
Reading Many Variables in One Atomic Operation
Solutions With Linear or Sublinear Complexity1

Lefteris M. Kirousis2;3;5, Paul Spirakis2;3;4;5, Philippas Tsigas2;3;5

Abstract

We address the problem of reading more than one variables (components) X1; : : : ; Xc, all in
one atomic operation, by only one process called the reader, while each of these variables are
being written by a set of writers. All operations (i.e. both reads and writes) are assumed to
be totally asynchronous and wait-free. For this problem, only algorithms that require at best
quadratic time and space complexity can be derived from the existing literature (the time
complexity of a construction is the number of sub-operations of a high-level operation and its
space complexity is the number of atomic shared variables it needs). In this paper, we provide
a deterministic protocol which has linear (in the number of processes) space complexity, linear
time complexity for a read operation and constant time complexity for a write. Our solution
does not make use of time-stamps. Rather, it is the memory location where a write writes
that di�erentiates it from the other writes. Also, introducing randomness in the location
where the reader gets the value it returns, we get a conceptually very simple probabilistic
algorithm. This algorithm has an overwhelmingly small, controllable probability of error.
Its space complexity as well as the time complexity of a read operation are both sublinear.
The time complexity of a write is constant. On the other hand, under the Archimedean time
assumption, we get a protocol whose both time and space complexity do not depend on the
number of writers but are linear in the number of components only (the time complexity of
a write operation is still constant).

INDEX TERMS: Atomic Asynchronous Registers, Composite Registers, Distributed Algo-
rithms, Linearazability, Probabilistic Protocols, The Readers-Writers Problem.

1This research was partially supported by the ESPRIT Basic Research Program of the EC under contracts
no. 7141 (project ALCOM II) and no. 6019 (project Insight II). This work appeared in IEEE Transactions on
Parallel and Distributed Systems, 5(7), pp. 688-696, July 1994. A preliminary version of this paper appeared
in the Proceedings of the Fifth International Workshop on Distributed Algorithms (WDAG'91), Lecture Notes in
Computer Science Vol.579 (Springer-Verlag), pp. 229-241, 1992.

2Department of Computer Engineering and Informatics, University of Patras, Rio, 265 00 Patras, Greece.
3Computer Technology Institute, P.O. Box 1122, 261 10 Patras, Greece.
4Courant Institute of Mathematical Sciences, NYU, New York, N.Y. 10012, U.S.A.
5E-mail addresses: hlastnamei@grpatvx1.bitnet

1

1 Introduction

A shared register is an abstract data structure shared by a number of asynchronous con-
current processes which perform either read or write operations. We adopt the model where
each process is assumed to execute either only read operations|it is then called a reader|or
only write operations|it is then called a writer. Operations by the same process are assumed
to be executed sequentially. An implementation (construction) of a register consists of: (i)
protocols for the execution of an operation (read or write) by a process (ii) a data structure
consisting of memory cells, called subregisters and (iii) a set of initial values of the subregisters.
The execution of a protocol by a process involves a number of both read and write operations,
called sub-operations, on the subregisters. To distinguish operations on the register from
sub-operations on the subregisters, we sometimes call the former high-level operations. An
implementation is wait-free if it guarantees that any process will complete an operation in a
�nite number of steps (i.e., sub-operations) independent of the execution speeds of the other pro-
cesses. Obviously, the wait-free condition rules out many conventional algorithmic techniques,
such as busy-waiting, conditional waiting or critical sections. The basic correctness condition
for such an implementation is linearizability, i.e. although concurrent operations by processes
may overlap in time, each one of them appears to take e�ect instantaneously, in an order that
preserves the operations' semantics (see [7]). Such an implementation is called atomic.

In this paper we study a type of register called composite register. A composite register is
a register partitioned into a number of components, X1; : : : ;Xc. A high-level operation on such
a register either writes a value to one of the components or reads the values of all the components
(the components should not be confused with the subregisters used in an implementation). A
composite register is characterized by the number of readers that may concurrently read the
composite register, the number of writers that may concurrently write to the same component,
the number of components, and the number of bits a component is allowed to hold. The general
case of a composite register is the case of n-reader, m-writer per component, c-component, b-bit
composite register. The problem which we study in this paper is the implementation of a single-
reader, m-writer per component, c-component, b-bit composite register using as subregisters
atomic, single-component registers that are allowed to hold a bounded|i.e, independent of
the number of operations|number of bits. By our assumption, no concurrent high-level read
operations are allowed. There is an extended literature on implementing our building blocks,
the single-component, atomic registers, from simpler, i.e., single-bit, single-writer, single-reader,
single-component, subregisters satisfying only minimal correctness conditions. See, e.g., [3] for
a reference list.

The time complexity of a construction implementing a composite register is the number
of sub-operations of an operation, while the space complexity is the number of atomic, single-
component subregisters used by the construction. We measure them as a function of the number
of the processes which share the composite register.

Afek et al. [2] and Anderson [3] have previously given wait-free constructions for the mul-
tireader, multiwriter, c-component, b-bit composite register. Their time complexity as well as
their space complexity are at best quadratic as a function of the number of processes. The
complexities do not improve if we assume the existence of only one reader.

In this paper, we �rst give a conceptually very simple wait-free construction for the single-
reader, multiwriter per component case assuming that we have an unbounded (but linearly
dependent on the total number of operations performed) number of memory locations (sub-

2

registers). In this �rst construction, the number of sub-operations of a high-level operation is
unbounded and moreover, one subregister is assumed to hold an unbounded (but logarithmically
dependent on the total number of operations performed) number of bits.

We then show how to \recycle" the memory locations in order to obtain a deterministic
protocol that uses only a bounded number of subregisters. Our bounded construction has linear
space complexity, linear time complexity for a read operation and constant time complexity for a
write operation (the building blocks, in the bounded case, are assumed to be single-component,
atomic registers so that each may hold either a value from the domain of values allowed to appear
on the components of the register or, alternatively, an integer not exceeding a constant multiple
of the number of writers per component). We believe that the tool of using uboundedly many
memory locations is stronger than the method of unbounded time-stamps (for constructions
with unbounded time-stamps see [5] and [8]).

Moreover, introducing randomness in the choice of the memory location recycled by a read,
we obtain a conceptually very simple probabilistic protocol. If m is the number of writers per
component, c is the number of components, and l and q are constants that can be chosen by
the algorithm designer, then the space complexity of our probabilistic algorithm is O(lc). The
time complexity of a read operation is O(lc), whereas the time complexity of a write operation
is O(q). Finally, there is a O(mc(q=l)q) probability of error. Our randomized protocol works
even if the adversary is assumed to observe a random bit the moment it is generated (this is the
strong model for an adversary assumed in [1] and [4]).

Randomized algorithms that, as the one in this paper, allow the possibility of error (i.e.,
Monte Carlo algorithms) may have important drawbacks when applied to shared-memory data
structures. However, we believe that they might be interesting not only because the probability
of error is overwhelmingly small and controllable|an important factor per se|but also because
they may pave the way for new Las Vegas randomizations (i.e., no-error randomizations, where,
however, complexity bounds are probabilistic). For error-free, randomized protocols with �nite
expected time complexity see [6].

Finally, under the Archimedean Time assumption, i.e. assuming that there are �xed, known
upper and lower bounds for the ratio of the execution rates of the processes (limited asynchrony),
we give a protocol with space and time complexities that do not depend on the number of
processes but are linear in the number of components only (the time complexity of a write is
still constant). Notice that this assumption does not imply any restriction on the idle time
intervals between operations.

Our notations and de�nitions closely follow the existing literature (see [3] or [2]). For a
formalization we refer to [9] and [7]. Our notation is compatible with these formalisms. We
assume that for each operation O there exists a time interval [sO; fO] called its duration. The
points sO and fO are the starting and �nishing times, respectively of O. We assume that there
is a precedence relation on operations which is a strict partial order (denoted by `!'). For
two operations a and b, a ! b means that operation a ends before operation b starts. If two
operations are incomparable under !, they are said to overlap. Since we have assumed that
there is only one reader, all read operations are comparable under!. The protocols, apart from
the shared variables, make use of local variables as well (these cannot be shared by concurrent
processes). The local variables are assumed to retain their values between invocations of the
corresponding procedures (in the programming languages literature, the term static is sometimes
used for such variables). We adopt the convention to denote shared variables with capital letters
and local variables with lower case letters.

3

A reading function �k for a component k is a function that to each high-level read operation
r assigns a high-level write operation w on component k such that the value returned by r for
the component k is the value written by w. Similarly for a subregister R, a reading function
�R is a function that for each read sub-operation r on R assigns a write sub-operation w on
R such that the value returned by r is the value written by w. It is assumed that for each
subregister there exists a write sub-operation which initializes the subregister, i.e., precedes all
other sub-operations on the subregister.

A run (or history) is an execution of an arbitrary number of operations according to the
respective protocols. Formally, a run is atomic if the partial order ! on its operations can be
extended to a total strict order) and if for each component Xk there is a reading function �k
such that for all high-level reads r: (i) �k(r)) r and (ii) there is no write w on Xk such that
�k(r)) w) r. A construction is atomic if all its runs are atomic. We assume all subregisters
to be atomic, therefore we can assume that the precedence relation ! is total when restricted
to sub-operations on a single subregister (alternatively, we assume that all sub-operations are
instantaneous|i.e., their duration intervals are singletons).

One obviously necessary condition for a composite register to be atomic is that for any read
r and for any component Xk, it is not the case that r ! �k(r) (indeed, otherwise the extension
of ! to a total order respecting the reads would be impossible). All our constructions will
satisfy this condition for trivial to check reasons. For notational convenience, we call registers
satisfying this condition normal.

2 An Atomicity Criterion

For the case of a single-reader (where we do not have overlapping high-level reads) we have the
following criterion for atomicity of a composite register:

Lemma 1 A construction of a normal composite register is atomic if and only if for each

component Xk, the write operations to it can be serialized by a strict total order)k compatible

with the precedence relation ! and such that the following two conditions hold:

1. Each)k is compatible with the respective reading function �k, i.e. for each read r, it is
not the case that there is a write operation w on Xk so that �k(r))k w ! r. Moreover,

for any two reads r and s and for any component Xk, it is not the case that: r ! s and

�k(s))k �k(r).

2. For any two di�erent components Xk and Xl and for any read r, it is not the case that
there are write operations v and w on Xk and Xl respectively such that

�k(r))k v ! w
=
)l �l(r);

where w
=
)l �l(r) means that either w)l �l(r) or w = �l(r).

This lemma is essentially the restriction to the single-reader case of the atomicity criteria men-
tioned in [3], and so we omit its proof.

Based on the above, we obtain the following basic lemma which gives su�cient conditions
for atomicity that refer to each component separately. All our algorithms satisfy the conditions
of this basic lemma. Therefore, our algorithms not only implement an atomic register but

4

have stronger, in general, properties described by these conditions. Intuitively, the su�cient
conditions of the basic lemma require that the write operations of each component can be
consistently serialized so that Condition 1 of Lemma 1 is satis�ed, and moreover if a write
operation w starts after the start of a read operation r, or if w follows (in the serialization of
the operations of its component) another write operation that starts after the start of r, then r
does not read the value written by w. Formally:

Basic Lemma A construction of a normal composite register is atomic if for each component

Xk, the write operations to it can be serialized by a strict total order)k that is compatible with

the precedence relation ! and such that the following two conditions hold:

1. Each)k is compatible with the respective reading function �k, i.e. for each read r, it is
not the case that there is a write operation w to Xk so that �k(r))k w ! r and moreover,

for any two reads r and s and for any component Xk, it is not the case that: r ! s and

�k(s))k �k(r).

2. For any read r and for any component Xl, if a is either the �rst sub-operation of �l(r)
or the �rst sub-operation of any write operation w to Xl for which w)l �l(r), and if b is
the �rst sub-operation of r then a and b take place on the same (atomic) subregister and
a precedes b.

Proof It su�ces to prove the second condition of Lemma 1. Indeed, let Xk and Xl be two
distinct components. Suppose, towards a contradiction, that there is a v and a w on Xk and
Xl, respectively, such that:

�k(r))k v ! w
=
)l �l(r):

Then, since by hypothesis the �rst sub-operation of w precedes the �rst sub-operation of r, we
get that �k(r))k v ! r, a contradiction. 2

3 The Deterministic Approach

3.1 Unbounded Memory-Space

In this subsection we are going to describe a single-reader, multiwriter per component construc-
tion that uses unbounded memory-space (i.e. the number of subregisters used may be equal to
the number of operations to be performed). In the next subsection then, we show how to \recy-
cle" the memory space in order to obtain a construction with bounded space, i.e., independent
of the number of operations (actually, the space will be linear in the number of writers). Let
us point out that in the unbounded memory-space construction, there is a subregister whose
values are addresses of memory locations. Therefore, this subregister must be assumed to hold
an unbounded number of bits. This is not the case in the bounded memory-space construction,
where there is only a bounded number of addresses. In the unbounded space construction, the
number of sub-operations of a high-level read operation is unbounded.

The architecture of our unbounded construction is as follows: For each component k =
1; : : : ; c, we introduce an unbounded number of subregisters ML[k][l], l = 0; : : : ;1 which are
written to by the writers of the corresponding component and are read by the reader. We call
these subregisters memory locations. The second index of each memory location ML[k][l]
is its address (the �rst indicates the corresponding component). A memory location holds a

5

var PTR : integer; ML : array[1::c][0::1] of valtype; /*Shared variables declaration*/

procedure reader /*returns array[1::c] of valtype*/
var ptr; b : integer; a : array[1::c] of valtype;
begin

write ptr + 1 to PTR; ptr := ptr + 1;
for k := 1 to c do

b := ptr;
repeat

b := b� 1; read a[k] from ML[k][b];
until a[k] 6=nil; od;

return (a[1]; : : : ; a[c]);
end

procedure writer /*writes u : valtype on component k*/
var w-ptr : integer; u : valtype;
begin

read w-ptr from PTR; write u to ML[k][w-ptr];
end

Figure 1: The unbounded memory-space protocol.

value that belongs either to the set of values of the corresponding component or is a special
new value denoted by nil. The type of all these values is denoted by valtype. We call them
component values. Initially, the subregisters ML[k][l] for k = 1 : : : ; c and l = 1; : : : ;1 hold
the value nil, while the subregisters ML[k][0], k = 1; : : : ; c hold a value from the set of values of
the corresponding component. Moreover, we introduce a subregister PTR which holds as value
an integer (a pointer to a memory location). This subregister can be written to by the reader
and can be read by all writers. It is initialized with the value 0.

In the protocol the reader is the controller: it is the one who determines where the writers
must write. All that a writer has to do is to write its value to the memory location forwarded
by the reader through a pointer. More speci�cally, the protocol works as follows: A writer �rst
reads PTR and then writes its value to the memory location of the corresponding component
that is pointed to by PTR. The reader, on the other hand, �rst increments PTR by one; stores
its new value into a local variable ptr and then for each component k = 1; : : : ; c gets the value to
be returned by reading ML[k][ptr � 1]; : : : ;ML[k][0] in this order until it gets a value which is
not nil. The protocol is given formally in Figure 1. The reader, by forwarding to the writer, with
its very �rst sub-operation, a new subregister, which it does not use again during the current
read, it succeeds to avoid reading values written by write operations that started after its own
starting point. Moreover, the reader, by scanning the subregisters in the reverse order from the
one that they were forwarded in previous operations and by returning the �rst \non-empty"
value, it achieves to return nonoverwritten values.

6

Correctness Proof We will show that the above construction satis�es the two conditions of
the Basic Lemma. To show that Condition 1 of the Basic Lemma is satis�ed, de�ne the relation
)k between writes on the same component as follows: w)k v if and only if either w and v
write their value to the same memory location and the last sub-operation of w precedes the
last sub-operation of v, or w writes its value to a memory location with address less than the
address of the corresponding memory location of v. It is clear that thus Condition 1 is satis�ed.
Also, Condition 2 of the Basic Lemma is satis�ed. Indeed, both �k(r) and r have their �rst
sub-operation performed on PTR. If the �rst sub-operation of �k(r) followed that of r, then
�k(r) would write its value to a memory location not visited by r. We get a similar contradiction
if there is a w such that w)k �k(r) and the �rst sub-operation of r precedes that of w. 2

3.2 Bounded Memory-Space

In this subsection, we will show how to transform the unbounded space protocol of the previous
subsection into one that uses bounded space only.

First observe that both conditions of the Basic Lemma, through which we prove the correct-
ness of our protocols, refer to each component separately (i.e., no reference to two components
is made in any one of the conditions, as is the case, e.g., in Condition 2 of Lemma 1). This
property of the Basic Lemma allows us, without loss of generality and for reasons of simplicity,
to present our protocols considering only one component. (Notice that the conditions that the
protocol must satisfy for each component in order to comply with the requirements of the Basic
Lemma are stronger than what is required from a single-component atomic register; therefore,
although we assume the existence of only one component, it is not the case that we reduce the
problem of multiple components to the single-component case.) So, indices of variables referring
to component numbers are not used in this and the next subsection. However for reasons of
completeness, in the description of the formal protocol given in Figure 3, we assume that there
is an arbitrary number of components.

In the bounded space protocol as well, we are going to keep the role of the reader as the
controller of the game. It still is the one who determines the subregister where the writer is
going to write. However, because the number of the subregisters must be bounded, instead of
forwarding a new subregister each time, the reader has to �nd an obsolete subregister which
will be forwarded to the writer after erasing its contents. We call this procedure of erasing the
contents of a subregister and its forwarding to the writer recycling of the subregister.

We keep the techniques used in the previous algorithm, that is: (i) The writer writes to
the memory location forwarded by the reader. (ii) The reader, by forwarding with its very �rst
sub-operation a recycled subregister, which it is not going to use again during the current read,
it succeeds to avoid reading component values written by write operations which start after its
own starting point. (iii) The reader in each read operation reads the remaining subregisters|
i.e. the entries of the array ML except from the entry corresponding to the subregister ML[i]
currently forwarded|in the reverse order from the one that they had been previously forwarded
to the writer.

Thus, the problem of designing a correct algorithm that uses a bounded number of sub-
registers is reduced to the problem of having the reader choose each time a provably obsolete
subregister for recycling. That means that we have to make sure that the following two condi-
tions are satis�ed:

Condition A: A read operation, when recycling, does not erase the component value that it

7

returns (this is required because this value must be available to the next read as well).

Condition B: A read operation r, when recycling, does not erase a component value written
by a subwrite (of a write operation) that follows the �rst subread of r from an entry of
ML of the corresponding component (again, in order to avoid the possibility of erasing a
value that must be available to the next read).

The way to guarantee the above conditions is described in the next two subsections. To make
the presentation more understandable, we chose to present �rst the case of a single-writer and
in the sequel the case of multiple writers.

3.2.1 The Single-Writer Case

The formal protocol for the single-writer bounded case is given in Figure 2. The initializations
of the variables are given at the end of the current Subsection 3.2.1

The reader, in its local memory, maintains an array ma[1::dim] of addresses of memory
locations (i.e., the entries ofma are pointers to entries of the arrayML). These are the addresses
of the memory locations recycled in the last dim read operations, in the order they appear in
the array. In other words, by the local array ma, the reader \remembers" the order in which a
number of dim memory locations are recycled and forwarded to the writer. For reasons to be
explained below, it turns out that the the value of dim must be at least 5. A read operation gets
the component value it returns by reading the locations with addresses ma[dim� 1]; : : : ;ma[1]
in this order (i.e. in the reverse order from the one that they were forwarded to the writer,
or otherwise in the most-recent-�rst order) until it �nds a value6=nil. This di�erent from nil

value is the component value the reader returns. The procedure recycle that follows these
subread operations stores into ma[dim] the address of the new location to be recycled (i.e.,
forwarded to the writer) in the next read operation. This address is chosen from the values of
ma[dim� 1]; : : : ;ma[1] and its contents are erased by the reader (i.e., the value nil is written to
it). If the address thus chosen is ma[j], the array ma[j]; : : : ;ma[dim] is cyclically rotated one
position to the left (thus ma[j] becomes the new value of ma[dim] and the previous value of
ma[dim] is now stored in ma[dim� 1]).

To guarantee Condition A, a read operation never recycles the location where it obtained
the value it returns. Thus, the value last obtained by the reader remains available for possible
future use (otherwise, the next read operation might be left with nothing to read).

To guarantee Condition B a read r must \know" which are the memory locations where a
component value by the writer might appear during r and after the �rst subread of r from ML.
These locations should not be recycled. The reader stores the addresses of these not-for-recycling
(forbidden) locations into local variables denoted by vb0 and vb1. In the next paragraphs we
explain how the reader decides which addresses should be stored into vb0 and vb1.

First, the shared variable PTR (where, in the unbounded case, the reader writes the memory
address it forwards to the writer) now has two �elds: one, called PTR:flagfield, is a boolean
ag; the other, called PTR:ptrfield, is a two-entry array storing two memory addresses both of
which are forwarded to the writer for possible use (however, at each read operation, only one
of the two entries of PTR:ptrfield gets a possibly new value). In order to write its component
value, the writer chooses one among the two entries in PTR:ptrfield according to the value of
PTR:flagfield it reads. Moreover, the writer maintains a shared boolean array WFLAG that
is read by the reader.

8

To be more speci�c, the writer �rst reads PTR and copies the value of PTR:flagfield to
WFLAG. Then it re-reads PTR and moves on to the memory address PTR:ptrfield[WFLAG],
where it writes the component value.

On the other hand, the reader, during an operation r, �rst updates the variable PTR. In
PTR:flagfield, it writes the complement of the value obtained from WFLAG in its previus

read operation (at the starting point of r, this complement is available through the reader's
local variable flag). In PTR:ptrfield[flag], it writes the address that in its previous operation
decided to recycle (i.e., the address in ma[dim]). The other entry of PTR:ptrfield gets the
same value it had before. Then the reader stores the value of WFLAG in its local variable flag
and moves on to scan the addresses stored in ma in order to decide, as explained above, which
value to return. Finally, it executes the `recycle' procedure and returns. During the procedure
`recycle', the reader, as explained above, chooses the address ma[j] to be recycled, erases the
value of the corresponding memory location and cyclically rotates the array ma[j]; : : : ;ma[dim].
Then, it complements the value of its local variable flag and updates the values of vbflag(:=
fptr[flag];ma[5]g) and ptr[flag](:= ma[5]).

The alternation of the values of the boolean variables, and the consequent alternation between
the two entries of PTR:ptrfield, where the writer gets the address it uses in order to write its
component value, guarantees that the reader has the correct knowledge about the forbidden
addresses which must be stored in vb0 and vb1. Indeed, suppose, w.l.o.g., that a read operation
r reads at its `read fromWFLAG' sub-operation the boolean value 0 and suppose that this value
was written to WFLAG by a write operation w. Let w+ be the write operation immediately
following w and let r0 be the last read operation preceding r that reads at its `read fromWFLAG'
sub-operation the boolean value 1. Notice that according to the protocol, r chooses for recycling
a memory address not in vb0 [fma[i];ma[dim]g. Also, vb0 is last updated during r0. Since the
�rst subread of r from ML (i.e., the subread from ML[ma[dim � 1]]) follows its subread from
WFLAG, it can be easily seen that a write operation that writes a component value during r and
after the �rst subread of r fromML must be either (i) w or (ii) w+ or (iii) a write operation that
started after the starting point of r. Also, the write operations (i){(iii) (given that they �nish
before the end of r) choose to write their respective component values in addresses obtained
from the variable PTR:ptrfield at an instant when this variable carries values written to it by
a read operation between r0 and r (r0 and r included). This is so because, since r0 reads the
value 1 from WFLAG, the `read from WFLAG' sub-operation of r0 must precede the `write to
WFLAG' sub-operation of w and hence it must precede the w's second reading of PTR as well.
Using this last fact and by an easy case analysis, it follows that the write operations (i){(iii)
(given that they they �nish before the end of r) choose addresses that are either in vb0 or are
equal to the value that ma[dim] has at the start of r. Therefore the component values of the
write operations (i){(iii) are not erased by r, and so Condition B is satis�ed.

Notice that according to the protocol, both vb0 and vb1 have at most two elements. Since
the address to be recycled must be chosen not to be in the set vbflag [fma[i];ma[dim]g and
since this set has at most four elements, the value of dim should be at least �ve.

We have proved that both Conditions A and B are satis�ed. Since we have assumed that
there is only one writer per component, the write operations on each component are linearly
ordered by !, therefore, it is now easy to show that both conditions of the Basic Lemma are
satis�ed.

The initialization of the shared variables is the following: ML[4] := a value (6=nil) from the
set of possible values of the component, and ML[i] :=nil, for i = 1; 2; 3; 5. PTR:flagfield := 0

9

and PTR:ptrfield := (4; 4). WFLAG := 0. Reader's local variables are initialized as follows:
vb0; vb1 := f4; 5g, ma[1]; : : : ;ma[5] := 1; : : : ; 5, flag := 0 ptr := (5; 5). All other variables are
arbitrarily initialized.

3.2.2 The Multiwriter Case

In this case it is assumed that there are m writers that may concurrently attempt modi�cations
to a component. For reasons explained in the introductory paragraphs of Subsection 3.2, we
still assume without loss of generality that there is only one component. The idea is to have
the reader interact with each writer (of each component) separately, while the order of its
actions remain the same as in the single-writer case. This necessitates the extension of the
�elds flagfield and ptrfield of the shared variable PTR to m-dimensional arrays, each entry of
which must contain, exactly as in the single-writer case, guidance information for one of the m
writers. However (for each component separately) and independently of the number of writers,
the shared array ML and the the local array ma (that correspond to each component) remain of
dimension 1. For reasons to be shortly explained though, their length changes from 5 to 2m+3.
The subregister PTR is again one atomic variable and is updated during the �rst sub-operation
of each read. It must be pointed out that during an invocation of the subroutine `recycle', a
unique memory location is recycled and forwarded to all writers. The address of this unique
location is written to all entries PTR:ptrfield[[flagfield][l]][l]; l = 1 : : : m (flag[l] is determined
by readingWFLAG[l]; index l refers to the lth writer of the component). Furthermore, for each
writer separately, the reader must know which are the memory locations where this writer might
write to, so that it does not recycle them. This is implemented by having the reader keep, for
each writer separately, two sets, each having as elements at most two possibly forbidden-to-be-
recycled memory addresses|exactly as in the single-writer case. During an invocation of the
procedure `recycle', for each writer, again only one of the two forbidden sets is considered active,
according to the value of the corresponding flag. It follows that in order to always have a spare
memory location to recycle, at least 2m + 3 memory locations should be kept in ma. We give
the formal protocol for this case in Figure 3 (in the formal protocol, we assume that the number
of components is arbitrary). The initialization of the variables is, for each component and for
each writer, analogous to the single-component, single-writer case (with 2m+ 3 in place of 5).

Proof of Correctness

Conditions A and B mentioned in the introductory paragraphs of Subsection 3.2 remain true,
because the communication (other than reading and writing component values) of the reader
with each writer is through separate variables. However, in the multiwriter case, in order to
show that the conditions of the Basic Lemma are satis�ed, we also need to de�ne a total order
) among the write operations of each component. Towards this, we �rst de�ne the tag of a
read r to be an integer whose value is equal to the number of read operations that precede r.
Whenever a memory location is recycled by a read r whose tag is t, we say that this memory
location gets associated with the tag t. This association is kept active until the location is
recycled anew; the association is then updated to hold with the tag of the new read invoking
the `recycle' subroutine. Also, we say that a write w is associated with a tag t, if the subregister
where w is going to write its component value is associated with the tag t at the moment when
the write of this value takes place.

Now, for each pair of write operations w and w0 de�ne w) w0 if w and w0 are associated to
tags t and t0, respectively, and either (a) t < t0 or (b) t = t0 and (consequently) w and w0 write

10

type Rtype = record flagfield : 0::1; ptrfield :array[0::1] of 1::5; end;
var PTR : Rtype; WFLAG : 0::1; ML : array[1::5] of valtype;

/*Shared variables declaration*/

procedure writer /*writes u : valtype*/
var d; e : Rtype; m : 1::5; u : valtype;
begin

read d from PTR; write d:flagfield to WFLAG;
read e from PTR; m := e:ptrfield[d:flagfield]; write u to ML[m];

end

procedure reader /*returns a : valtype*/
var ptr : array[0::1] of 1::5; flag : 0::1;

ma : array[1::5] of 1::5; i : 1::5;
vb0; vb1 : set of 1..5; a : valtype;

procedure recycle
var j : 1::5;
begin

choose j such that ma[j] 62 vbflag [fma[i];ma[5]g;
rotate one position to the left ma[j]; : : : ;ma[5];
ML[ma[5]] :=nil; flag := not flag;
vbflag := fptr[flag];ma[5]g; ptr[flag] := ma[5];

end;

begin

write (flag; ptr[0::1]) to PTR; i := 5;
read flag from WFLAG;
repeat

i := i� 1; read a from ML[ma[i]];
until a 6=nil;
recycle; return a;

end

Figure 2: The protocol for the single-writer, single-component, bounded space case.

11

type Rtype = record flagfield : array[1::c][1::m] of 0::1;
ptrfield : array[0::1][1::c][1::m] of 1::2m+ 3; end;

var PTR : Rtype; WFLAG : array[1::c][1::m] of 0:::1; ML : array[1::c][1::2m + 3] of valtype;
/*Shared variables declaration*/

procedure reader /*returns array[1::c] of valtype*/
var vb0; vb1 : array[1::c][1::m] of sets of 1..2m+3; i : 1::2m + 3; k : 1::c;

ptr : array[0::1][1::c][1::m] of 1..2m+3; flag : array[1::c][1::m] of 0::1;
ma : array[1::c][1::2m + 3] of 1..2m+3; a : array[1::c] of valtype;

procedure recycle(k : 1::c)
var j : 1::2m + 3;
begin

choose j such that ma[k][j] 62
Sm
l=1 vbflag[k][l][k][l]

S
fma[k][i];ma[k][2m + 3]g;

rotate one position to the left ma[k][j]; : : : ;ma[k][2m + 3];
ML[k][ma[k][2m + 3]] :=nil;
for l := 1 to m do

flag[k][l] := notflag[k][l];
vbflag[k][l][k][l] := fptr[flag[k][l]][k][l];ma[k][2m + 3]g;

ptr[flag[k][l]][k][l] := ma[k][2m + 3]; od;
end

begin

write (flag[1::c][1::m]; ptr[0::1][1::c][1::m]) to PTR;
for k = 1 to c do

for l := 1 to m do read flag[k][l] from WFLAG[k][l] od;
i := 2m+ 3;
repeat

i := i� 1; read a[k] from ML[k][ma[k][i]];
until a[k] 6=nil;
recycle(k); od;

return (a[1]; : : : ; a[c]);
end

procedure writer i /*writes u : valtype on component k*/
var d; e : Rtype; m : 1::2m + 3; k : 1::c; u : valtype
begin

read d from PTR; write d:flagfield[k][i] to WFLAG[k][i];
read e from PTR; m := e:ptrfield[d:flagfield[k][i]][k][i]; write u to ML[k][m];

end

Figure 3: The bounded memory-space protocol.

12

their component values to the same subregister and the corresponding subwrite of w precedes
the respective subwrite of w0 (according to the total order implied by the subregister atomicity).

It is obvious that) is compatible with !. It is also easy to show that Conditions 1 and 2
of the Basic Lemma are satis�ed. So we have proved:

Theorem 1 A single-reader, c-component, m-writer per component composite register can be

constructed using O(m � c) (i.e., linear in the number of processes) atomic, single-reader, multi-

writer subregisters and one atomic, multireader, single-writer subregister. The number of steps

for a read operation is linear in the number of processes, while a write operation has only four

sub-operations.

4 Sublinear Complexity Solutions under Assumptions

4.1 A Probabilistic Approach

In this subsection, we describe a randomized protocol which will satisfy the atomicity require-
ments, except that for each high-level read r there is an overwhelmingly small and controllable
probability that r will erase a value of a write that, otherwise, might have been read by a later
read (a run is atomic if we ignore such erased writes).

The idea is (again) to recycle the memory space (which is assumed bounded). The protocol
works essentially as in the deterministic case, except that the value to be written to PTR is
chosen randomly rather than through the subroutine `recycle'. To avoid, with high probability,
to recycle a memory location where a pending write operation may write, we assume that there
are su�ciently many locations that are candidates for recycling. The number of these locations,
l, is determined by the algorithm designer. The protocol is formally given in Figure 4.
Analysis of the protocol's behaviour

The protocol, in order to be correct, must guarantee that Conditions A and B of Subsection 3.2
are satis�ed.

Indeed, for the protocol under examination, note that a read operation never recycles the
location where it got the value it returns. Thus, Condition A is satis�ed. However, Condition B
is not deterministically satis�ed because it is possible for a read operation r to erase a component
value written after the �rst subread of r from ML by a write operation that started before the
start of r (we call such write operations overlapping erased writes). A run following our
randomized protocol is atomic if we ignore the overlapping erased writes. Notice, however,
that in the case of a single component and a single writer on it, for each read there is at most
one overlapping write that starts before the start of the read. The reader scans l � 1 memory
locations among which it chooses the one it recycles. It does not choose for recycling the location
where it obtains the value that it returns. Therefore the probability of erasing the value of an
overlapping write is at most 1

l�2 , where l is the number of memory locations (the value of l is
decided by the algorithm designer).

For the c-component, m-writer per component case, the reader chooses independent random
numbers in each component's window of memory. Taking into account that for each component
there are m locations where an overlapping erased write may appear, we get that the probability
for a read r not to erase an overlapping write on any one of the c components is at least (1� m

l�2)
c.

Choosing l = m � c � ! + 2, we get (by the Bernoulli Inequality) that:

13

var PTR : array[1::c] of 1::l; ML : array[1::c][1::l] of valtype; /*Shared variables declaration*/

procedure reader /*returns array[1::c] of valtype*/
var ptr : array[1::c] of 1::l; i : 1::l; ma : array[1::c][1::l] of 1::l; a : array[1::c] of valtype;
begin

write ptr[1::c] to PTR;
for k := 1 to c do

i := l;
repeat

i := i� 1; read a[k] from ML[k][ma[k][i]];
until a[k] 6=nil;
randomly choose j such that ma[k][j] 62 fma[k][i];ma[k][l]g;
rotate one position to the left ma[k][j]; : : : ;ma[k][l];
ML[k][ma[k][l]] :=nil; ptr[k] := ma[k][l]; od;

return (a[1]; : : : ; a[c]);
end

procedure writer /*writes u : valtype on component k*/
var w-ptr: array[1::c] of 1::l; u : valtype;
begin

read w-ptr from PTR; write u to ML[k][w-ptr[k]];
end

Figure 4: The probabilistic protocol.

14

Theorem 2 Our randomized protocol (for the case of c-components, m-writers per component)

has the property that for each read r the probability that r does not erase an overlapping write
is at least 1 � 1

!
, where ! = l�2

m�c
and l is chosen by the algorithm designer. Moreover, a run is

atomic if we ignore the overlapping erased writes.

Moreover, observe that our randomized protocol works even if the adversary can observe a
random bit the moment it is generated. This is so because if the choice of the memory location
where a write operation w will write its component value is made after the starting point of a
read operation r, then the memory location that w will choose does not depend on the random
number generated by the read operation r. If on the other hand, the choice of w is made before
the starting point of r, then, obviously, the random number to be generated by r is not known
to the operation w at the moment the choice is made.

We can further improve our probabilistic algorithm as follows: the reader instead of keeping
one memory address (ptr[k]) for each component, keeps a sequence ptr1[k]; : : : ; ptrq[k] of them,
where q is a constant to be chosen by the algorithm designer. These addresses are chosen
randomly and uniformly so that they are all di�erent from the location where the read gets the
value it returns and from the previous values of the ptr[k]'s. On the other hand, a writer of
the component k writes its value on the q memory locations it reads from PTR. Now observe
that a write can be erased by the one or more reads that overlap its subwrites. By an easy
counting argument, it can be proved that for any particular component, the probability for
such an error to take place is O(m(q=l)q) (l is the number of memory locations). Therefore by
the Bernoulli Inequality, the probability not to erase an overlapping write on any component is

((1�mc(q=l)q)). From that we get that:

Theorem 3 The space complexity of our improved probabilistic protocol as well as the time

complexity for a read operation are O(lc). The time complexity for a write is O(q) and the

probability for a read to erase an overlapping write is O(mc(q=l)q) (q and l are chosen by the

algorithm designer). A run is atomic if we ignore the overlapping erased writes.

As a remark, notice that if we choose q = l=m (that makes a read operation mc times slower
than a write operation, something to be expected since there is only one reader vs mc writers)
and if moreover we want a total error expectation of at most � in a number N of read operations
(� and N are given), then it is enough to choose l � m+m(logm(cN=�)). For example, if we have
100 components with 10 writers each, and if we want a total error expectation of :5% in, say
5�1014 read operations (if a read operation needs a nanosecond to be executed, then 5�1014 of
them, by the same reader, need at least �fteen years), then l must be at least 200, so the space
complexity of our construction is of the order of 20,000 registers (as it can be easily veri�ed, the
constants in the O complexity computations are very small).

4.2 An Approach under the Archimedean Assumption

It has been pointed out (see, e.g., [10] or [11]) that in real distributed systems, it is reasonable to
assume that the ratio of the rates of execution of elementary instructions for arbitrary pairs of
processes is bounded by a �xed constant. In other words, it is assumed that the clocks of any two
processes have a bound on their running rates. Systems complying with such a restriction are
called Archimedean (this assumption does not imply any restriction on the idle time intervals
between two high-level operations by the same process). In this section, we give a protocol for

15

var PTR : array[1::c] of 1::3; ML : array[1::c][1::3] of valtype; /*Shared variables declaration*/

procedure reader /*returns array[1::c] of valtype*/
var ptr : array[1::c] of 1::3; i : 1::3; ma : array[1::c][1::3] of 1::3; a : array[1::c] of valtype;
begin

write ptr[1::c] to PTR;
busy wait for A steps;
for k := 1 to c do

i := 3;
repeat

i := i� 1; read a[k] from ML[k][ma[k][i]];
until a[k] 6=nil;
choose j such that ma[k][j] 62 fma[k][i];ma[k][3]g;
rotate one position to the left ma[k][j]; : : : ;ma[k][3];
ML[k][ma[k][3]] :=nil; ptr[k] := ma[k][3]; od;

return (a[1]; : : : ; a[c]);
end

Figure 5: The protocol for the Archimedean case.

a composite register under the Archimedean assumption. Our construction has the interesting
property that both its space and time complexity are independent of the number of processes
and are both linear only on the number of components. Moreover, the time complexity of a
write operation is an absolute constant.

To formalize the above notions, we assume that there is a global time-reference system,
which however is not known to the processes (this is not an essential restriction; it is proved
in [9] that under some quite general assumptions any system has such a global-time model).
Therefore, with every operation (low- or high-level) there is associated a �nite time interval, its
duration. Now, our assumption of Archimedean time states that there is a �xed integer A0

such that for any two high-level operations a and b and for any time interval I within which a
completes the execution of A0 elementary instructions, if b starts before I does, then b completes
the execution of at least one elementary instruction before the end of I. It must be pointed out
that by elementary instructions we mean instructions at the lowest level (e.g., assignments of
variables, tests, calculations of logical or arithmetical expressions, etc.) Observe, however, that
for any particular implementation of subregisters, a constant A can be found, (depending on
A0 and this implementation) such that if within I, a executes A elementary instructions, then
b will complete at least one sub-operation (subread or subwrite) before the end of I.

The idea of our construction is the following: As explained in the previous subsection, a basic
di�culty for a read r in selecting a memory location to be recycled is to avoid anML[x] where x
is an old value of PTR that a \slow" write w (i.e. one that overlaps r and which started before
the start of r) read in the past. If such an x is chosen, then the value of ML[x] can be erased
after w writes on it, thus the next high-level read may miss values. Notice, however that such a w

16

must have started before the start of r. So, by the Archimedean-time assumption, if we require
from r to do busy-waiting for a su�cient number of its clock ticks, before it starts reading the
ML[x]'s and after it has written on PTR, we can guarantee that r will see all writes that are to
write on an ML[x] with x 6= ptr. We give the formal protocol for the reader in Figure 5. Notice
that although there is a busy-wait instruction, the length of this wait is constant (independent
of the length of any other operation), therefore the protocol is \wait-free". The protocol for the
writer is exactly the same as in the probabilistic case. So, we have:

Theorem 4 Under the Archimedean assumption, a single-reader, c-component, m-writers per

component composite register can be constructed with time and space complexities independent

of the number of processes. Speci�cally, the number of subregisters is 3c + 1, the number of
sub-operations of a read operation is at worst 2c+ 1, while a write has only two sub-operations.

5 Conclusion

We have dealt with the problem of designing objects (data structures) shared by asynchronous,
wait-free readers and writers. We examined the case of a shared array that must be atomically
read by a single reader while each entry of the array is written by a set of writers. Constructions
for the more general problem of multiple readers were known. However, the complexity of the
extant solutions, even for the case of a single-reader, is at best quadratic. In this paper, we gave
a solution that for the single-reader case has linear space complexity, linear time complexity
for a read, and constant time complexity for a write. Moreover, again for the single-reader,
multiwriter per component case, we gave probabilistic algorithms with very small, controllable
probability of error. These algorithms have sublinear space complexity and also sublinear time
complexity for a read. The time complexity for a write is still constant. Finally, we examined a
model of limited asynchrony known as Archimedean. For this model, we gave a protocol whose
both time and space complexity do not depend on the number of processes. They are linear in
the number of entries of the shared array (the time complexity of a write is still constant).

Acknowledgments

We thank Marina Papatrianta�llou for her help in improving the presentation of this paper. We
also thank the referees for their helpful comments.

References

[1] K. Abrahamson, \On achieving consensus using a shared memory," Proceedings of the 7th

ACM Symposium on Principles of Distributed Computing (ACM Press, New York), pp.
291{302, 1988.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, \Atomic snapshots
of shared memory," Proceedings of the 9th ACM Symposium on Principles of Distributed

Computing (ACM Press, New York), pp. 1{14, 1990.

[3] J.H. Anderson, \Composite registers," Proceedings of the 9th ACM Symposium on Princi-

ples of Distributed Computing (ACM Press, New York), pp. 15{30, 1990.

17

[4] J. Aspnes and M. Herlihy, \Fast randomized consensus using shared memory," Journal of

Algorithms 11, pp. 441{461, 1990.

[5] J. Aspnes and M. Herlihy, \Wait-free data structures in the asynchronous PRAM model,"
Proceedings of the 2nd Annual ACM Symposium on Parallel Architectures and Algorithms

(ACM Press, New York), pp. 340{349, 1990.

[6] M. Herlihy, \Randomized wait-free concurrent objects," Proceedings of the 10th ACM Sym-

posium on Principles of Distributed Computing (ACM Press, New York), pp. 11{21, 1991.

[7] M.P. Herlihy and M. Wing, \Linearizability: a correctness condition for concurrent objects,"
ACM Transactions on Programming Languages and Systems 12, pp. 463{492, 1990.

[8] L.M. Kirousis, P. Spirakis, and Ph. Tsigas, \Simple atomic snapshots: a solution with un-
bounded time stamps", Advances in Computing and Information | ICCI '91, Proceedings

of International Conference on Computing and Information (Lecture Notes in Computer
Science, Springer-Verlag, Berlin), pp. 582{587, 1991.

[9] L. Lamport, \On interprocess communication, part i: basic formalism, part ii: basic algo-
rithms," Distributed Computing 1, pp. 77{101, 1986.

[10] J.H. Reif and P. Spirakis, \Real-time synchronization of interprocess communication," ACM
Transactions on Programming Languages and Systems 6, pp. 215{238, 1984.

[11] P. Vit�anyi, \Distributed elections in an Archimedean ring of processors," Proceedings of

the 16th Annual ACM Symposium on Theory of Computing (ACM Press, New York), pp.
542{547, 1984.

18

