
Evaluating The Performance of Non-Blocking
Synchronisation on Shared-Memory Multiprocessors�

Philippas Tsigas
Department of Computing Science
Chalmers University of Technology

SE-412 96 Göteborg,Sweden

tsigas@cs.chalmers.se

Yi Zhang
Department of Computing Science
Chalmers University of Technology

SE-412 96 Göteborg,Sweden

yzhang@cs.chalmers.se

ABSTRACT
Parallel programs running on shared memory multiproces�
sors coordinate via shared data objects�structures� To en�
sure the consistency of the shared data structures� programs
typically rely on some forms of software synchronisations�
Unfortunately typical software synchronisation mechanisms
usually result in poor performance because they produce
large amounts of memory and interconnection network con�
tention and� more signi�cantly� because they produce con�
voy e�ects that degrade signi�cantly in multiprogramming
environments� if one process holding a lock is preempted�
other processes on di�erent processors waiting for the lock
will not be able to proceed� Researchers have introduced
non�blocking synchronisation to address the above prob�
lems� Non�blocking implementations allow multiple tasks
to access a shared object at the same time� but without en�
forcing mutual exclusion to accomplish this� However� its
performance implications are not well understood on mod�
ern systems or on real applications� In this paper we study
the impact of the non�blocking synchronisation on paral�
lel applications running on top of a modern� �	 processor�
cache�coherent� shared memory multiprocessor system� the
SGI Origin 
���� Cache�coherent non�uniform memory ac�
cess �ccNUMA
 shared memorymultiprocessor systems have
attracted considerable research and commercial interest in
the last years� In addition to the performance results on a
modern system� we also investigate the key synchronisation
schemes that are used in multiprocessor applications and
their e�cient transformation to non�blocking ones� Eval�
uating the impact of the synchronisation performance on
applications is important for several reasons� First� micro�
benchmarks can not capture every aspect of primitive per�

�This work is partially supported by� i
 the national
Swedish Real�Time Systems research initiative ARTES
�www�artes�uu�se
 supported by the Swedish Foundation for
Strategic Research and ii
 the Swedish Research Council for
Engineering Sciences�

formance� It is hard to predict the primitive impact on
the application performance� For example� a lock or barrier
that generates a lot of additional network tra�c might have
little impact on applications� Second� even in applications
that spend signi�cant time in synchronisation operations�
the synchronisation time might be dominated by wait time
due to load imbalance and lock serialisation in the applica�
tion� which better implementations of synchronisation may
not be helpful in reducing� Third� micro�benchmarks rarely
capture �generate
 scenarios that occur in real applications�

We evaluated the bene�ts of non�blocking synchronisation
in a range of applications running on top of modern realiza�
tions of shared�memory multiprocessors� a �	 processor SGI
Origin 
���� In this evaluation� i
 we used a big set of appli�
cations with di�erent communication characteristics� mak�
ing sure that we include also applications that do not spend
a lot of time in synchronisation� ii
 we also modi�ed all the
lock�based synchronisation points of these applications when
possible� The goal of our work was to provide an in depth
understanding of how non�blocking can improve the per�
formance of modern parallel applications� More speci�cally�
the main issues addressed in this paper include� i
 The archi�
tectural implications of the ccNUMA on the design of non�
blocking synchronisation� ii
 The identi�cation of the basic
locking operations that parallel programmers use in their
applications� iii
 The e�cient non�blocking implementation
of these synchronisation operations� iv
 The experimental
comparison of the lock�based and lock�free versions of the re�
spective applications on a cache�coherent non�uniform mem�
ory access shared memory multiprocessor system� v
 The
identi�cation of the structural di�erences between applica�
tions that bene�t more from non�blocking synchronisation
than others� We selected to examine these issues� on a �	
processor SGI Origin 
��� multiprocessor system� This ma�
chine is attractive for the study because it provides an ag�
gressive communication architecture and support for both in
cache and at memory synchronisation primitives� It should
be clear however that the conclusions and the methods pre�
sented in this paper have general applicability in other real�
izations of cache�coherent non�uniform memory access ma�
chines� Our results can bene�t the parallel programmers in
two ways� First� to understand the bene�ts of non�blocking
synchronisation� and then to transform some typical lock�
based synchronisation operations that are probably used in
their programs to non�blocking ones by using the general
translations that we provide in this paper�



Experiments and Main Results
The SGI Origin 
��� that we used has �	 ���MHz MIPS
R����� CPUs with 	MB L
 cache and ����GB main mem�
ory� We used a large group of applications� some of which are
from the SPLASH�
 ��� suite� and some of which were devel�
oped more recently and constitute the shared memory part
of the Spark�� kernels suit ���� More speci�cally from slash
we used the following applications� i
 Ocean� ii
 Volrend� iii

Radiosity� iv
 Water�Nsquared� v
 Water�Spatial� Because
we wanted to make the evaluation on realistic problem sizes
for these multiprocessors� we selected large problem sizes
that do not favour synchronisation� but still as we will show
later the improvements were signi�cant for most applica�
tions� Generally� the larger the problem size the lower the
frequency of synchronisation relative to computation� After
studying the applications that we had selected� we iden�
ti�ed the lock�based high level synchronisation operations
that they use� As a next step� we proposed a set of e��
cient lock�free implementations for these synchronisations�
The description of the implementations are general enough
and can be used in other parallel applications� These im�
plementations together with the detailed modi�cations for
each application can be found in the full paper �
��

The results from our experiments show that� �
 For Ocean
there was no signi�cant improvement after the modi�cation�
but� the non�blocking synchronisation do not hamper the
performance of Ocean� Ocean is a regular application with
very regular communication patterns and below �
 proces�
sors� the synchronisation time does not contribute much to
the total execution time� Because the ocean application re�
quires the number of processes to be power of 
� we could
only do the experiments for up to �
 processors� 

 For Ra�
diosity there was no big di�erence between the two versions
�lock based one and non�blocking one
 until we reached �

processors where synchronisation became a signi�cant part
of the total computing time� With �
 processors� the non�
blocking version is about �	� faster than the lock�based one
and as the number of processors increases the improvement
on the performance also increase reaching a ��� better per�
formance when using �� processors� the maximum number
of processors that we could use exclusively for running this
application� The access patterns to shared data structures
in Radiosity are highly irregular� �
 For Volrend the perfor�
mance advantages of the non�blocking synchronisation start
to show as the number of processors becomes greater than
�� The performance of the non�blocking one is close to opti�
mal since its speed up is very close to the theoretical limit�
Volrend�s inherent data referencing pattern on data that are
written is migratory� while its induced pattern at page gran�
ularity involves multiple producers with multiple consumers�
	
 For the Spark�� applications� due to the limited time for
exclusive use that we had we performed the experiments for
up to 
� processors for this application� The results� clearly
show the power of non�blocking synchronisation for unstruc�
tured applications like this one� The speedup of the lock�
based programs stops when we go above �� processors while
the non�blocking one continues to scale uniformly� This al�
lows us to conjecture that non�blocking will dramatically in�
crease the performance of these applications as the number
of processors increases� �
 In Water�nsquared and Water�
spatial the communication patterns and the sharing of the
data is very simple� A process updates a local copy of the

particle accelerations as it computes them� and accumulates
into the shared copy once at the end� This simple commu�
nication pattern does not give the opportunity to lock�free
synchronisation to show its power� On the other hand� the
experiments show that lock�free synchronisation does not
harm the performance of the applications� The lock�free
versions of both applications perform as well as the respec�
tive lock�based ones�

To conclude� i
 For the fairly wide range of applications ex�
amined� non�blocking synchronisation performs as well� and
often better than the respective blocking synchronisation�
ii
 For certain applications� the use of non�blocking syn�
chronisation yields great performance improvement� Fig�
ure � describes graphically the maximum speedup of the
lock�free and the respective lock�based implementation for
each of our implementations� With �� processors� the non�
blocking version of radiosity is about two times faster than
the lock�based one� non�blocking Volrend is about � times
faster that the lock based one� Irregular applications ben�
e�t the most from non�blocking synchronisation� Since the
importance of such applications is likely to increase in the
future� the importance of lock�free synchronisation in high�
performance parallel systems is also expected to increase�
iii
 The methods that we introduced to replace lock based
synchronisations are quite simple and general to be used in
many parallel applications�

Figure �� Speedup

1. REFERENCES
��� D� R� O�Hallaron� Spark��� Sparse matrix kernels for

shared memory and message passing systems� Technical
Report CMU�CS�������� CMU� �����

�
� P� Tsigas and Y� Zhang� Evaluating the performance of
non�blocking synchronisation on modern
shared�memory multiprocessors� Technical Report

����
� Department of Computing Science� Chalmers
University of Tech�� 
���
�http���www�cs�chalmers�se��tsigas�papers�TR
����
�
�pdf
�

��� S� Woo� M� Ohara� E� Torrie� J� Singh� and A� Gupta�
The splash�
 programs� Characterization and
methodological considerations� In Proceedings of ISCA
���� pages 
	���� �����


