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Abstract. We give an overview of Agda, the latest in a series of depen-
dently typed programming languages developed in Gothenburg. Agda
is based on Martin-Löf’s intuitionistic type theory but extends it with
numerous programming language features. It supports a wide range of
inductive data types, including inductive families and inductive-recursive
types, with associated flexible pattern-matching. Unlike other proof as-
sistants, Agda is not tactic-based. Instead it has an Emacs-based in-
terface which allows programming by gradual refinement of incomplete
type-correct terms.

1 Introduction

A dependently typed programming language and proof assistant. Agda is a func-
tional programming language with dependent types. It is an extension of Martin-
Löf’s intuitionistic type theory [12, 13] with numerous features which are useful
for practical programming. Agda is also a proof assistant. By the Curry-Howard
identification, we can represent logical propositions by types. A proposition is
proved by writing a program of the corresponding type. However, Agda is pri-
marily being developed as a programming language and not as a proof assistant.

Agda is the latest in a series of implementations of intensional type theory
which have been developed in Gothenburg (beginning with the ALF-system)
since 1990. The current version (Agda 2) has been designed and implemented by
Ulf Norell and is a complete redesign of the original Agda system. Like its prede-
cessors, the current Agda supports a wide range of inductive data types, pattern
matching, termination checking, and comes with an interface for programming
and proving by direct manipulation of proof terms. On the other hand, the new
Agda goes beyond the earlier systems in several respects: flexibility of pattern-
matching, more powerful module system, flexible and attractive concrete syntax
(using unicode), etc.

A system for functional programmers. A programmer familiar with a standard
functional language such as Haskell or OCaml will find it easy to get started
with Agda. Like in ordinary functional languages, programming (and proving)
consists of defining data types and recursive functions. Moreover, users familiar
with Haskell’s generalised algebraic data types (GADTs) will find it easy to use
Agda’s inductive families [5].



The Agda wiki. More information about Agda can be found on the Agda wiki
[1]. There are tutorials [15, 3], a guide to editing, type checking, and compiling
Agda code, a link to the standard library, and much else. There is also a link to
Norell’s PhD thesis [14] with a language definition and detailed discussions of
the features of Agda.

2 Agda Features

We begin by listing the logically significant parts of Agda.

Logical framework. The core of Agda is Martin-Löf’s logical framework [13]
which gives us the type Set and dependent function types (x : A) → B (us-
ing Agda’s syntax). Agda’s logical framework also provides record types and a
countable sequence of larger universes Set = Set0, Set1, Set2, . . ..

Data type definitions. Agda supports a rich family of strictly positive inductive
and inductive-recursive data types and families. Agda checks that the data type
definitions are well-formed according to a discipline similar to that in [6, 7].

Recursive function definitions. One of Agda’s main features is its flexible pattern
matching for inductive families. A coverage checker makes sure the patterns cover
all possible cases. As in Martin-Löf type theory, all functions definable in Agda
must terminate, which is ensured by the termination checker.

Codata. The current version of Agda also provides coinductive data types. This
feature is however somewhat experimental and not yet stable.

Agda also provides several features to make it useful in practice:

Concrete syntax. The concrete syntax of Agda is much inspired by Haskell, but
also contains a few distinctive features such as mixfix operators and full support
for unicode identifiers and keywords.

Implicit arguments. The mechanism for implicit arguments allows the omission
of parts of the programs that can be inferred by the typechecker.

Module system. Agda’s module system supports separate compilation and allows
parametrised modules. Together with Agda’s record types, the module system
provides a powerful mechanism for structuring larger developments.

Compilation. There is a simple compiler that compiles Agda programs via
Haskell and allows Haskell functions to be called from within Agda.

Emacs interface. Using Agda’s Emacs interface, programs can be developed
incrementally, leaving parts of the program unfinished. By type checking the
unfinished program, the programmer can get useful information on how to fill
in the missing parts. The Emacs interface also provides syntax highlighting and
code navigation facilities.



3 Agda and some Related Languages

Agda and Martin-Löf type theory. Agda is an extension of Martin-Löf’s type
theory. An implementation of the latter in Agda can be found on the Agda wiki
[1]. Meaning explanations of foundational interest for type theory have been
provided by Martin-Löf [11, 12], and all constructions in Agda (except codata)
are intended to satisfy them. Agda is thus a predicative theory.

Agda and Coq. The most well-known system with dependent types which is based
on the Curry-Howard identification is Coq [2]. Coq is an implementation of the
Calculus of Inductive Constructions, an extension of the Calculus of Construc-
tions [4] with inductive (but not inductive-recursive) types. Unlike Agda, Coq
has an impredicative universe Prop. Moreover, for the purpose of program ex-
traction, there is a distinction between Prop and Set in Coq which is not present
in Agda. There are many other differences between Agda and Coq. For example,
Agda’s pattern matching for inductive families is more flexible than Coq’s. On
the other hand, Coq supports tactical theorem proving in the tradition of LCF
[10], but Agda does not.

Agda and Haskell. Haskell has GADTs, a feature which mimics inductive families
by representing them by type-indexed types. A fundamental difference is that
Haskell allows partial general recursive functions and non-strictly positive data
types. Hence, logic cannot be obtained by the Curry-Howard correspondence.

Other languages with dependent types. There are nowadays a number of func-
tional languages with dependent types (some with and some without general
recursion). Among these McBride’s Epigram [8] is closest in spirit to Agda.

4 Example: Equational Proofs in Commutative Monoids

We will now show some of the code for a module which decides equality in
commutative monoids. This is an example of reflection, a technique which makes
it possible to program and use efficient verified decision procedure inside the
system. Reflection was for example used extensively by Gonthier in his proof of
the four colour theorem [9].

An example of a commutative monoid is the natural numbers with addition.
Thus our decision procedure can automatically prove arithmetic equations such
as

∀ n m → (n + m) + n ≡ m + (n + n).

The above is a valid type in Agda syntax. To prove it in Agda we create a file
Example.agda with the following content:

module Example where

open import Data.Nat

open import Relation.Binary.PropositionalEquality



prf : ∀ n m → (n + m) + n ≡ m + (n + n)

prf n m = ?

Natural numbers and propositional equality are imported from the standard
library and opened to make their content available. Finally, we declare a proof
object prf, the type of which represents the proposition to be proved; here
∀ x → B is an abbreviation of (x : A) → B which does not explicitly mention
the argument type. The final line is the incomplete definition of prf: it is a
function of two arguments, but we do not yet know how to build a proof of the
equation so we leave a “?” in the right hand side. The “?” is a placeholder that
can be stepwise refined to obtain a complete proof.

In this way we can manually build a proof of the equation from associativity
and commutativity of +, and basic properties of equality which can be found in
the standard library. Manual equational reasoning however can become tedious
for complex equations. We shall therefore write a general procedure for equa-
tional reasoning in commutative monoids, and show how to use it for proving
the equation above.

Decision procedure for commutative monoids. First we define monoid expressions
as an inductive family indexed by the number of variables:

data Expr n : Set where

var : Fin n → Expr n

_⊕_ : Expr n → Expr n → Expr n

zero : Expr n

Fin n is a finite set with n elements; there are at most n variables. Note that
infix (and mixfix) operators are declared by using underscores to indicate where
the arguments should go.

To decide whether two monoid expressions are equal we normalise them and
compare the results. The normalisation function is

norm : ∀ {n} → Expr n → Expr n

Note that the first argument (the number of variables) is enclosed in braces,
which signifies that it is implicit. To define this function we employ normali-
sation by evaluation, that is, we first interpret the expressions in a domain of
“values”, and then reify these values into normal expressions. Below, we omit
the definitions of eval and reify and give only their types:

norm = reify ◦ eval

eval : ∀ {n} → Expr n → NF n

reify : ∀ {n} → NF n → Expr n

The values in NF n are vectors recording the number of occurrences of each
variable:

NF : N → Set

NF n = Vec N n



Next we define the type of equations between monoid expressions:

data Eqn n : Set where

_==_ : Expr n → Expr n → Eqn n

We can define our arithmetic equation above as follows:

eqn1 : Eqn 2

eqn1 = build 2 λ a b → a ⊕ b ⊕ a == b ⊕ (a ⊕ a)

where we have used an auxiliary function build which builds an equation in Eqn
n from an n-place curried function by applying it to variables.

Equations will be proved by normalising both sides:

simpl : ∀ {n} → Eqn n → Eqn n

simpl (e1 == e2) = norm e1 == norm e2

We are now ready to define a general decision procedure for arbitrary commu-
tative monoids (the complete definition is given later):

prove : ∀ {n} (eqn : Eqn n) ρ → Prf (simpl eqn) ρ → Prf eqn ρ

The function takes an equation and an environment in which to interpret it, and
builds a proof of the equation given a proof of its normal form. The definition
of Prf will be given below.

We can instantiate this procedure to the commutative monoid of natural
numbers and apply it to our equation, an environment with the two variables,
and a proof of the normalised equation. Since the two sides of the equation will
be equal after normalisation we prove it by reflexivity:

prf : ∀ n m → (n + m) + n ≡ m + (n + n)

prf n m = prove eqn1 (n :: m :: []) ≡-refl

The prove function is defined in a module Semantics which is parametrised
over an arbitrary commutative monoid

module Semantics (CM : CommutativeMonoid) where

open CommutativeMonoid CM renaming (carrier to C)

Opening the CommutativeMonoid module brings into scope the carrier C with
its equality relation _≈_ and the monoid operations _•_ and ε. A monoid ex-
pression is interpreted as a function from an environment containing values for
the variables to an element of C.

Env : N → Set

Env n = Vec C n

J_K : ∀ {n} → Expr n → Env n → C

J var i K ρ = lookup i ρ
J a ⊕ b K ρ = J a K ρ • J b K ρ
J zero K ρ = ε



Equations are also interpreted:
Prf : ∀ {n} → Eqn n → Env n → Set

Prf (e1 == e2) ρ = J e1 K ρ ≈ J e2 K ρ

One can prove that the normalisation function is sound in the sense that the
normal form is semantically equal to the original expression in any environment:

sound : ∀ {n} (e : Expr n) ρ → J e K ρ ≈ J norm e K ρ

Hence, to prove an equation it suffices to prove the normalised version. The proof
uses the module Relation.Binary.EqReasoning from the standard library for
the equational reasoning:

prove : ∀ {n} (eqn : Eqn n) ρ → Prf (simpl eqn) ρ → Prf eqn ρ
prove (e1 == e2) ρ prf =

begin J e1 K ρ ≈〈 sound e1 ρ 〉
J norm e1 K ρ ≈〈 prf 〉
J norm e2 K ρ ≈〈 sym (sound e2 ρ) 〉
J e2 K ρ

�

The complete code is available on the Agda wiki [1].
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