Internal version of the uniform Kan filling condition

Introduction

We present a notion of fibration of cubical sets. This is formulated in term of the notion of *partial* element, which has a natural semantics in a presheaf model. We define a partial element to be connected if it can be extended to a total element. (The justification of this terminology is that this would generalize in the present framework the notion of two points being connected by a path.) To be fibrant can then be defined internally as the fact that if a partial path is connected at 0 then it also is connected at 1.

Cubical sets

Base category

Let C the following category. The objects are finite sets I, J, \ldots . A morphism $\mathsf{Hom}(J, I)$ is a map $I \to \mathsf{dM}(J)$ where $\mathsf{dM}(J)$ is the free de Morgan algebra on J. We write $f: J \to I$ for $f \in \mathsf{Hom}(J, I)$. We write $1_I: I \to I$ the identity map of I. If $f: J \to I$ and $g: K \to J$ we write $fg: K \to I$ their composition.

A presheaf X on C can be described as a family of sets X(I) together with restriction maps $X(I) \to X(J)$, $u \mapsto uf$ for $f: J \to I$, satisfying $u1_I = u$ and (uf)g = u(fg). (This notation for the restriction map is motivated by the canonical isomorphism between X(I) and $I \to X$, where I is the presheaf represented by I.)

The presheaf \mathbb{I} is defined by $\mathbb{I}(J) = \mathsf{dM}(J)$. We can think of an element of $\mathsf{dM}(I)$ as a lattice formula ψ on atoms i, 1 - i for i in I. If $f: J \to I$, and ψ is in $\mathsf{dM}(I)$, then the restriction operation ψf can be thought as a substitution: we replace the atom i by f(i) in the formula ψ .

A sieve on I is a collection L of maps of codomain I such that $fg \in L$ whenever $f: J \to I$ is in Land $g: K \to J$. If L is a sieve on I then we let Lf be the sieve on J of all maps $g: K \to J$ such that fg is in L. We define in this way a presheaf Ω , taking $\Omega(I)$ be the set of sieves on I. Each element ψ in $\mathsf{dM}(I)$ determines the sieve of $f: J \to I$ such that $\psi f = 1$. This defines a natural transformation $\mathbb{I} \to \Omega$.

In each dM(I) there is a greatest element < 1, the disjunction of all i and 1 - i for i in I. The sieve associated to this element is the boundary of I.

A *cubical set* is a presheaf on C.

Partial elements and connectedness

 Ω is internally the set of truth-values. To each element p in Ω we can associate a subobject [p] of the constant cubical set 1. A *partial* element of a cubical set X can be defined as a pair p, u where p is in Ω and u is a map $[p] \to X$. The element p is called the *extent* of the partial element p, u. (Alternatively, a partial element of X can be defined as a subsingleton of X.)

We think of \mathbb{I} as a formal representation of the real interval [0, 1]. It has a structure of a de Morgan algebra. The map $\mathbb{I} \to \Omega$ can be described internally as the map $i \mapsto i = 1$, which associates to an element *i* the truth-value i = 1. Using the disjunction property of free de Morgan algebra (which results from the conjunctive normal form representation of formulae), we see that we have

$$(i \land j = 1) = (i = 1) \land (j = 1)$$
 $(i \lor j = 1) = (i = 1) \lor (j = 1)$

and the map $\mathbb{I} \to \Omega$, $i \mapsto i = 1$ is an injective lattice map. We identify ψ with the truth-value $\psi = 1$.

Lemma 0.1 If we have $\psi : \mathbb{I} \to \mathbb{I}$ we can define $\forall i.\psi(i)$ in \mathbb{I} such that

$$(1 = \forall i.\psi(i)) = \forall i : \mathbb{I}.(1 = \psi(i))$$

Proof. This corresponds to a map $dM(I, i) \to dM(I)$ natural in I. We let $(\forall i.\psi(i))(I)$ be the disjunction of the conjunctions not mentionning i in the disjunctive normal form of $\psi(i)$ in dM(I, i).

If ψ is an element in \mathbb{I} and u is a partial element of X of extent ψ , we write $X[\psi \mapsto u]$ the subset of X of element in X that extends u. An element of this set is a witness that u is *connected*.

Fibrations

A family of sets $A\rho$ for ρ in Γ is a *fibration* iff we have an operation which takes as argument a path γ in $\Gamma^{\mathbb{I}}$, an element ψ in \mathbb{I} , a partial section u(i) of $A\gamma(i)$ of extent ψ , an element in $A\gamma(0)[\psi \mapsto u(0)]$, and produces an element in $A\gamma(1)[\psi \mapsto u(1)]$. This operation is thus an element of

 $(\gamma:\Gamma^{\mathbb{I}}) \ (\psi:\mathbb{I}) \ (u:((i:\mathbb{I})\to A\gamma(i))^{[\psi]}) \ \to A\gamma(0)[\psi\mapsto u(0)]\to A\gamma(1)[\psi\mapsto u(1)]$

Lemma 0.2 If we have a composition operation

$$\mathsf{comp}: (\gamma:\Gamma^{\mathbb{I}}) \ (\psi:\mathbb{I}) \ (u:((i:\mathbb{I})\to A\gamma(i))^{[\psi]}) \ \to A\gamma(0)[\psi\mapsto u(0)] \to A\gamma(1)[\psi\mapsto u(1)]$$

then we have a filling operation: given γ in $\Gamma^{\mathbb{I}}$, ψ in : \mathbb{I} , u in $((i : \mathbb{I}) \to A\gamma(i))^{[\psi]}$ and a_0 in $A\gamma(0)[\psi \mapsto u(0)]$, we can find a section in

$$(i:\mathbb{I}) \to A\gamma(i)[\psi \mapsto u(i), (1-i) \mapsto a_0]$$

Proof. We define

fill
$$\gamma \ \psi \ u \ a_0 \ i = \operatorname{comp} \gamma \ (\psi \lor (1-i)) \ v \ a_0$$

where v is the partial element in $((j : \mathbb{I}) \to A\gamma(j))^{[\psi \lor (1-i)]}$ which is equal to $\lambda j.u(i \land j)$ on $[\psi]$ and $\lambda j.a_0$ on [i = 0]. This is well-defined since $u(i \land j) = u(0) = a_0$ on $[\psi] \cap [i = 0]$.

Taking as a special case 0 for ψ , we see that if $\Gamma \vdash A$ is a fibration then we have the *path lifting* property: we have an operation taking as argument γ in $\Gamma^{\mathbb{I}}$ and a_0 in $A\gamma(0)$ and producing a section $a(i) : A\gamma(i)$ such that $a(0) = a_0$.

We say that a cubical set A is *fibrant* if it defines a fibration over the constant cubical set 1. Explicitly, it means that we have an operation taking as argument an element ψ in \mathbb{I} , a partial path u in $A^{\mathbb{I}}$ of extent ψ and producing a map $A[\psi \mapsto u(0)] \to A[\psi \mapsto u(1)]$. The previous Lemma shows that we then have another operation producing an element in

$$(a_0: A[\psi \mapsto u(0)]) \to (i: \mathbb{I}) \to A[\psi \mapsto u(i), (1-i) \mapsto a_0]$$

Model of type theory

Proposition 0.3 If we have fibrations $\Gamma \vdash A$ and $\Gamma, x : A \vdash B$ then $\Gamma \vdash (x : A) \rightarrow B$ is a fibration.

Proof. Let us write $C = (x : A) \to B$. Given γ in $\Gamma^{\mathbb{I}}$ and ψ in \mathbb{I} and μ in $((i : \mathbb{I}) \to C\gamma(i))^{[\psi]}$ and λ_0 in $C\gamma(0)[\psi \mapsto \mu(0)]$, we define $\lambda_1 : C\gamma(1)[\psi \mapsto \mu(1)]$ by taking

$$\lambda_1 \ a_1 = \mathsf{comp} \ (\lambda i.(\gamma(i), a(i))) \ \psi \ (\psi \mapsto \mu(i) \ a(i)) \ (\lambda_0 \ a(0))$$

where $a(i) : A\gamma(i)$ satisfying $a(1) = a_1$ is defined using the path lifting property of $\Gamma \vdash A$.

We have a similar definition for the dependent sum $\Gamma \vdash (x : A, B)$.

If $\Gamma \vdash A$ and we have two sections $\Gamma \vdash u : A$ and $\Gamma \vdash v : A$ then we define $\Gamma \vdash \mathsf{Id} A u v$ by taking $(\mathsf{Id} A u v)\rho$ to be the subset of path p in $(A\rho)^{\mathbb{I}}$ such that $p(0) = u\rho$ and $p(1) = v\rho$.

Proposition 0.4 If $\Gamma \vdash A$ is fibrant then so is $\Gamma \vdash \mathsf{Id} A \ u \ v$.

Proof. We suppose given γ in $\Gamma^{\mathbb{I}}$ and p_0 in $(\operatorname{Id} A u v)\gamma(0) \psi$ in \mathbb{I} and a partial section q(i) in $(\operatorname{Id} A u v)\gamma(i)$ of extent ψ such that $q(0) = p_0$ on ψ . This means that we have q(i, j) in $A\gamma(i)$ and $q(i, 0) = u\gamma(i)$ and $q(i, 1) = v\gamma(i)$. We define then p_1 in $(\operatorname{Id} A u v)\gamma(1)[\psi \mapsto q(1)]$ by $p_1(j) = \operatorname{comp}_A \gamma (\psi \lor j \lor (1-j)) r p_0(j)$ where r(i) is a partial section in $A\gamma(i)$ of extent $\psi \lor j \lor (1-j)$ defined as r(i) = q(i, j) on $[\psi]$ and $r(i) = u\gamma(i)$ on [1-j] and $r(i) = v\gamma(i)$ on [j].

Isomorphisms

If T and A are two cubical sets, an isomorphism $T \to A$ consists in two maps $f: T \to A$ and $g: A \to T$ and two sections $s: (x:T) \to \operatorname{Id} T (g (f x)) x$ and $t: (x:A) \to \operatorname{Id} A (f (g x)) x$. So we have a map $s: T \times \mathbb{I} \to T$ such that s(x,0) = g (f x) and s(x,1) = x and a map $t: A \times \mathbb{I} \to A$ such that t(x,0) = f (g x) and t(x,1) = x.

Lemma 0.5 If T and A are fibrant, and we have an isomorphism $(f, g, s, t) : T \to A$ then we have an operation taking as argument ψ in \mathbb{I} and a partial element t in T of extent ψ and a in $A[\psi \mapsto f t]$ and producing an element in $(x : T, \mathsf{Id} A a (f x))[\psi \mapsto (t, 1_a)]$.

Glueing operation

Lemma 0.6 We assume given a section $\Gamma \vdash \sigma : T \to A$ where $\Gamma \vdash A$, $\Gamma \vdash T$ are two fibrations. Given γ in $\Gamma^{\mathbb{I}}$ and a partial section $t(i) \in T\gamma(i)$ of extent ψ and t_0 in $T\gamma(0)[\psi \mapsto t(0)]$, we can consider $a_0 = \sigma\gamma(0) t_0$ in $A\gamma(0)$ and the partial section $a(i) = \sigma\gamma(i) t(i)$ of extent ψ . There is a path connecting $a_1 = \operatorname{comp}_A \gamma \psi a a_0$ to $\sigma\gamma(1) t_1$ where $t_1 = \operatorname{comp}_T \gamma \psi t t_0$ in $T\gamma(1)$. This path is furthermore constant on the extent ψ .

Proof. By filling in T, we find an extension of the partial section t to a total section \tilde{t} such that $\tilde{t}(1) = t_1$. By filling in A, we find an extension of the partial section a to a total section \tilde{a} such that $\tilde{a}(1) = a_1$. Given i we define the partial section u of extent $\varphi = \psi \lor (1 - i) \lor i$ by taking $u(j) = \sigma\gamma(j) t(j)$ on ψ and $u(j) = \tilde{a}(j)$ on i = 0 and $u(j) = \sigma\gamma(j) \tilde{t}(j)$ on i = 1. The path joining a_1 to $\sigma\gamma(1) t_1$ is then $\lambda i.comp_A \varphi u a_0$.

If $\Gamma \vdash \psi : \mathbb{I}$, i.e. we have $\psi : \Gamma \to \mathbb{I}$, we define Γ, ψ to be the subset of elements ρ in Γ such that $\psi(\rho) = 1$.

The rules for the glueing operation are

$$\frac{\Gamma \vdash A \quad \Gamma, \varphi \vdash T \quad \Gamma, \varphi \vdash \sigma: \mathsf{lso}(T, A)}{\Gamma \vdash \mathsf{glue}(A, [\varphi \mapsto (T, \sigma)])} \qquad \qquad \overline{\Gamma \vdash \mathsf{glue}(A, [1 \mapsto (T, \sigma)]) = T}$$

We write $B = \mathsf{glue}(A, [\varphi \mapsto (T, \sigma)])$ and we explain the composition operation for B.

If ρ in Γ any element of $B\rho$ can be written uniquely on the form $glue(a, [\varphi \rho \mapsto t])$ with a in $A\rho$, t a partial element of $T\rho$ of extent $\varphi \rho$ such that $\sigma \rho t = a$.

We assume given γ in $\Gamma^{\mathbb{I}}$, and element $b_0 = (a_0, [\varphi\gamma(0) \mapsto t_0])$ and a partial section $v(i) = (u(i), [\varphi\gamma(i) \mapsto w(i)])$ of extent ψ . We want to define $b_1 = (a_1, [\varphi\gamma(1) \mapsto t_1])$ in $B\gamma(1)[\psi \mapsto v(1)]$.

We first consider a_0 in $A\gamma(0)$ and u(i) in $A\gamma(i)$ of extent ψ , and such that $a_0 = u(0)$. Since $\Gamma \vdash A$ is a fibration, we get a'_1 in $A\gamma(1)$, such that $a'_1 = u(1)$ on ψ .

Using Lemma 0.1 we define $\delta = \forall i.\varphi\gamma(i)$ in \mathbb{I} . We have $\delta \leq \varphi\gamma(1)$. On the extent $\psi \wedge \delta$ we can consider t_0 in $T\gamma(0)$ and the partial section w(i) in $T\gamma(i)$. Since $\Gamma, \varphi \vdash T$ is a fibration we define t'_1 in $T\gamma(1)$ of extent δ and such that $t'_1 = w(1)$ on $\delta \wedge \psi$. Using Lemma 0.6, we have a path between a'_1 and $\sigma\gamma(1)$ t'_1 of extent δ . Since $A\gamma(1)$ is fibrant we can then find a''_1 in $A\gamma(1)$ such that $a''_1 = a'_1$ on ψ and $a''_1 = \sigma\gamma(1)$ t'_1 on δ .

Using the fact that $\sigma\gamma(1)$ is an isomorphism and Lemma 0.5, we can extend t'_1 in $T\gamma(1)$ to an element t_1 of extent $\varphi\gamma(1)$ such that $t_1 = w(1)$ on ψ . Using that $A\gamma(1)$ is fibrant, we find a_1 in $A\gamma(1)$ such that $\sigma\gamma(1)$ $t_1 = a_1$ on $\varphi\gamma(1)$ and and $a_1 = a''_1 = a'_1$ on ψ . The element $b_1 = \mathsf{glue}(a_1, [\varphi\gamma(1) \mapsto t_1])$ is in $B\gamma(1)[\psi \mapsto v(1)]$ and satisfies $b_1 = t'_1$ on the extent δ .