
Non-blocking Data Sharing in Multiprocessor Real-Time Systems�

Philippas Tsigas and Yi Zhang

Department of Computing Science

Chalmers University of Technology

S-412 96 Göteborg, Sweden

<tsigas,yzhang>@cs.chalmers.se

Abstract

A non-blocking protocol that allows real-time tasks
to share data in a multiprocessor system is presented
in this paper. The protocol gives the means to concur-
rent real-time tasks to read and write shared data; the
protocol allows multiple write and multiple read opera-
tions to be executed concurrently. Our protocol extends
previous results and is optimal with respect to space
requirements. Together with the protocol, its schedula-
bility analysis and a set of schedulability tests for a set
of random task sets are presented. Both the schedula-
bility analysis and the schedulability experiments show
that the algorithm presented in this paper exhibits less
overhead than the lock based protocols.

1. Introduction

In any multiprocessing system cooperating processes
share data via shared data objects. In this paper we
are interested in designing shared data objects for co-
operative tasks in real-time multiprocessor systems.

The challenges that have to be faced in the design of
inter-task communication protocols for multiprocessor
systems become more delicate when these systems have
to support real-time computing. In real-time multipro-
cessor systems inter-task communication protocols i)
have to support sharing of data between di�erent tasks
e.g. on an operational �ight program (OFP), tasks
like navigation, maintaining of pilot displays, control
of and communication with a variety of special pur-
pose hardware, weapon delivery, and so on; ii) must
meet strict time constraints, the HRT deadlines; and

�Partially supported by ARTES, a national Swedish strategic
research initiative in Real-Time Systems and TFR the Swedish
Research Council for Engineering Sciences.

iii) have to be e�cient in time and in space since they
must perform under tight time and space constraints.
A nice description of the �ne challenges that inter-task
communication protocols for real-time systems have to
address can be found in [11].

The classical, well-known and most simple solution
enforces mutual exclusion. Mutual exclusion protects
the consistency of the shared data by allowing only
one process at time to access the data. Mutual ex-
clusion i) causes large performance degradation espe-
cially in multiprocessor systems [12]; ii) leads to com-
plex scheduling analysis since tasks can be delayed be-
cause they were either preempted by other more urgent
tasks, or because they are blocked before a critical sec-
tion by another process that can in turn be preempted
by another more urgent task and so on. (this is also
called as the convoy e�ect) [2]; and iii) leads to priority
inversion in which a high priority task can be blocked
for an unbounded time by a lower priority task [4]. Sev-
eral synchronisation protocols have been introduced to
solve the priority inversion problem for uniprocessor [4]
and multiprocessor [3] systems. The solution presented
in [4] solves the problem for the uniprocessor case with
the cost of limiting the schedulability of task sets and
also making the scheduling analysis of real-time sys-
tems hard. The situation is much worse in a multipro-
cessor real-time system, where a task may be blocked
by another task running on a di�erent processor [3].

Non-blocking implementation of shared data objects
is a new alternative approach for the problem of inter-
task communication. Non-blocking mechanisms allow
multiple tasks to access a shared object at the same
time, but without enforcing mutual exclusion to ac-
complish this. Non-blocking inter-task communication
does not allow one task to block another task gives sig-
ni�cant advantages over lock-based schemes because:

1. it does not give priority inversion, avoids lock con-



voys that make scheduling analysis hard and de-
lays longer.

2. it provides high fault tolerance (processor failures
will never corrupt shared data objects) and elim-
inates deadlock scenarios from two or more tasks
both waiting for locks held by the other.

3. and more signi�cantly it completely eliminates the
interference between process schedule and syn-
chronisation.

Non-blocking protocols on the other hand have to use
more delicate strategies to guarantee data consistency
than the simple enforcement of mutual exclusion be-
tween the readers and the writers of the data object.
These new strategies on the other hand, in order to be
useful for real-time systems, should be e�cient in time
and space in order to perform under the tight space
and time constraints that real-time systems demand.

In this paper, we present an e�cient non-blocking
solution to the general readers/writers inter-task com-
munication problem; our solution allows any arbitrary
number of readers and writers to perform their respec-
tive operations. With a simple and e�cient mem-
ory management scheme in it, our protocol needs
n + m + 1 memory slots (bu�ers) for n readers and
m writers and is optimal with respect to space re-
quirements. Sorencen and Hemacher in [8] have proven
that n + m + 1 memory slots (bu�ers) are necessary.
Together with the protocol its schedulability analysis
and a set schedulability tests for a set of random task
sets are presented. Both the schedulability analysis
and the schedulability experiments show that the al-
gorithm presented in this paper exhibits less overhead
than the lock based protocol. Our protocol extends
previous results by allowing any arbitrary number of
tasks to perform read or write operations concurrently
without trading e�ciency. In previous work, Simpson
[6], presented a non-blocking asynchronous protocol
for task communication between 1 writer and 1 reader
which needs 4 bu�ers. Chen and Burns [7] presented a
non-blocking synchronous protocol for n readers and 1
writer that needs n+1+1 bu�ers. Kopetz and Reisinger
[2] also presented a non-blocking synchronous protocol
for n readers and 1 writer that contains a mechanism to
con�gure the number of bu�ers to the application re-
quirements, trading memory space for execution time.
We also believe that the memory management scheme
that we introduce in this paper and use in our pro-
tocol is of interest and can be used as an independent
component with other non-blocking shared data object
implementations.

The rest of this paper is organised as follows. In
Section 2 we give a description of the basic character-

Processor 1

Local Memory

Real-Time Interconnection Network

Shared Memory

Processor 2

Local Memory

Processor n

Local Memory

I/O

Figure 1. Shared Memory Multiprocessor Sys-
tem Structure

istics of a multiprocessor architecture and describe the
formal requirements that any solution to the synchroni-
sation problem that we are addressing must guarantee.
Section 3 presents our protocol. In Section 4, we give
the proof of correctness of the protocol. Section 5 is de-
voted to the schedulability analysis and schedulability
experiments that compare our non-blocking protocol
with the lock-based one. The paper concludes with
Section 6.

2. Problem Statement

2.1. Real-time Multiprocessor System Configura-
tion

A typical abstraction of a shared memory multipro-
cessor real-time system con�guration is depicted in Fig-
ure 1. Each node of the system contains a processor
together with its local memory. All nodes are con-
nected to the shared memory via an interconnection
network. A set of cooperating tasks (processes) with
timing constraints is running on the system perform-
ing their respective operations. Each task is sequen-
tially executed on one of the processors, while each
processor can serve (run) many tasks at a time. The
cooperating tasks now, possibly running on di�erent
processes, use shared data objects build in the shared
memory to coordinate and communicate. Every task1

has a maximum computing time and has to be com-
pleted by a time speci�ed by a deadline. Tasks synchro-
nise their operations through read/write operations to
shared memory.

2.2. General Reader/Writer Problem

In this paper we are interested in the general
read/write bu�er problem where several reader-tasks

1throughout the paper the terms process and tasks are used
interchangably



(the readers) access a bu�er maintained by several
writer-tasks (the writers). There is no limit on the
length of the bu�er that can be increased by the writers
on-line depending on the length of the data that they
want to write in one atomic operation. This shared
data object can be used to increase the word length of
the system.

The accessing of the shared object is modelled by
a history h. A history h is a �nite (or not) sequence
of operation invocation and response events. Any re-
sponse event is preceded by the corresponding invoca-
tion event. For our case there are two di�erent opera-
tions that can be invoked, a read operation or a write
operation. An operation is called complete if there is
a response event in the same history h; otherwise, it
is said to be pending. A history is called complete if
all its operations are complete. In a global time model
each operation q �occupies" a time interval [sq ; fq] on
one linear time axis (sq < fq); we can think of sq and
fq as the starting and �nishing time instants of q. Dur-
ing this time interval the operation is said to be pend-
ing. There exists a precedence relation on operations in
history denoted by <h, which is a strict partial order:
q1 <h q2 means that q1 ends before q2 starts; Oper-
ations incomparable under <h are called overlapping.
A complete history h is linearisable if the partial order
<h on its operations can be extended to a total order
!hthat respects the speci�cation of the object [1]. For
our object this means that each read operation should
return the value written by the write operation that
directly precedes the read operation by this total order
(!h).

To sum it up as we are looking for a non-blocking
solution to the general Read/Writer problem for real-
time systems we are looking for a solution that satis�es
that:

� Every read operation guarantees the integrity and
coherence of the data it returns

� The behaviour of each read and write operation
is predictable and can be calculated for use in the
scheduling analysis

� Every possible history of our protocol should be
linearisable.

We assume that writer-tasks have the highest priority
on the host processor and no two writer-tasks execute
on one host processor. Two writer-tasks may overlap
but no write processes can be preempted by another
process. Reader processes may have di�erent priorities
and may be scheduled with the writer process on the
same processor. This is because writer-tasks usually

Compare_and_Swap(int *mem, register old, new)

{

temp = *mem;

if (temp == old)

{

*mem = new;

new = old;

}

else

new = *mem

}

Figure 2. The Compare_and_Swap atomic
primitive

interact with the environment (e. g. sampler for tem-
perature or pressure), and they are of high prioritiy. To
the best of our knowledge the above assumption holds
in most real-time systems.

3. The Protocol

3.1. Idea description

Our construction divides the memory into memory
slots and uses a pointer that points to the slot with
the latest written data. Each slot has a �ag �eld used
by the special memory management mechanism in the
protocol. Through this mechanism, i) writers can �nd
a safe slot to write without corrupting the slots from
where overlapping readers are getting their values and
ii) readers �nd the slot with the latest information.

In the worst case, n readers occupy n slots to read
and m writers allocate m slots to write and the pointer
points to another slot. So, in total we need at most
n +m + 1 slots for our protocol. In [8], Sorensen and
Hemacher showed that n+m+1 slots is necessary for
this problem.

3.2. Protocol Description

Our protocol uses the instructions Com-
pare_and_Swap2 and Fetch_and_Add. The re-
spective speci�cations of these instructions are shown
in Figure 2 and Figure 3. Most multiprocessor systems
either provide these primitives or provide others that
can be used to emulate these primitives.

2IBM System 370 was the �rst computer system that intro-
duced Compare_and_Swap



int Fetch_and_add(int *mem, int increment)

{

temp = *mem;

*mem = *mem + increment;

return temp

}

Figure 3. TheFetch_and_Add atomic primitive

Figure 4 presents commented pseudo-code for our
nonblocking protocol. We use n + m + 1 =
TASKS0NUM + 1 slots. Each slot has a �eld, called
`used' that is used by the memory management layer
of our protocol. There are a number of values that
this �eld can carry, these values together with an in-
formal description of the associated information can be
described as follows:

� k = 0 : indicates that the writer has �nished writ-
ing in the respective slot but no reader has read it
yet

� k > 0: indicates that this is the slot with the most
recent value and there are k readers reading this
slot at this moment

� �(n +m + 1) < k < 0: indicates that this is not
the slot with the most recent value but there are
k+(n+m+1) readers currently reading it. These
readers started their operations long ago when this
slot had the most recent value

� k = �(n +m + 1): indicates that this is not the
slot with the most recent value and that there is
no reader reading it; the combination of these two
makes it ideal for a writer to allocate this slot to
its current operation and use it

� k = �2(n + m + 1): indicates that a writer has
allocated this slot and is currently writing in it

The read/write protocol can be described informally
as follows.

A writer runs the following steps whenever it wants
to write data into the object:

1. First, it allocates a free slot from the slots with
�ags entry k = �(n + m + 1). The writer uses
Compare_and_Swap to read and change the �ag
from k = �(n + m + 1) to k = �2(n + m + 1)
in one atomic operation, in this way if several
writers want to allocate the same slot, the Com-
pare_and_Swap atomic operation available at a

structure readwrite_buf

{

data: array[LENGTH_BUF] of Character;

used: integer;

/*-2*TASK'NUM means allocated & writing data

-TASK' NUM means slot is free

-TASK' NUM +1 � -1 means slot is free but

with readers accessing it

0 means validate data */

} LF_buffer /* Lock-free buffer */

workbuf: array[TASK' NUM+1] of LF_buffer

dataptr: pointer to LF_buffer

function newbufcell(): pointer to LF_buffer

for i=0 to TASK' NUM

if (cas(work_buf[i].used,

-TASK' NUM ,-2*TASK' NUM )

return &work_buf[i]

return NULL

function initdata

for i=0 to TASK' NUM

work_buf[i].used=-TASK' NUM

dataptr=work_buf[0]�

function writebuf(data: pointer to datatye)

temp = newbufcell()

/* allocate a new buffer cell for write */

writingsth(temp,data)

/* write data into new buffer cell */

temp.used=0

/* means data valid in the cell */

swap(dataptr,old,temp)

/* use cas to achieve non-blocking write */

faa(old->used, -TASK'NUM )

/* if no reader then it will change to

-TASK' NUM */

function readbuf(): pointer to datatype

/* use fetch and add to mark

that current block is in use. */

loop

reading=dataptr

until (faa(reading->used,1)>(-TASK'NUM))

/* increase used by 1 if

it is greater than -TASK' NUM

it can not be recycled*/

return=readingsth(reading)

faa(reading->used,-1)

Figure 4. The Structure and Operations de-
scription for our non-blocking shared object



hardware level will guarantee that only one will
succeed.

2. Then, it writes the data that it wants to write
into that slot. If one reader tries to access that
slot during this writing, the reader will give up
and will be forced to try again as we will see in
the readers protocol description.

3. After the writing has �nished, the writer changes
the �ag entry of that slot from k = �2(n+m+1)
to 0 .

4. As a next step the writer changes the data pointer
variable to this new slot (so that consequent reads
�nd a pointer to the fresh value) with the atomic
primitive Swap and gets the pointer to the old slot
at the same time.

5. Finally, the writer changes the �ag entry of the old
slot from k > 0 to k < 0 by subtracting n+m+1.

A reader performs the following steps during each read
operation:

1. reads the data pointer variable to get a pointer to
the slot with the most recently written value

2. uses the atomic primitive Fetch_and_Add to get
and to add 1 on the value k of the �ag entry of
that slot

3. there are three possibilities for the value that the
fetch_and_add will return to the reader

(a) k � 0, the slot has the most recent value writ-
ten by all writers until now, and the reader
can return this value, so go to 5 to get the
value

(b) 0 > k � �(n + m + 1), the slot has the
most recent value with respect to this spe-
ci�c reader from the linearisabilty point of
view and the reader can return this value, so
go to step 5 to get the value.

(c) k < �(n+m+1), the slot has been �recycled�
by some writer and the data that the slot
holds is invalid

4. goto step 1

5. reads the data out of the slot

6. uses the atomic primitive Fetch_and_Add with
value -1 to change the value k of the �ag entry of
the slot

flag
=-(n+m+1)

flag=
-2(n+m+1)

Allocate
Slot for
write

flag=0

Last step 
ofa write

flag > 0

Reader directed to 
slot increments flag

0>flag>
-(n+m+1)

Last Reader Leave
the slot

Slot is in 
"Writable" State

Slot is in 
"Readable" State

Data pointer 
Points to the Cell

Data pointer 
Points to another Cell

Pointer Change

Each reader increments
flag by one and reader 

that return decrement by one

Flag Changed by Writer Flag Changed by Reader

Last Reader Leave
the slot

Reader directed to 
slot increments flag

Each reader increments
flag by one and reader 

that return decrement by one

Figure 5. Slot state changing graph

A description of the di�erent states that a slot can be
in, together with the description of the actions that
cause the change of these states, is depicted in Figure
5.

From the above description, it is easy to check that
the protocol: i) guarantees continuous �ow of infor-
mation from the writers to the readers, without any
blocking; ii) makes it possible to add or remove read-
ers and writers on the �y without any change to the
protocol of the other tasks; and iii) does not require
information about how big the bu�er has to be.

4. Correctness

4.1. Model and Definitions

In [9] one can �nd a formalism for the notion of the
atomic bu�er and the global time assumption that we
adopt. We assume that each operation Op has a time
interval [sOp; fOp] on a linear time axis. We can think
of sOp and fOp as the starting and �nishing times ofOp.
Moreover, we assume that there is a precedence relation
on operations which is a strict partial order (denoted
by `<h'). Semantically, a <h b means that operation
a ends before operation b starts. If two operations are
incomparable under <h, they are said to overlap.

A reading function RB for a bu�er B is a function
that assigns a write operationW to each read operation
R on B, such that the value returned by R is the value
written by W . It is assumed that there exists a write
operation, which initialises the bu�er B, that precedes
all other operations on B.

A complete history on a bu�er is an execution of an
arbitrary number of operations according to its pro-
tocol. With the linearisability de�nition described in
section 2.2, a complete history on a bu�er B is lin-



earisable if there is a total order !h on the set of all
the operations of the run such that: (i) The total or-
der !h extends the precedence relation <h, (ii) every
read operation r returns a value which is equal to the
value written by a write operation that directly pre-
cedes r in the total ordering !h. An implementation
of a bu�er is linearisable if all its complete histories are
linearisable.

4.2. Correctness Proof

In this subsection will show that any complete his-
tory is linearisable. Our proof uses a widely used
lemma in the area that can be found also in [10].

Lemma: A complete history h is linearisable i� there
exist a function mapping each operation in h to
a rational number such that the following three
conditions are satis�ed:

Precedence if one operation precedes another,
then the value of the latter is at least that of the
former

Uniqueness di�erent write operations have di�er-
ent numbers

Integrity for each read operation there exists a
write operation with the same value which it
doesn't precede.

Now we associate a tag �eld with the pointer variable
that associates a tag value to each value that is written
in this variable in the following way: every time a write
operation updates the pointer with a swap operation
the tag is increased by one. The tag �eld and variable
are auxiliary and are introduce only to help the proof.

Now, it is easy to associate a tag value to each write
operation and each read operation in a way that guar-
antees the above mentioned conditions. A write opera-
tion is associated with the tag value that it writes and
a read operation is associated with the tag value that
it read when it read the pointer variable; in this way
di�erent write task are associated to di�erent values
(tag values only increase) and read tasks are associ-
ated with the respective write operations that wrote
the values that they return.

Theorem Each complete history of our protocol is lin-
earisable.

5. Schedulability Analysis

5.1. Worst Case Analysis

As we mentioned in Section 2 we assume that writers
have the highest priority on the nodes where they are
running. In our protocol i) write operations are guar-
anteed to �nish independently from interleaving with
other task operations after a �nite number of steps;
ii) read operations are subject to retry under certain
circumstances. A read operation might have to retry
only if there are more than two write operations con-
currently with it. An overlap between a reader oper-
ation and other read operations does not cause reader
to retry. In this section we will estimate the number
of steps that a read operation will need, in the worst
case, before it �nishes; any write operation will �nish
after 5 steps.

For our analysis we will use the following notation:

� Pw: period of the writer

� Ci: Compute time of task i

� Tr: read latency caused by one retry

� Di: the deadline of task i

� Ni: maximum number of interventions

� Wi: the worst case executing time of task i

Because tasks on di�erent processors are decoupled,
the scheduling problem for a multiprocessor system is
converted to the scheduling problem on several uni-
processor systems. If we can �nd out the worst case ex-
ecuting time of each task then we can use any schedul-
ing algorithm for uni-processor systems to schedule
them.

If there exist a schedule that every reader task meets
its deadline, then the max number of interventions for
each read operation is bounded by

Ni =
l

Di

2�Pw

m
The worst case execution time of task i can then be

represented as

Wi = Ci +Ni � Tr = Ci +
l

Di

2�Pw

m
Tr

5.2. Rate-Monotonic

Once the worst case execution time of task i has
been determined, the schedulability for a multiproces-
sor system can be worked out as follows:

On each processor, there is a set of periodic tasks.
These tasks are assigned priorities according to their



periods, Ti. Higher priority tasks can preempt lower
priority tasks. Then, a set of n periodic tasks can be
scheduled by the rate-monotonic algorithm if the fol-
lowing condition is met:

nX
i=1

�
Wi

Ti

�
< n(21=n � 1)

where

Wi = Ci +Ni � Tr = Ci +

�
Ti

2 � Pw

�
Tr

5.3. Scheduling experiment

We conduct the following scheduling experiments:
In the �rst experiment all tasks need to access to
the multi-word bu�er. There are �xed number of writ-
ers that write to the bu�er with period Pw. Every
reader task needs the same computing time and all
tasks have the same deadline and period. We try, in
the experiments, to schedule as many reader tasks as
possible. All the experiment parameters are listed as
following:

Ci: Compute time of task i: 800usec

Trw: Read/Write bu�er time: 100usec

Di: the deadline of task: 10msec

Tr: read latency caused by one retry: 10usec

Pw: period of the writer: 1msec

Pr: period of the reader: 10msec

bcnt : the number of bu�ers for the message, used
by Kopetz's protocol: 4

For the non-blocking algorithm, we calculate the worst
case execution time:
Wi = Ci +

l
Di

2�Pw

m
Tr = 800 +

�
10

2�1

�
� 10 = 850usec

In this experiment, we compare our algorithm with a
lock-based algorithm. The lock-based protocol is using
PCP to avoid Priority inversion. Figure 6 shows the
result of the schedule simulation. The solid line rep-
resents the ideal number of reader tasks based on the
lock algorithm that can be scheduled and the dashed
line represents that of our non-blocking protocol. As it
can be seen, the schedulability of our non-blocking pro-
tocol is the same as or better than the other protocol
all the time.
In the second experiment, we consider di�erent
randomised computing times for di�erent reader tasks.
All parameters except the computing time for the

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 T

as
ks

number of processors

Schedulability

Lock
New Non-blocking

Figure 6. Fixed computing time schedule ex-
periment

reader tasks are the same as the �rst experiment. The
worst case execution time for the non-blocking algo-
rithm is calculated with the equation in section 5.2.
We create two sets of randomised computing time tasks
with di�erent random seeds. Figure 7 shows the re-
sult of two task sets. The results also show that with
randomised computing time our non-blocking protocol
also gives better scheduling results compared to the
lock-based one.

6. Conclusion

In this paper, we presented a non-blocking protocol
that allows real-time processes to share data in a multi-
processor system. The protocol provides the means for
concurrent real-time tasks to read and write the shared
data; the protocol allows multiple write and multiple
read operations to be executed concurrently. Together
with the protocol its schedulability analysis and a set of
schedulability tests are given. Both the schedulability
analysis for a task set and the schedulability experi-
ments show that the algorithm presented in this paper
exhibit less overhead than the lock based protocols.

The space requirements of our protocol is the
same with the lower bound shown by Sorencen and
Hemacher [8]. Our protocol only needs n+m+1 mem-
ory slots where n is the number of readers that perform
their read operations concurrently and m is the num-
ber of writers that can write concurrently. Our proto-
col extends previous results by allowing any arbitrary
number of tasks to perform read or write operations
concurrently without compromising e�ciency.

We believe that the memory management scheme
that we introduce in this paper and used in our protocol
can be used as an independent component with other



0

20

40

60

80

100

120

140

2 4 6 8 10 12

N
um

be
r 

of
 T

as
ks

number of processors

Schedulability

Lock
New Non-blocking

0

20

40

60

80

100

120

140

2 4 6 8 10 12

N
um

be
r 

of
 T

as
ks

number of processors

Schedulability

Lock
New Non-blocking

Figure 7. Random computing time schedule
experiment

non-blocking shared data object implementations; we
are currently looking at it.

References

[1] Maurice P. Herlihy, Jeannette M. Wing

Linearizability: A Correctness Condition for
Atomic Objects, TOPLAS, 12(3), July 1990, pp.
463-492

[2] H. Kopetz, J. Reisinge The Non-Blocking
Write Protocol NBW: A Solution to a Real-Time
Synchronisation Problem, Proceedings of the Real-
Time Systems Symposium, 1993, pp. 131-137

[3] R. Rajkumar Real-Time Synchronization Proto-
cols for Shared Memory Multiprocessors 10th In-
ternational Conference on Distributed Computing
Systems, 1990, pp. 116-123

[4] L. Sha and R. Rajkumar, J. P. Lehoczky

Priority Inheritance Protocols: An Approach to
Real-Time Synchronization IEEE Transactions on
Computers Vol. 39, 9 (Sep.) 1990, pp. 1175-1185

[5] S. V. Adve, K. Gharachorloo Shared Mem-
ory Consistency Models: A Tutorial, IEEE Com-
puter, Dec. 1996, pp. 66-76

[6] H. R. Simpson Four-slot fully asynchronous com-
munication mechanism, IEE Proceedings, Jan.
1990, pp. 17-30

[7] J. Chen, A. Burns A Fully Asynchronous
Reader/Writer Mechanism for Multiprocessor
Real-Time Systems. Technical Report YCS-288,
Department of Computer Science, University of
York, May 1997.

[8] P. Sorensen, V. Hemacher A Real-Time Sys-
tem Design Methodology, INFOR 13, 1 (Feb.)
1975, pp. 1-18

[9] L. Lamport On interprocess communication,
part i: basic formalism, part ii: basic algorithms,
Distributed Computing, 1986, pp. 77-101

[10] M. Li, J. Tromp, P. Vitanyi How to share con-
current wait-free variables Journal of the ACM,
July 1996, pp. 723-746

[11] Stuart Faulk, David Parnas On Synchroniza-
tion in Hard-Real-Time Systems. Communication
of ACM, Vol. 31, Mar. 1988, pp. 274-287

[12] A. Silberschatz, Peter B. Galvin Operating
System Concepts , Addison Wesley, 1994.


