An ad-hoc and monolithic method for ensuring that corecursive definitions are productive

> Nils Anders Danielsson Nottingham AIM 9, 2008-11-27

Hamming numbers (almost)

An ordered stream of all products of 2 and 3:

hamming = 1 : merge (map (2 *) hamming) (map (3 *) hamming)

- Productive?
- How can we get Agda to believe that it is?

One method

- 1. Define problem-specific language.
- 2. Implement provably productive interpreter.

The implementation can take advantage of the host language's productivity checker.

Disclaimer: Hopefully this method will soon become obsolete.

... because it is awkward to use in practice.

However:

- Interesting to see what can be done without adding new features.
- Flexible.

How does it work?

Hamming numbers again

codata Stream (A : Set) : Set where $\neg \neg$: A \rightarrow Stream A \rightarrow Stream A hamming : Stream \mathbb{N} hamming ~ 1 ~ merge (map (_*_ 2) hamming) (map (_*_ 3) hamming)

- ► Not guarded by constructors.
- But what if *merge* and *map* were constructors?

Ad-hoc programming language

mutual

codata WHNF : Set \rightarrow Set1 where $_\prec_$: forall $\{A\} \rightarrow A \rightarrow Prog (Stream A) \rightarrow$ WHNF (Stream A) data Prog : Set \rightarrow Set1 where

 $\downarrow_{-} : \text{ forall } \{A\} \rightarrow WHNF A \rightarrow Prog A \\ map : \text{ forall } \{AB\} \rightarrow (A \rightarrow B) \rightarrow \\ Prog (Stream A) \rightarrow Prog (Stream B) \\ merge : Prog (Stream N) \rightarrow \\ Prog (Stream N) \rightarrow \\ Prog (Stream N) \rightarrow \\ Prog (Stream N) \end{pmatrix}$

Guarded definition

 $\begin{array}{l} \textit{hamming} : \textit{Prog} (\textit{Stream} \mathbb{N}) \\ \textit{hamming} \sim \downarrow 1 \prec \textit{merge} (\textit{map} (_*_ 2) \textit{hamming}) \\ (\textit{map} (_*_ 3) \textit{hamming}) \end{array}$

- Guarded by constructors.
- $_\prec_$ is a coconstructor.
- ► Note: Corecursive definition of inductive value.

Interpreter

1. One-step evaluator:

what : forall $\{A\} \rightarrow Prog A \rightarrow WHNF A$

Recursive: WHNF always reached in finite time.

2. Full evaluation:

value : forall $\{A\} \rightarrow WHNF A \rightarrow A$ value $(x \prec prog) \sim x \prec value (whnf prog)$ [-]] : forall $\{A\} \rightarrow Prog A \rightarrow A$ [[prog]] = value (whnf prog)

One-step evaluator

Structurally recursive:

whnf : forall $\{A\} \rightarrow Prog A \rightarrow WHNF A$ whnf $(\downarrow w) = w$ whnf (map f xs) with whnf xs ... $\mid x \prec xs' = f x \prec map f xs'$ whnf (merge xs ys) with whnf xs \mid whnf ys ... $\mid x \prec xs' \mid y \prec ys'$ with cmp x y ... $\mid t = x \prec merge xs' ys$... $\mid eq = x \prec merge xs' ys'$... $\mid gt = y \prec merge xs ys'$

Uses guarded corecursion.

ham : Stream \mathbb{N} ham = [hamming]

Perhaps one should also prove that *ham* satisfies its intended defining equation.

What happens with unproductive code?

$\mathsf{Productivity} \Rightarrow \mathsf{termination}$

Productivity problems are sometimes turned into termination problems:

 $\begin{array}{l} map_{2} : \textbf{forall} \{A B\} \rightarrow (A \rightarrow B) \rightarrow \\ Prog (Stream A) \rightarrow Prog (Stream B) \\ map_{2} f (x \prec x' \prec xs'') \sim f x \prec f x' \prec map_{2} f xs'' \end{array}$

hamming : Stream \mathbb{N} hamming $\sim 1 \prec$ merge (map₂ (_*_ 2) hamming) (map₂ (_*_ 3) hamming)

Productivity \Rightarrow termination

Productivity problems are sometimes turned into termination problems:

data $Prog : Set \rightarrow Set1$ where $map_2 :$ forall $\{A B\} \rightarrow (A \rightarrow B) \rightarrow$ $Prog (Stream A) \rightarrow Prog (Stream B)$

what $(\operatorname{map}_2 f xs)$ with what xs... $| x \prec xs'$ with what xs'... $| x' \prec xs'' = f x \prec (\downarrow f x' \prec \operatorname{map}_2 f xs'')$

Flexibility

It is possible to handle map₂:

mutual data $WHNF_2$: Set \rightarrow Set1 where $\langle -, - \rangle \prec_-$: forall $\{A\} \rightarrow$ $A \rightarrow A \rightarrow Prog_2$ (Stream A) \rightarrow $WHNF_2$ (Stream A)

How far can this be taken?

Flexibility

It is possible to handle map₂:

data
$$Prog_2$$
 : Set \rightarrow Set1 where
 \downarrow_- : forall $\{A\} \rightarrow$
 $WHNF_2 A \rightarrow Prog_2 A$
map₂ : forall $\{A B\} \rightarrow$
 $(A \rightarrow B) \rightarrow$
 $Prog_2$ (Stream A) \rightarrow $Prog_2$ (Stream B)

It is possible to handle map₂:

 $\begin{array}{l} whnf_2 : \text{ forall } \{A\} \rightarrow Prog_2 A \rightarrow WHNF_2 A \\ whnf_2 (\downarrow w) = w \\ whnf_2 (map_2 f xs) \text{ with } whnf_2 xs \\ \dots \mid \langle x, x' \rangle \prec xs'' = \langle f x, f x' \rangle \prec map_2 f xs'' \end{array}$

Flexibility

- Can be generalised from 2 to larger depths.
- Functions like *tail* can be handled. (But a coercion constructor may be necessary.)
- Can handle other types as well.
 - Breadth-first labelling of potentially infinite trees.

Equality proofs also possible

Unique fixed-points \Rightarrow guarded coinduction:

iterate-fusion h f₁ f₂ hyp x ~ map h (iterate f₁ x) $\equiv \langle \equiv -\text{refl} \rangle$ $\downarrow h x \prec \text{map } h$ (iterate f₁ (f₁ x)) $\cong \langle \downarrow \equiv -\text{refl} \prec \text{iterate-fusion } h f_1 f_2 \text{ hyp } (f_1 x) \rangle$ $\downarrow h x \prec \text{iterate } f_2 (h (f_1 x))$ $\equiv \langle \equiv -\text{cong} (\backslash y \rightarrow [\![\downarrow h x \prec \text{iterate } f_2 y]\!])$ $(hyp x) \rangle$ $\downarrow h x \prec \text{iterate } f_2 (f_2 (h x))$ $\equiv \langle \equiv -\text{refl} \rangle$ iterate $f_2 (h x)$ \Box

What about the drawbacks?

Drawbacks

- Ad-hoc.
- Monolithic.
- Awkward.
- Limited support for higher-order functions: $(Prog \ A \rightarrow Prog \ B) \rightarrow \dots$ is negative.
- ► Inefficient: sharing lost.

Sharing lost

Conclusion

 $\stackrel{-,-}{\longrightarrow} : \text{ forall } \{A B\} \rightarrow WHNF A \rightarrow WHNF B \rightarrow WHNF (A \times B)$

fst : forall $\{A B\} \rightarrow Prog (A \times B) \rightarrow Prog A$

whnf (fst prog) with whnf prog ... | (x,y) = x

 Can perhaps be worked around by implementing a call-by-need interpreter...

- ▶ Fun to play around with...
- ... but for real work we need something more convenient.
- What? (Andreas Abel might add to the discussion tomorrow.)