Evaluating The Performance of Non-Blocking
Synchronisation on Shared-Memory Multiprocessors’

Philippas Tsigas
Department of Computing Science
Chalmers University of Technology

SE-412 96 Goteborg,Sweden

tsigas@cs.chalmers.se

ABSTRACT

Parallel programs running on shared memory multiproces-
sors coordinate via shared data objects/structures. To en-
sure the consistency of the shared data structures, programs
typically rely on some forms of software synchronisations.
Unfortunately typical software synchronisation mechanisms
usually result in poor performance because they produce
large amounts of memory and interconnection network con-
tention and, more significantly, because they produce con-
voy effects that degrade significantly in multiprogramming
environments: if one process holding a lock is preempted,
other processes on different processors waiting for the lock
will not be able to proceed. Researchers have introduced
non-blocking synchronisation to address the above prob-
lems. Non-blocking implementations allow multiple tasks
to access a shared object at the same time, but without en-
forcing mutual exclusion to accomplish this. However, its
performance implications are not well understood on mod-
ern systems or on real applications. In this paper we study
the impact of the non-blocking synchronisation on paral-
lel applications running on top of a modern, 64 processor,
cache-coherent, shared memory multiprocessor system: the
SGI Origin 2000. Cache-coherent non-uniform memory ac-
cess (ccNUMA) shared memory multiprocessor systems have
attracted considerable research and commercial interest in
the last years. In addition to the performance results on a
modern system, we also investigate the key synchronisation
schemes that are used in multiprocessor applications and
their efficient transformation to non-blocking ones. Eval-
uating the impact of the synchronisation performance on
applications is important for several reasons. First, micro-
benchmarks can not capture every aspect of primitive per-

*This work is partially supported by: i) the national
Swedish Real-Time Systems research initiative ARTES
(www.artes.uu.se) supported by the Swedish Foundation for
Strategic Research and ii) the Swedish Research Council for
Engineering Sciences.

Yi Zhang
Department of Computing Science
Chalmers University of Technology

SE-412 96 Goteborg,Sweden

yzhang@cs.chalmers.se

formance. It is hard to predict the primitive impact on
the application performance. For example, a lock or barrier
that generates a lot of additional network traffic might have
little impact on applications. Second, even in applications
that spend significant time in synchronisation operations,
the synchronisation time might be dominated by wait time
due to load imbalance and lock serialisation in the applica-
tion, which better implementations of synchronisation may
not be helpful in reducing. Third, micro-benchmarks rarely
capture (generate) scenarios that occur in real applications.

We evaluated the benefits of non-blocking synchronisation
in a range of applications running on top of modern realiza-
tions of shared-memory multiprocessors, a 64 processor SGI
Origin 2000. In this evaluation, i) we used a big set of appli-
cations with different communication characteristics, mak-
ing sure that we include also applications that do not spend
a lot of time in synchronisation, ii) we also modified all the
lock-based synchronisation points of these applications when
possible. The goal of our work was to provide an in depth
understanding of how non-blocking can improve the per-
formance of modern parallel applications. More specifically,
the main issues addressed in this paper include: i) The archi-
tectural implications of the ccNUMA on the design of non-
blocking synchronisation. ii) The identification of the basic
locking operations that parallel programmers use in their
applications. iii) The efficient non-blocking implementation
of these synchronisation operations. iv) The experimental
comparison of the lock-based and lock-free versions of the re-
spective applications on a cache-coherent non-uniform mem-
ory access shared memory multiprocessor system. v) The
identification of the structural differences between applica-
tions that benefit more from non-blocking synchronisation
than others. We selected to examine these issues, on a 64
processor SGI Origin 2000 multiprocessor system. This ma-
chine is attractive for the study because it provides an ag-
gressive communication architecture and support for both in
cache and at memory synchronisation primitives. It should
be clear however that the conclusions and the methods pre-
sented in this paper have general applicability in other real-
izations of cache-coherent non-uniform memory access ma-
chines. Our results can benefit the parallel programmers in
two ways. First, to understand the benefits of non-blocking
synchronisation, and then to transform some typical lock-
based synchronisation operations that are probably used in
their programs to non-blocking ones by using the general
translations that we provide in this paper.

Experiments and Main Results

The SGI Origin 2000 that we used has 64 195MHz MIPS
R10000 CPUs with 4MB L2 cache and 15.5GB main mem-
ory. We used a large group of applications, some of which are
from the SPLASH-2 [3] suite, and some of which were devel-
oped more recently and constitute the shared memory part
of the Spark98 kernels suit [1]. More specifically from slash
we used the following applications: i) Ocean, ii) Volrend, iii)
Radiosity, iv) Water-Nsquared, v) Water-Spatial. Because
we wanted to make the evaluation on realistic problem sizes
for these multiprocessors, we selected large problem sizes
that do not favour synchronisation, but still as we will show
later the improvements were significant for most applica-
tions. Generally, the larger the problem size the lower the
frequency of synchronisation relative to computation. After
studying the applications that we had selected, we iden-
tified the lock-based high level synchronisation operations
that they use. As a next step, we proposed a set of effi-
cient lock-free implementations for these synchronisations.
The description of the implementations are general enough
and can be used in other parallel applications. These im-
plementations together with the detailed modifications for
each application can be found in the full paper [2].

The results from our experiments show that: 1) For Ocean
there was no significant improvement after the modification,
but, the non-blocking synchronisation do not hamper the
performance of Ocean. Ocean is a regular application with
very regular communication patterns and below 32 proces-
sors, the synchronisation time does not contribute much to
the total execution time. Because the ocean application re-
quires the number of processes to be power of 2, we could
only do the experiments for up to 32 processors. 2) For Ra-
diosity there was no big difference between the two versions
(lock based one and non-blocking one) until we reached 32
processors where synchronisation became a significant part
of the total computing time. With 32 processors, the non-
blocking version is about 34% faster than the lock-based one
and as the number of processors increases the improvement
on the performance also increase reaching a 93% better per-
formance when using 60 processors, the maximum number
of processors that we could use exclusively for running this
application. The access patterns to shared data structures
in Radiosity are highly irregular. 3) For Volrend the perfor-
mance advantages of the non-blocking synchronisation start
to show as the number of processors becomes greater than
8. The performance of the non-blocking one is close to opti-
mal since its speed up is very close to the theoretical limit.
Volrend’s inherent data referencing pattern on data that are
written is migratory, while its induced pattern at page gran-
ularity involves multiple producers with multiple consumers.
4) For the Spark98 applications, due to the limited time for
exclusive use that we had we performed the experiments for
up to 28 processors for this application. The results, clearly
show the power of non-blocking synchronisation for unstruc-
tured applications like this one. The speedup of the lock-
based programs stops when we go above 16 processors while
the non-blocking one continues to scale uniformly. This al-
lows us to conjecture that non-blocking will dramatically in-
crease the performance of these applications as the number
of processors increases. 5) In Water-nsquared and Water-
spatial the communication patterns and the sharing of the
data is very simple: A process updates a local copy of the

particle accelerations as it computes them, and accumulates
into the shared copy once at the end. This simple commu-
nication pattern does not give the opportunity to lock-free
synchronisation to show its power. On the other hand, the
experiments show that lock-free synchronisation does not
harm the performance of the applications. The lock-free
versions of both applications perform as well as the respec-
tive lock-based ones.

To conclude: i) For the fairly wide range of applications ex-
amined, non-blocking synchronisation performs as well, and
often better than the respective blocking synchronisation.
ii) For certain applications, the use of non-blocking syn-
chronisation yields great performance improvement. Fig-
ure 1 describes graphically the maximum speedup of the
lock-free and the respective lock-based implementation for
each of our implementations. With 60 processors, the non-
blocking version of radiosity is about two times faster than
the lock-based one; non-blocking Volrend is about 7 times
faster that the lock based one. Irregular applications ben-
efit the most from non-blocking synchronisation. Since the
importance of such applications is likely to increase in the
future, the importance of lock-free synchronisation in high-
performance parallel systems is also expected to increase.
iii) The methods that we introduced to replace lock based
synchronisations are quite simple and general to be used in
many parallel applications.

||:| Lock-based @ Monblocking

30
25
20
a
2
S 15
-3
@
10 4
5 -
D -+
i e el o
F \f‘& i:‘-g \.91!‘ 69? X &
N A
& m}é’ qﬂg-
&

Figure 1: Speedup

1. REFERENCES

[1] D. R. O’Hallaron. Spark98: Sparse matrix kernels for
shared memory and message passing systems. Technical
Report CMU-CS-97-178, CMU, 1997.

[2] P. Tsigas and Y. Zhang. Evaluating the performance of
non-blocking synchronisation on modern
shared-memory multiprocessors. Technical Report
2000-2, Department of Computing Science, Chalmers
University of Tech., 2000
(http://www.cs.chalmers.se/ " tsigas/papers/TR2000-
02.pdf).

[3] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The splash-2 programs: Characterization and
methodological considerations. In Proceedings of ISCA
’95, pages 24-36, 1995.

