting universe, we need
analogous notions in the meta-language: Mahlo cardinals, autonomous Mahlo car-
dinals, and Π3-reflecting cardinals.

Instead we shall understand Martin-Löf’s meaning explanations as a manual for
testing the validity of judgements. For example, to test the rule of N -elimination,
we test the primitive recursion combinator R(c, d, e) for c = 0, c = s(0), c =
s(s(0)), . . . , and for arbitrary base case d and arbitrary step case e which satisfy
the assumptions of the rule. Note that, such tests are necessarily incomplete since
there are infinitely many possible inputs. As in inductive inference in philosophy
of science, a judgement is a conjecture which can be corroborated by a successful
test or refuted by an unsuccessful test, see Popper [33]. A justification of the rule
of induction is a justification of our belief that all tests of the primitive recursion
combinator will succeed. Such justifications are of course fallible, although the risk
that the rule of N -elimination is incorrect might seem slim. However, if we remem-
ber that it is only meaningful to test an implementation of the primitive recursion
combinator, we realize that there is a real danger of falsification.

Similarly, to give meaning explanations for Setzer’s Mahlo universe, autonomous
Mahlo universe, and Π3-reflecting universe involves explaining how judgements
containing them are to be tested. To justify the rules for these universes we must
explain why there is reason to believe that all such tests will succeed. Here the risk

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 13

of falsification is greater, although these universes are defined in such a way that it
should be possible to ”see” that they pass all tests. This is achieved by explaining
how they are ”built up from below” or how some measure decreases during com-
putation over them. Again, such explanations are made by humans and fallible. We
cannot say that these rules are constructively valid in an absolute sense, only that
we believe them to be constructively valid in the sense that we believe that they will
pass all tests. And when we say that they are ”predicatively valid” we mean that we
can provide a justification which suggests a ”well-founded” structure. Again, such
a justification is fallible.

The program testing point of view emphasizes that meaning explanations are
about what really happens! It is a process in space-time. An expression is some-
thing static (in space). Computation is something dynamic (in time). The formal
proposition a ⇒ v is a static mathematical representation of the real fact that a
will turn into v a little later after some computation is done. This relates to Martin-
Löf’s term ”syntactico-semantical”. Semantics is what happens during execution.
The meaning is the extension which is gradually unfolded as time goes by.

Coming back to the remark in the beginning of the introduction: the above dis-
cussion of validity and testing is rather obvious in the context of software testing. It
is something hardly worth saying. But when we present the same idea in the context
of intuitionistic type theory it nevertheless seems surprising.

Is mathematics an empirical science?

The relevance of a similar perspective has recently been argued by Miquel in his
essay The experimental effectiveness of mathematical proof [30][p 38]:

We can thus argue (against Popper) that mathematics fulfills the demarcation criterion that
makes mathematics an empirical science. The only specificity of mathematics is that the
universal empirical hypothesis underlying mathematics is (almost) never stated explicitly.

Pre-mathematical understanding of terms and computation rules

We now read the grammar and typing rules as concrete prescriptions for generating
well-formed terms of type theory. Contrast this to the meta-mathematical interpre-
tation in terms of the mathematical concept of an inductive definition. Similarly, the
computation rules should be read as concrete prescriptions for how to evaluate a
term to canonical form. Here this is a prescription for manual evaluation of a term,
and hopefully this prescription is sufficiently precise to reproduce the same value
each time. Alternatively, we can replace this prescription by an implementation, a
real machine which can perform the evaluation.

14 Authors Suppressed Due to Excessive Length

Testing categorical judgements

We shall now read the rules of the meaning explanations, which in the meta-
mathematical interpretation were made to inductively generate the realizability in-
terpretation, as a testing manual, a manual for falsification of conjectures, or bug-
finding. A tester only needs to push a button ”execute program” and inspect the
results. He or she is only a ”user” who does not need to know logic or program-
ming.

We first show how to test the categorical judgements, that is, judgements without
hypotheses.

How to test A type?

The relevant rules are

A⇒ N

A type

A⇒ I(B, b, c) b, c ∈ B
A type

A⇒ Π(B,C) y ∈ B ` C(y) type
A type

A⇒ U

A type

As before, we do not write out presupposed assumptions. For example, the assump-
tion that B type in the second and third rules is omitted. This is reflected in the
testing manual: we do not need to test presupposed assumptions, since their validity
is a consequence of a succesful test of another assumption.

To test A type we always begin by evaluating A to canonical form, where the
outermost form is a constructor.

• If it has canonical form N , then the test is successful.
• If it has canonical form I(B, b, c), then test b ∈ B and c ∈ B.
• If it has canonical form Π(B,C), then test B type and y ∈ B ` C(y) type.

The latter is a hypothetical judgement the testing of which will be explained
below.

• If it has canonical form U , then the test is successful.
• If it has a canonical form which does not begin with a type constructor then the

test fails.

If A has no canonical form, then the judgement is not valid either. In this case we
will wait forever – at no stage will we observe a canonical form. Nevertheless, if
we observe the intermediate stages of the computation of A we may for example
detect an infinite loop, and thus conclude that it will never terminate. However, this
requires higher level reasoning than the simple observations of canonical forms.

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 15

How to test A = A′?

The relevant rules are
A⇒ N A′ ⇒ N

A = A′

A⇒ I(B, b, c) A⇒ I(B′, b′, c′) B = B′ b = b′ ∈ B c = c′ ∈ B
A = A′

A⇒ Π(B,C) A′ ⇒ Π(B′, C ′) B = B′ y ∈ B ` C(y) = C ′(y)
A = A′

A⇒ U A′ ⇒ U

A = A′

To test A = A′ we always begin by evaluating A and A′ to canonical form, where
the outermost form is a constructor.

• If both have canonical form N , then the test is successful.
• If A⇒ I(B, b, c) and A′ ⇒ I(B′, b′, c′), then first test B = B′ and if success-

full test b = b′ ∈ B and then c = c′ ∈ B.
• If A ⇒ Π(B,C) and A′ ⇒ Π(B′, C ′), then test B = B′ and y ∈ B `
C(y) = C ′(y). The latter is a hypothetical judgement the testing of which will
be explained below.

• If both have canonical form U , then the test is successful.
• If A and A′ have canonical forms with different constructors or if one of them

does not begin with a type constructor, then the test fails.

If neither A nor A′ has canonical form, then the test fails, see the discussion of
non-termination above.

How to test a ∈ A?

The relevant rules are

A⇒ N a⇒ 0
a ∈ A

A⇒ N a⇒ s(b) b ∈ N
a ∈ A

A⇒ I(B, b, b′) a⇒ r b = b′ ∈ B
a ∈ A

A⇒ U a⇒ N

a ∈ A
A⇒ U a⇒ I(b, c, d) b ∈ U c, d ∈ b

a ∈ A
A⇒ U a⇒ Π(b, c) b ∈ U y ∈ b ` c(y) ∈ U

a ∈ A
The testing manual states that we begin by running both A and a! We need both
canonical forms in order to know which rule applies. The further premises of that
rule tell us what further tests we need to perform:

16 Authors Suppressed Due to Excessive Length

• If A⇒ N and a⇒ 0, then the test is successful.
• If A⇒ N and a⇒ s(b), then test whether b ∈ N .
• If A⇒ I(B, b, b′) and a⇒ r, then test whether b = b′ ∈ B
• If A⇒ U and a⇒ N , then the test is successful.
• If A⇒ U and a⇒ I(b, c, d), then test whether b ∈ U and c, d ∈ b.
• If A⇒ U and a⇒ Π(b, c), then test whether b ∈ U and y ∈ b ` c(y) ∈ U .
• If A and a have non-matching canonical forms, that is, combinations of canon-

ical forms for which there is no rule, then the test fails.

If neither A nor a has canonical form, then the test fails, see the discussion of non-
termination above.

How to test a = a′ ∈ A?

We leave it to the reader to write the testing manual for this judgement form.

Testing hypothetical judgements and function types

Let us now turn to hypothetical judgements:

Γ ` J

For example, how do we read the rule for Π-types

A⇒ Π(B,C) a⇒ λ(c) x ∈ B ` c(x) ∈ C(x)
a ∈ A

as a rule in our testing manual? What action should we take to test

x ∈ B ` c(x) ∈ C(x)?

In Constructive Mathematics and Computer Programming [26] and Intuitionistic
Type Theory [27] the meaning of this hypothetical judgement is that c(b) ∈ C(b)
provided b ∈ B (and also that c(b) = c(b′) ∈ C(b) provided b = b′ ∈ B). However,
this is not a satisfactory answer when we look at it from the testing point of view,
because we must ask ourselves how we obtained b ∈ B. What if it came from a
malicious hacker?

Instead we had better manufacture our own tests! To this end the rules for the
judgement form a ∈ A will be given a second reading: how to generate input
to hypothetical tests! This is a point which to my knowledge has not previously
been discussed in the context of Martin-Löf’s meaning explanations. On the other
hand, input generation is an important aspect of software testing, as in the testing

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 17

tools QuickCheck [8] and SmallCheck [36] for the functional programming language
Haskell.

Input generation

The relevant rules are those which define the meaning of the judgement a ∈ A. We
display those rules again but in order to suggest that they should now be read as
rules for instantiating variables, we replace the letters a, b, . . ., by x, y, For this
reason we also reorder the premises of some of the rules.

A⇒ N x⇒ 0
x ∈ A

A⇒ N x⇒ s(y) y ∈ N
x ∈ A

A⇒ I(B, b, b′) b = b′ ∈ B x⇒ r

x ∈ A
A⇒ Π(B,C) x⇒ λ(z) y ∈ B ` z(y) ∈ C(y)

x ∈ A
A⇒ U x⇒ N

x ∈ A
A⇒ U x⇒ I(y, z, z′) y ∈ U z, z′ ∈ y

x ∈ A
A⇒ U x⇒ Π(y, z) y ∈ U t ∈ b ` z(t) ∈ U

x ∈ A
If we want to generate x ∈ A, we begin by computing the canonical form of A:

• If it has canonical form N , then either generate x = 0 or generate x = s(y) and
then generate y ∈ N .

• If it has canonical form I(B, b, b′), then we need to test whether b = b′ ∈ B. If
so generate x = r. If not, there is no element to generate. Note that this requires
us to decide in finite time whether b = b′ ∈ B. (This test presupposes the test of
B type, if this fails, then the whole judgement, in which x ∈ A is a hypothesis,
fails.)

• If it has canonical form Π(B,C), then generate x = λ(z) where z is a function
such that y ∈ B ` z(y) ∈ C(y). However, we do not generate function terms z
but input-output pairs, as we shall explain below.

• If it has canonical form U , then either generate x = N , or generate x =
I(y, z, z′) and then generate y ∈ U, z, z′ ∈ y, or generate x = Π(y, z), and
then generate y ∈ U and t ∈ y ` z(t) ∈ U . As above, we do not generate
function terms z, but input-output pairs.

A question arises: should we fully instantiated a variable x to a closed expression
before computing the expression which it is part of, or should we have a lazy in-
stantiation procedure, where we compute with open expressions, and only instanti-
ate x when it blocks further computation, for example, when we get an expression
R(x, d, e) which cannot be computed further unless we know the canonical form

18 Authors Suppressed Due to Excessive Length

of x. As we shall see it will be important to evaluate open expressions, when we
generate functional input.

Functional input generation

To simplify the discussion, let us consider the generation of numerical functions
only. How do we read the rule

x⇒ λ(z) y ∈ N ` z(y) ∈ N
x ∈ N → N

as a rule for generating x? It states that we generate x = λ(z) and then generate z so
that z(y) ∈ N for y ∈ N . Now, it would be wrong to try to read y ∈ N ` z(y) ∈ N
as syntactic derivability in some formal system for Martin-Löf type theory. Instead
we want testing to be ”local”, that is, not depending on the formal system as a whole.
We want the ”semantic” notion, not a syntactic one!

This observation is relevant to the question of the impredicativity of types of
functionals. A functional g ∈ (N → N)→ N , is an expression such that g(f) ∈ N
for all f ∈ N → N , including those f which contain g. This may seem circular if
we take a syntactic point of view (generating function terms in a given type system),
but not the semantic view (generating input-output pairs) in the sense to follow. It
will follow that the justification of types of functionals is predicative in the testing
interpretation.

When generating input-output pairs, it is useful to recall the lessons of domain
theory (the continuity principle) and game semantics. What we need to do is to
generate as many pairs (m,n) with m,n ∈ N as needed! Consider for example
testing

x ∈ N → N ` b(x) ∈ N

• We begin testing b(x) ∈ N without knowing x. This means we try to compute
the canonical form of b(x).

• At some stage the computation may get stuck because it does not know x. For
example, R(Ap(x, 0), d, e) needs to know the canonical form of Ap(x, 0).

• So we generate an input-output pair (0, y) for the function x, where the output
y ∈ N will be generated as described above. Now the computation can go on,
until we either arrive at the canonical form or get stuck again.

• Etc.

We will not here provide a complete description of the generation of function input
and leave it to future work on game semantics for dependent types.

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 19

Are function identity types meaningful?

As we saw above we do not provide testing semantics for function identity types.
We are led to restrict the formation rule for the types I(B, b, b′) to cases where the
judgement b = b′ ∈ B is decidable (under the assumption that b, b′ ∈ B). This is
the case if B = N or if B is another algebraic data types, but it is also the case
B = I(N, c, c′), for example. Compare Hedberg’s coherence theorem [20], which
is valid only for decidable identity types.

Although we do not justify types such as I(N → N, f, g) as a primitive identity
type, we can of course still define it as (Πx ∈ N)I(N,Ap(f, x), Ap(g, x), express-
ing the extensional equality of f, g ∈ N → N . This type can be tested by following
the manual for testing Π-types and I-types over the type N .

1.5 Impredicative type theory

We have explained how the meaning explanations for intuitionistic type theory are
about testing judgements by running programs interactively, that is, by generating
input, and observing results. We repeat the process for several inputs. In order to test
higher order functions we need to consider repeated interactive testing in the style
of game semantics.

Can we provide similar meaning explanations for other theories? That is, can we
describe the meaning of the judgements of the theory by running programs inter-
actively, generating input, observing results, and thereby corroborating or falsifying
results? Is this what constructive validity is all about?

In this section we shall ask ourselves what such meaning explanations for im-
predicative type theory would be like. We would like to write testing manuals for
impredicative type theories such as

• System F of Girard [15]?
• The Calculus of Constructions of Coquand and Huet [10]?
• The Calculus of Inductive Constructions of Coquand and Paulin [32], the theory

of the Coq-system [7]?

These systems have to my knowledge only been analyzed meta-mathematically. For
example, Girard [15] showed that System F is strongly normalizing. In this proof he
relied on impredicative aspects of his meta-language: classical set theory.

We shall now ask ourselves what a pre-mathematical testing semantics would be
like for these systems? Note that they have real users, especially the last one (the
Coq-users). What do these users expect when they ”run” their programs?

Let us here consider Coquand and Huet’s pure Calculus of Constructions [10].
This theory has an impredicative universeU (usually called Prop, the universe of im-
predicative propositions). It is impredicative since we can form the cartesian product
of a family of small types indexed by an arbitrary (not necessary small) type:

20 Authors Suppressed Due to Excessive Length

A type x ∈ A ` B ∈ U
(Πx ∈ A)B ∈ U

In particular we can put A = U and define a new element of U by quantification
over all elements in U including the one we are defining.

Contrast this to the type of small types in Martin-Löf type theory. This is pred-
icative: we can only form a family of small types indexed by an arbitrary small
type:

A ∈ U x ∈ A ` B ∈ U
(Πx ∈ A)B ∈ U

Unlike in Martin-Löf type theory,we can thus define the type of natural numbers
as the type of Church numerals in the Calculus of Construction as follows:

N = (ΠX ∈ U)X → (X → X)→ X ∈ U

We can also define the type of identity proofs over an arbitrary type (Leibniz equal-
ity):

I(A, a, b) = (ΠX ∈ A→ U)X(a)→ X(b) ∈ U

Since they can be encoded, the pure Calculus of Constructions does not have prim-
itive types N and I(A, a, b). This coding can be done for a very general class of
inductive types. However, some aspects of this encoding are unsatisfactory. As a
consequence Coquand and Paulin decided that primitive inductive types and fam-
ilies should be added. The resulting theory is the Calculus of Inductive Construc-
tions, the core of the Coq system [7].

A testing manual for the Calculus of Constructions based on the
evaluation of closed expressions

As we saw above, there is great similarity between Martin-Löf type theory and the
Calculus of Constructions, except that the latter

• only has typesU and (Πx ∈ B)C and no primitive data typesN, I(A, a, b), . . .;
• has U which is closed under impredicative Π .

Let us first try to make a minimal modification of the testing manual for Martin-
Löf type theory to accommodate the types of the impredicative universe U . The
difference appears in the test for elements of U . The only rule is:

A⇒ U a⇒ (Πx ∈ B)C B type x ∈ B ` C ∈ U
a ∈ A

Hence, there is no base case! It is not clear how the testing procedure would ever
stop.

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 21

Testing based on normalization of open expressions,

Martin-Löf type theory is a functional programming language. A user will run a
program in much the same way as a user of an ordinary lazy functional language
such as Haskell, that is, the user will evaluate closed expressions to canonical form.
(When we base Martin-Löf type theory on the theory expression this corresponds to
evaluating closed expressions of arity ι to canonical form.)

However, a user of the Calculus of Constructions will instead evaluate programs
to full normal form, for example when computing with Church numerals. To obtain
this full normal form we need to evaluate expressions under λ, that is, we need
to evaluate open expressions. We will therefore consider a testing manual for the
Calculus of Constructions based on the evaluation of open expressions.

Evaluation of open expressions in Martin-Löf type theory

Incidentally, Martin-Löf has recently considered introducing meaning explanations
based on the evaluation of open expressions for intensional intuitionistic type theory.
The abstract of his talk Evaluation of open expressions (given at the Symposium on
Programming, Types, and Languages in Gothenburg in March 2009) states his aim
as follows:

The informal, or intuitive, semantics of type theory makes it evident that closed expressions
of ground type evaluate to head normal form, whereas metamathematics, ..., is currently
needed to show that expressions which are open or of higher type can be reduced to normal
form. The question to be discussed is: Would it be possible to modify the informal semantics
in such a way that it becomes evident that all expressions, also those that are open or of
higher type, can be reduced to full normal form?

The aim is to provide meaning explanations for intensional type theory which do not
validate the rule of equality reflection, and which match the type-checking algorithm
for intensional type theory.

Testing manual for the Calculus of Constructions

The terms are
a ::= U | (Πx ∈ a)a | (λx)a | a(a) |x

Note that this is the syntax of the ordinary untyped lambda calculus extended with
U and Π . We do not employ the theory of expressions here. These terms will be
evaluated to open weak head normal forms:

v ::= U | (Πx ∈ a)a | (λx)a |x(a, . . . , a)

22 Authors Suppressed Due to Excessive Length

where we use the abbreviation x(a1, . . . , an) = x(a1) · · · (an). Note that a in the
above productions of values range over arbitrary terms.

There is only one computation rule

c⇒ (λx)b b[a/x]⇒ v

c(a)⇒ v

in addition to the rule that a canonical term has itself as value

v ⇒ v

To test the hypothetical judgement Γ ` A type we evaluate the open expression
A. We need to consider three possibilities:

A⇒ (Πy ∈ B)C Γ ` B type Γ, y ∈ B ` C type

Γ ` A type

A⇒ U

Γ ` A type

A⇒ x(b1, . . . , bn) Γ ` b1 ∈ B1 · · · Γ ` bn ∈ Bn

Γ ` A type

In the last rule the type of x in Γ is D ⇒ (Πy1 : B1) · · · (Πyn : Bn)U .
To test the hypothetical judgement Γ ` a ∈ A we evaluate the open expressions

a and A:

A⇒ U a⇒ (Πy ∈ B)C Γ ` B type Γ, y ∈ B ` C ∈ U
Γ ` a ∈ A

A⇒ (Πy ∈ B)C a⇒ (λy)c Γ, y ∈ B ` c ∈ C
Γ ` a ∈ A

a⇒ x(b1, . . . , bn) Γ ` b1 ∈ B1 · · · Γ ` bn ∈ Bn Γ ` C[b1/y1, . . . , bn/yn] = A

Γ ` a ∈ A
In the last rule the type of x in Γ is D ⇒ (Πy1 : B1) · · · (Πyn : Bn)C.

We leave it to the reader to write the testing manual for the hypothetical judge-
ments Γ ` A = A′ and Γ ` a = a′ ∈ A.

Note that there is no need for input generation. The meaning of hypothetical
judgements is defined directly in terms of evaluation to open canonical forms. Note
that this testing manual is nothing but the type-checking algorithm for the Calcu-
lus of Constructions! The correctness of the Calculus of Constructions thus simply
amounts to the termination with appropriate canonical forms of the type-checking
algorithm. There is circumstantial evidence that this algorithm is correct since it has
been corroborated many times. However, there is not yet a ”well-founded” expla-
nation of why this is the case. Nevertheless, many, but not all, researchers express
certainty that it will indeed always terminate correctly.

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 23

1.6 Conclusion

To conclude, I will discuss some important distinctions.

Pre-mathematical versus meta-mathematical semantics

I have emphasized the difference between on the one hand (formal) meta-mathematical
semantics, understood as the translation into another mathematical language (usu-
ally set theory) the meaningfulness of which is taken for granted, and on the other
hand, pre-mathematical semantics, where the meaning is explained in terms of real
world interactions with and observations of expressions and their computations.
This difference is crucial, although I would not like to claim that it is unproblematic.
Formality may not be a requirement of meta-mathematics in the usual sense, see for
example the discussion by Kleene [21].

I believe pre-mathematical and meta-mathematical aspects are complementary.
Meta-mathematical semantics can provide further insight into the pre-mathematical
situation. But meta-mathematical semantics may also introduce extraneous issues
which are not relevant for the pre-mathematical understanding. For example, it is
not clear that the meta-mathematical work of turning the meaning explanations into
a positive inductive definition in set theory has much foundational significance.

Game semantics versus realizability semantics

The meta-mathematical semantics in Section 3 does not match the pre-mathematical
semantics in Section 4. This is because the realizability semantics is not sufficiently
fine-grained to adequately capture the details of the testing manual in Section 4. It
would be interesting to provide a meta-mathematical treatment of the testing manual
which captures more such details, perhaps in the style of game semantics.

Input generation versus output computation

Martin-Löf’s meaning explanations for intuitionistic type theory are based on the
evaluation of expressions to canonical form, that is, they are based on the compu-
tation of output. One of the key ideas of this paper is that a dual discussion about
methods for input generation is needed for meaning explanations of hypothetical
judgement.

24 Authors Suppressed Due to Excessive Length

Judgement versus proposition

It is important to note that we test judgements and not propositions in type theory.

Molecular versus holistic view of meaning

Another important facet of the present notion of meaning is that it is molecular
in the sense that the meaning of a judgement only depends on the meaning of its
constituent parts. This is to be contrasted to the holistic view, where meaning de-
pends on the whole formal system which the judgement is part of. Consistency is an
example of a holistic property.

Validated by testing versus made evident by thinking

Prior discussions of meaning explanations have focussed on their capacity to make
the rules of inference evident. However, to be evident is a subjective notion: some-
thing is evident to somebody. Here we emphasize that judgements can also be val-
idated by testing, and that this is an objective notion. The result of the test does
not depend on who executed the test. For further discussion of epistemological vs
ontological aspects of truth and proof in intuitionistic logic the reader is referred to
Prawitz’ article in this volume [34].

Primary school computation of closed expressions versus
secondary school computation of open expressions

Martin-Löf style meaning explanations are based on the computation of closed ex-
pressions. This is after all the primary notion of computation; normalization of open
expressions is a secondary notion of computation, although it may be relevant for
meaning explanations of impredicative type theory.

Meaning as testing and meaning as use

The notion of a user occupies a central stage in the testing view of meaning expla-
nations. It seems to fit well into Wittgenstein’s ”meaning-as-use” paradigm which
has been further developed by Dummett [11] and Prawitz [35] in connection with
the philosophical basis of intuitionism.

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 25

Some historical notes

This is not the place to trace the historical origin of the idea that testing is funda-
mental for the meaning of logic. I would just like to mention that Gödel’s Dialectica
interpretation [16] is a proof as programs interpretation where the correctness is jus-
tified in terms of tests. However, note that the Dialectica interpretation differs from
Kleene realizability. The game interpretation of logic goes back to Lorenzen [23]. It
seems that Lorenzen’s dialogical semantics for intuitionistic predicate logic would
be closely related to a potential game interpretation of intuitionistic type theory.

Acknowlegement

I would like to express my deep gratitude to Per Martin-Löf for his profound ideas
and for many discussions and much help over the years. The present paper owes a
lot to these discussionson, for example, on the nature of the meaning explanations,
on the distinction between the pre-mathematical and the meta-mathematical, and on
the meaning of induction.

I would also like to thank Erik Palmgren and an anonymous referee for use-
ful feedback on a preliminary version of this paper. The paper is based on a talk
given several times. I am grateful for interesting comments by many people who
attended these talks, for example, Andreas Abel, Peter Aczel, Pierre Clairambault,
Thierry Coquand, Peter Hancock, Bengt Nordström, Andrew Pitts, Gordon Plotkin,
Michael Rathjen, Dag Prawitz, Peter Schroeder-Heister, Helmut Schwichtenberg,
Anton Setzer, and Sören Stenlund.

References

1. P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathe-
matical Logic, pages 739–782. North-Holland, 1977.

2. P. Aczel. The strength of Martin-Löf’s type theory with one universe. In S. Miettinen and J.
Väänanen, editors, Proceedings of the Symposium on Mathematical Logic (Oulu 1974), pages
1–32, 1977. Report No 2 of Dept. Philosophy, University of Helsinki.

3. P. Aczel. Frege Structures and the Notions of Proposition, Truth, and Set, pages 31–59. North-
Holland, 1980.

4. S. F. Allen. A non-type-theoretic definition of Martin-Löf’s types. In Proceedings of Second
IEEE Symposium on Logic in Computer Science, pages 215–224, 1987.

5. S. F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Cor-
nell University, 1987.

6. M. Beeson. Recursive models for constructive set theories. Annals of Mathematical Logic,
23, 1982.

7. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2004.

26 Authors Suppressed Due to Excessive Length

8. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell
programs. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming, volume 35.9 of ACM SIGPLAN Notices, pages 268–279. ACM Press, Septem-
ber 2000.

9. T. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic Logic,
60(1):325–337, 1995.

10. T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95–
120, 1988.

11. M. Dummett. The philosophical basis of intuitionistic logic. In H. E. Rose and J. C. Shep-
herdson, editors, Logic Colloquium ’73, pages 5 – 40. North Holland, 1973.

12. P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type the-
ory. Journal of Symbolic Logic, 65(2):525–549, June 2000.

13. P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In J.-
Y. Girard, editor, Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in
Computer Science, pages 129–146. Springer, April 1999.

14. P. Dybjer and A. Setzer. Indexed induction-recursion. Journal of Logic and Algebraic Pro-
gramming, 2006.

15. J.-Y. Girard. Une extension de l’interpretation de Gödel à l’analyse, et son application à
l’èlimination des coupures dans l’analyse et la théorie des types. In J. E. Fenstad, editor,
Proceedings 2nd Scandinavian Logic Symposium, pages 63–92. North Holland, 1971.

16. K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finites Standpunktes. Dialec-
tica, pages 280–287, 1958.

17. S. Hayashi. PA/LCM home page. http://www.shayashi.jp/PALCM/.
18. S. Hayashi and H. Nakano. PX: a Computational Logic. MIT Press, 1989.
19. S. Hayashi, R. Sumitomo, and K. Shii. Towards the animation of proofs - testing proofs by

examples. Theoretical Computer Science, 272(1-2):177–195, 2002.
20. M. Hedberg. A coherence theorem for Martin-Löf’s type theory. Journal of Functional Pro-

gramming, 8(4):413–436, 1998.
21. S. C. Kleene. Introduction to Meta-Mathematics. North-Holland, 1952.
22. D. Knuth. Notes on the van Emde Boas construction of priority deques: An instructive

use of recursion, March 1977. Memo sent to Peter van Emde Boas, see http://www-cs-
faculty.stanford.edu/ uno/faq.html.

23. P. Lorenzen and K. Lorenz. Dialogische Logik. Wissenschaftliche Buchgesellschaft, Darm-
stadt, 1978.

24. P. Martin-Löf. A theory of types. Preprint, Stockholm University, 1971.
25. P. Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.

Shepherdson, editors, Logic Colloquium ‘73, pages 73–118. North Holland, 1975.
26. P. Martin-Löf. Constructive mathematics and computer programming. In Logic, Methodology

and Philosophy of Science, VI, 1979, pages 153–175. North-Holland, 1982.
27. P. Martin-Löf. Intuitionistic Type Theory: Notes by Giovanni Sambin of a Series of Lectures

Given in Padua, June 1980. Bibliopolis, 1984.
28. P. Martin-Löf. On the meaning of the logical constants and the justifications of the logical

laws. Nordic Journal of Philosophical Logic, 1(1), 1996.
29. P. Martin-Löf. An intuitionistic theory of types. In G. Sambin and J. Smith, editors, Twenty-

Five Years of Constructive Type Theory. Oxford University Press, 1998. Reprinted version of
an unpublished report from 1972.

30. A. Miquel. The reasonable effectiveness of mathematical proof. In M. Quatrini and S. Tronon,
editors, Anachronismes logiques, Logique, Langage, Sciences, Philosophie. Publications de la
Sorbonne, 2010. To appear.

31. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s Type Theory - an
Introduction. Oxford University Press, 1989.

32. C. Paulin-Mohring. Inductive definitions in the system Coq - rules and properties. In Pro-
ceedings Typed λ-Calculus and Applications, pages 328–245. Springer-Verlag, LNCS, March
1993.

1 Program Testing and the Meaning Explanations of Intuitionistic Type Theory 27

33. K. Popper. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge,
1963.

34. D. Prawitz. Truth and proof in intuitionism. This volume.
35. D. Prawitz. Meaning and proofs: on the conflict between classical and intuitionistic logic.

Theoria, 43:11–40, 1977.
36. C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy SmallCheck - automatic

exhaustive testing for small values. In Proceedings of the first ACM SIGPLAN symposium on
Haskell, pages 37–48, 2008.

37. A. Setzer. Extending Martin-Löf type theory by one Mahlo universe. Archive for Mathemati-
cal Logic, 39(3):155–181, 2000.

38. J. Smith. An interpretation of Martin-Löf’s type theory in a type-free theory of propositions.
Journal of Symbolic Logic, 49(3):730–753, 1984.

