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Introduction

This note complements the reference [1]. We give a general filling property for contractible types. We
use then this property to give an interpretation of the axiom of univalence.

1 Nominal sets

We try to work with a nominal set presentation of cubical sets [2]. Any element u depend on at most
finitely many element. Also given any element u and any name x we can form u(x = 0) and u(x = 1)
and u(x = y) if y is another name. We have some conditions on these operations that are listed in [2].
We write x#u to express that u does not depend on x. This is equivalent to u(x = 0) = u and equivalent
to u(x = 1) = u.

Some elements represent types and we have a typing relation u : A. This relation is invariant under
substitution so that u : A implies u(x = i) : A(x = i) for i = 0, 1 and implies u(x = y) : A(x = y).

It seems very interesting that unique choice can be used at the meta-level. So given u a finite set
of names I containing the ones on which u depends is not uniquely determined in general, but we can
introduce such a set to build another element, as long as this element will not depend on the choice of
this finite set I. This will often be used by chosing a name such that all given objects are independent of
this name, and building then a new object which is independent of the choice of this name. (Examples
of this are given below.)

We work only with types satisfying the Kan filling conditions. This means the following. If A is a
type and if we are given a finite set of names x, J and a corresponding open box in A that is a compatible
family of elements uyb : A(y = b) for (y, b) in Oi(x, J) with i = 0 or i = 1 then we can find u in A such
that u(y = b) = uyb for all y, b.

This definition is more general than the usual one, since it may be that A does depend on some
names.

Given this generalization we don’t need the notion of Kan fibration in this setting! A dependent type
over A will be given by a function B such that B u is a type for u : A. Using that application commutes
with substitution, we recover the usual notion of Kan fibration.

2 Contractible types

We assume that A is a type such that we have c : A and a function t u : IdA c u for any u : A. If this
is the case we show that A satisfies the following strong filling property. If uyb : A(y = b) is a family of
compatible elements for y in J and b = 0, 1 then we can find u : A such that u(y = b) = uyb for all y, b.
The precondition is that uyb is independent of y.

For this we start to choose a name x such that A, s, t are independent of x. We then define the
following open box vx0 = c and vyb : c(y = b) →x uyb is obtained by taking

〈x〉vyb = t(y = b) uyb

Here we have used that t : Π A (IdA c) and hence that we also have

t(y = b) : Π A(y = b) (IdA(y=b) c(y = b))
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so that
t(y = b) uyb : IdA(y=b) c(y = b) uyb

The family c, vyb is an open box since c is independent of x and vyb is independent of y. Composing this
open box in A gives us an element u in A such that u(y = b) = yyb for all y, b. Furthermore this element
is independent of the choice of x.

3 Application to equivalence

If f : A→ B then for b : B the type
Σa : A.IdB (f a) b

is the fiber Fib b of f at b. The map f is an equivalence iff all fibers Fib b are contractible.
We choose x such that A,B, f are independent of x. We define E : A →x B. An element of

E(A,B, f, x) is a pair (a, v) where a : A is indenpendent of x and v : B is such that v(x = 0) = f a. We
define (a, u)(x = 0) = a and (a, u)(x = 1) = u(x = 1), while we have (a, u)(y = b) = (a(y = b), u(y = b))
if y 6= x. We also define

E(A,B, f, x)(x = 0) = A E(A,B, f, x)(x = 1) = B

E(A,B, f, x)(y = b) = E(A(y = b), B(y = b), f(y = b), x)

We show that this type satisfies the Kan filling property.
For this we assume given an open box of directions z, J in E(A,B, f, x).
There are two cases x = z and x 6= z.
If x 6= z and x not in J we first add x to J . For this we look at the given open box (ayb, vyb)

with vyb(x = 0) = f(y = b) ayb.. The completion of ayb in A gives an element ax0. The completion
of vyb(x = 1) in B gives an element bx1. The completion of f ax0 and vyb and bx1 gives an element
v such that v(x = 1) = bx1 and v(x = 0) = f ax0. The element (ax0, v) is then the required element
in E(A,B, f, x). If x is in J we are already given an element ax0 and bx1 and we proceed similarly by
completing in B the family f ax0 and bx1 and vyb.

If x = z there are two sub-cases. One sub-case is where we are given bx1 : B independent of x and
(ayb, vyb) for y in J . The element (ayb, 〈x〉vyb) is then an element of (Fib bx1)(y = b). By the result of
the previous section we can find an element (a, p) in Fib bx1. If we write p = 〈x〉v we obtain the element
(a, v) such that v(x = 1) = bx1 and v(x = 0) = f a and (a, v) is the required element in E(A,B, f, x).

The other sub-case is where we are given ax0 and a family of elements (ayb, vyb) for y in J . If we fill
in B the open box f ax0 and vyb we obtain an element v in B such that v(x = 0) = f ax0 and (ax0, v)
is the required element in E(A,B, f, x).

4 How do we interpret univalence?

A priori, we have only so far given an interpretation of

σA,B : Equiv A B → IdType A B

This interpretation however satisfies strong properties that implies that this defines an inverse of the
canonical map

τA,B : IdType A B → Equiv A B

The first strong property is that the equality E(A,A, f, x) is equal to A : A →x A if f is the identity.
For this we define a new type S(A, x, y) given y 6= x such that

S(A, x, y)(y = 0) = E(A,A, f, x) S(A, x, y)(y = 1) = A

An element of S(A, x, y) is of the form 〈u〉 where u is an element of A but we take

〈u〉(y = 0) = (u(y = 0)(x = 0), u(y = 0)) 〈u〉(x = i) = u(x = i) 〈u〉(y = 1) = u(y = 1)
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The second property is that the composition

IdType A B → Equiv A B → (A→ B)

sends a path E : A →x B to the transport function A → B of E. On the other hand, the transport
function of E(A,B, f, x) is the function f itself. Since

Equiv A B = (Σf : A→ B)IsEquiv A B f

and IsEquiv A B f is a proposition, this shows that σ and τ are inverse maps.

References

[1] M.Bezeem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.

[2] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
Manuscript, 17 September 2013.

3


