Wait-free snapshotsin real-time systems: algorithms and performance

Hans Hansson
Dept. of Computer Eng.

Andreas Ermedanhl
Dept. of Comp. Systems
Uppsala University
751 05 Uppsala, Sweden
E-Mail: ebbe@docs.uu.se

Malardalens University
721 23 \Asters, Sweden
E-Mail: han@idt.mdh.se

Abstract

Shap-shot mechanisms are used to read a globally con-
sistent set of variable values. Such a mechanism can be
used to solve a variety of communication and synchroniza-
tion problems, including system monitoring and control of
real-time applications. Methods based on locking (e.g.
using semaphores) are penalized by blocking, which typi-
cally leads to difficulties in guaranteeing deadlines of high
priority tasks. Lock-free methods, which take a snap-shot
and then checkiif it correspondsto a consistent system state,
have unpredictabl e timing-behavior, since they may have to
retry an unpredictable number of times. Clearly, a method
which combinesthe predictability of |ocking-based methods
with the low interference (no blocking) of lock-free methods
isdesirable.

In this paper we present one such method, based and
the concept of wait-freenessA wait-free method is a lock-
free method which is guaranteed to correctly complete in
a bounded number of steps. The price to pay for this pre-
dictability in the timing domain is the need for more than
one copy of the shared objects. In addition to proving our
method correct, we evaluate it analytically by formulat-
ing and comparing schedulability equations for snapshots
in systems using lock-based, lock-free, and our wait-free
method. We also outline ideas to study the effects of using
the different snapshot methods in distributed (CAN-based)
systems. Our evaluations indicate that our method is an
efficient and safe alternative to traditional lock-based and
lock-free methods.

Marina Papatriantafildu Philippas Tsigds
Department of Computing Science
Chalmers Univ. of Technol. anda&borg Univ.
412 96 Gteborg, Sweden
E-mail: {ptrianta, tsigas@cs.chalmers.se

1. Introduction

In most systems, access to shared resources and synchro-
nization among tasks is controlled kncking. Methods that
provide upper bounds on the time a higher priority task has
to wait for locks held by lower priority taskghe block-

ing time) have been introduced (e.g. the priority inheritance
protocol, the priority ceiling protocol, and the immediate
priority ceiling protocol [7, 14, 18, 20]). The key mecha-
nism in these protocols is to dynamically adjust priorities,
thereby avoiding situations in which a high-priority task is
delayed by lower priority tasks that have preempted a task
holding a lock for which the high-priority task is competing,
i.e. priority inversion. Priority inversion is a serious prob-
lem because it can make a task wait too long and miss its
deadline. A recent example is the priority inversion problem
in the Mars Pathfinder which caused the operating system to
repeatedly reset the system.

Avoiding locking: Wait-free and lock-free interprocess
communication/coordination permit access to concurrent
objects without the use of locking. Therefore, they elim-
inate the problem of priority inversion altogether. In the
lock-free approachprocesses (or tasks)! access shared ob-
jects concurrently without the use of locks. In cases with
overlapping accesses, some of them might have to repeat
the operation in order to correctly complete it. This implies
that there might be cases in which the timing may cause
some process(es) to have to retry a potentially unbounded
number of times, leading to a for hard real-time systems
unacceptable worst-case behavior. lwait-free protocol
each task is guaranteeddaorrectly complete any operation

in a bounded number of its own steps, regardless of over-

*This work is performed within the Advanced Software Technology [nd the ex ion f other or i whil
(ASTEC) competence center, supported by the Swedish board fortechnicatlapsi a kdft e execut Oh Spehetd Icl) othe dp Ocessgsa te . €
development (NUTEK) e lock-free approach might allow (under very bad timing)

tPartially supported by a grant of the Swedish Research Council forindividual processes to starve, wait-freedom strengthens the

Engineering Sciences (TFR) lock-free condition to ensure individual progress for every

tPart of this work has been done while this author has been a visit-
ing researcher at the Real-Time Systems Group, Department of Computer throughout the paper the termmocess andtask are used interchange-
Systems (DOCS), Uppsala University, Sweden ably.

task in the system. scan andupdate operations. Thetime complexity of an im-
Intuitively, both approaches imply that, for reasons of plementation is the maximum number of accesses to the

correctness and/or time-efficiency, there may be a need bottshared memory per operation, while space complexity is

for keeping more than one copy of the shared object andthe number of shared variables needed. We measure them

to have some form of coordination among the processesas @ function of the number of processes which share the

to direct readers and writers to the appropriate copy. Both COMPOSIte register.

methods offer guarantees not only regarding efficiency, but The lock-free and wait-free conditions are relevant to the

also regardindault-tolerance, as opposed to the traditional, timing of the the implementation; the basmrrectnesscon-

exclusion-based methods, i.e. they avoid situations in whichdition is linearizability [9] (atomicity). This condition re-

a process that crashed while holding a lock prevents otherquires that although operations may overlap in time, their

precesses from making progress.. effects must be the same as the effects of seegeential

Actually, the first suggestion for lock-free synchroniza- executio'n, i.e. that an external observer conclude that they
tion [12] and the wait-free approach to real-time commu- happenin sequence.
nication were first discussed at least two decades ago [21], o))
but was “lost” in the real-time systems community until re- OUr contribution:We build on previous work on the
cently, when it was revived by Kopetz and Reisinger [11], probl_em and. on wait-free implementations with appllcaj
followed by a series of interesting results and the consistentlions in real-time systems [10, 8] and we propose more effi-
research effort by Anderson et.al. (including [3]) and the cient wait-free protocols for scanning, updating, and the use

more recent work by Chen and Burns [8]. of this snapshot implementation for real-time systems ap-
propriate for automotive/avionics monitoring/control. We
The work presented in this paper addressesstiapshot make no assumptions about relative speeds of the differ-

problem, which involves taking an “instantaneous” picture ent system parts; hence, our solutions are appropriate for
of a set of variables, all in one atomic operation. The snap-completely asynchronous uniprocessor and multiprocessor
shot is taken by one task, tleeanner, while each of the systems.

shapshot variables may concurrently and independently be our wait-free protocols are based on the principal idea
updated by other processes (callegdaters). A snapshot of the deterministic solutions for one scanner task in [10],
object is also called aomposite register, consisting of a which leads to a wait-free snapshot implementation with-
number ofcomponents (indexed1 throughc), which con- gt imposing more than a minimal (constant) overhead per
stitute the entities which can be Updated and Snap'ShOt. WQdea‘[e and per scan Operation, retaining the (necessary) lin-
will use the two terms (snapshot object and composite reg-ear time complexity for the (single) scanner. This makes the
ister) interchangeably. protocol suitable for the considered application domains. To
Snapshot objects are particularly useful and important the best of our knowledge, none of the other wait-free pro-
tools for interprocess communication and coordination. tocols in the literature can achieve this performance for the
Since they can return to the scanner a consistent global statease of a single scanner process. Inspired by the work of
of the system, they can provide support for decision algo- Chen and Burns [8], we propose an enhancement by a sub-
rithms and they can also be used to solve a variety of com-protocol that achieves multiple-phase agreement between
munication and synchronization problems, e.g., consistencypairs of processes, using simple boold&ST& SET vari-
checking in transaction-based systems, distributed debug-ables [8]. Despite the fact that these variables have been
ging, stable property detection (deadlock, termination de- shown to have higher synchronization power than needed
tection, etc.), concurrent time-stamping, system monitoring for solving the problem in a wait-free manner in general
and control, including many real-time applications, such as systems [9], as we show, by using them, we have significant
automotive or avionics control systems [15, 17]. gain in the memory requirements and in the time-efficiency

It should be noted that lock/wait-freedom is a desired Of the solution, both of which are very important for em-
property of snapshot solutions not only because it avoids bedded rgal—nme systems. Moreover, thesg varlables'are al-
priority inversion, but because it enables the scanner to ob-Vays available and are not costly (cf. section 4). This en-

tain a consistent view of the systesithout freezing it. hancement enables significant savings in space (namely by
2n shared variables in a system witlprocesses) and time

(namely by at leas?n sub-operations per scan), compared
to the solution in [10].

We evaluate our algorithms analytically and we present
An implementation of a composite register (snapshot ob- the results of our experimental study and evaluation in
ject) consists of a data structure of appropriately initialized a simulated real-time system appropriate for automo-
shared variables and a set of procedures to implement thdive/avionics monitoring/control. The system consists of

Given its importance, the problem has been extensively
studied in the literature of wait-free protocols (cf. e.g. [1, 2,
5, 10])

CAN-bus-connected nodes, each of which is connected to
a set of devices, whose measurements activate the updats
in the system via 1/O controllers. The scan operations are
executed by a specific controller task in the system. We per-
form a comparative study and evaluation among lock-based
lock-free and our wait-free snapshot. Our results suggest
that our algorithms are promising, more efficient and safe
alternatives to lock-based algorithms for the above and sim-
ilar real-time applications, and that they do not really imply

additional cost to the system, compared to the lock-based
approach. Compared to the lock-free approach, our wait-

a) Scan can return a value from concurrent Updates that started befor SCAN started

L SCAN 1

' UPDATE / 1 @
b) Scan can return a value from the Update that immediately precedes it

SCAN :
UPDATE,
=1 !

:S

Component k lu_u_u—

Component k

¢) Scan NEVER returns a value from an Update that has been overwritten by an Update that sterted before scan started.

SCAN
UPDATE" @
Componentk | | 1 .

d) Scan NEVER returns ia value from an Update that started after the Scan started.

. . . I SCAN I
free solution not only provides stronger guarantees, but it

is also more predictable; i.e. retains its performance under
more frequent updates, when the lock-free scan may take
longer time.

@ @
L |] 1 1

Component k 1 Y —

Figure 2. The atomicity/linearizability criterion satisfied

. . by our wait-free solution
2. The wait-free snapshot solution

To get better intuition on the requirement on a consistent First consider the case where for each component there
snapshot, one must keep in mind that we do not want theiS only one updater (i.e. no concurrent updates in a com-
scan to return inconsistent values, e.g., values written byPonent); this is also the case in figures 3 and 4. To guar-
updates that have occurred after an already scanned valugntee the behavior required by the criterion that we infor-
has been updated. Figure 1 shows undesired behavior by &hally explained above, for each component there are sev-
scan (i.e. part of an inconsistent snapshot). In the figure the€ral shared variables (only 3 suffice, as we show later) to
horizontal lines represent the duration in time of the opera- hold the value of the component. All that an updater has
tions. If components, . record fuel level in two fuel tanks 10 do is to write its value where it is told to by the scanner
of a vehicle and the updates report consumption the Snap_through a pointer. With its fllrst sub-operation in each scan,
shot in figure 1 will erroneously lead to the conclusion that the scanner forwards a pointer for each component (array

the system has more fuel left than it actually does. NEXT in figure 4) to one of these sub-registers; by not read-
ing these sub-registers in the current scan, it achieves not to

return values written by write operations which start after
its own starting point (cf. fig. 2(a),(b),(d)). Moreover, by
reading the remaining sub-registers in e®tH-FER[k] in

the reverse order from the one that they were forwarded (by
the previous writes oONEXT) in previous scans and by re-
turning for each componetthe first non-empty value, it
achieves to return non-overwritten values ((cf. fig. 2(c)).

To guarantee that this will work as intended, the scanner
must make sure that when it chooses a sub-register to for-
ward, that sub-register is not about to be used by an update
that started earlier and was guided to write there. Failing

The snapshot protocol presented here is based on the folyg o so, the scanner may miss updates. Therefore, there
lowing idea: if each scan returns for each componenta valuemyst be soméracing involved, so that acan, before de-
which is not overwritten (cf. figure 2(c)) and which is writ- ciding which sub-registers will be forwarded in the next in-
ten by an update which started before the start of the scan,gcation ofscan (and before “clearing” those sub-registers),
(cf. figure 2(a,b)), then the solution satisfies an atomicity knows which are the “dangerous” ones. For this, each scan
criterion [2, 10] that enables us to argue for each compo- pjays a “tracing” game for each componehtt detects the
nent separately and hence leads to a more modular proofstart of an update operation after the last scan. The trac-
The criterion and the proof that the solution satisfies are pre-jng game is based on a multiple-phase agreement between
sented formally in section 5. For the following paragraphs pairs of processes, using simple bool@&ST& SET vari-
and the intuitive understanding of the solution, the reader gples [8]. To remember the “dangerous” sub-registers (be-

SlW()L"(j I(EEGEF) in |T1in(j thfit tf1€5 "1tuit“/€3 [)rEES(Er]tEiti()n of th(E Si(jees tr1€3 one most rEECEEntI)/ f()rVVEir(jfEd), it kEEEEF)S an Eirrfi)/
criterion is summarized in figure 2.

UPDATE

—l

UPDATE

Component k
SCAN returnsfor k, |

©

Component |

Figure 1. Aninconsistent snapshot

/ variables shared among scanner, updater processes /
varBUFFER: array [1..c][1..3] of shared valtype; procedure scan(): array [1..c] of valtype
/ the actual value-holders / vark : 1..c; /local variables /
NEXT: shared array [1..c] of 1..3; prep_next[1..c]: staticint;
/index variable: the scanner guides the updaters / last_read_value[1..c]: static valtype;
PREF_SCAN, PREF_UPDATE: array [1..c] of shared 1..3; order[1..c][1..3]: static 1..3;
/ index variables for the tracing game / scanner remembers the order to scan the subregisters /
SMTU: array [1..c] of shared boolean;
/ Scanner Must Trace Updater procedure read_registers(k : 1..c): valtype
TS: array [1..c] of shared Test& Set boolean; [auxiliary procedure to find last value for componént
begin
procedure update(k : 1..3, val : valtype) fori=2,..1do / read componemt’s, subregisters /
/ update procedure for componént tmp := READ(BUFFER[k][order [k][4]);
var copy-next[1..k], wptr : 1..3 ; / local variables / /... in the reverse order that they were forwarded /
begin if trnp # nil return(tmp) end.if
RESET(T'S[k]); end_for
SMTU:= 1, return(last.read.valuek]);
copy-next:= READ(NEXT); end
WRITE(PREF_UPDATE[k] := copy-next[k]);
if TEST& SET(T'S|k]) then procedure rearrange.order (k : 1..c)
wptr := copy_next[k]; / copy.next[k] equalsPREF.UPDATE[k] / / auxil. procedure to prepare componérgtructure for next scan /
else begin
wptr := READ(PREF_SCAN[k]); {setprep_next[k] s.t. # prep_next[k]A # prewv.trace[k]};
end.if / prepareNEXT to forward in next scan /
WRITE(BUFFER[k][wptr] := val); {I€ft-rotate the values iorder[k][z] , ...,order[k][3],
end whereorder[k][z] = prep_next[k]}
/i.e. order[k][3] := prep-next[k]; /

[also keep the order to useriead. registers next time /

end
Figure 3. Wait-free snapshot (S|'ngle updater per compo- begin / main body for procedure scan
nent, ¢ components): Shared variables and updateproce- WRITE(NEXT:= prep.next);
dure fork=1,...,cdo

| for each componeri do /
last_read_value[k] := read registers(k);
if SMTU[k] = 1then

prev_trace. Roughly speaking, in théth entry of this ar- ‘ »
/ then must trace update; elpeev tracelk] remains as it is /

ray, the scanner keeps information about which of the three SMTUJK] := 0;
sub-registers iBUFFER[k] will the mc_)st_recently started WR|TE(pRE|’:_g;AN[k} = prep_next[k));
update to théith component use to write its value. / prep_next[k] equalsNEXT[£] /
h h h il ks th if TEST& SET(T'S[k]) then
In the case where there are multiple tasks that may con-| prev_tracelk] := prep.next[k];
currently update a component (say,updaters per compo- | prep_next[k] equalsPREF_SCAN[k] /
nent), the basic idea of the algorithm remains the same. The else
scanner, in order to keep track of their actidnggractswith engrief"-”ace[k] = READ(PREF_UPDATE[K]);
each updater separately, while the order and the reason- end.if
ing of its actions remains the same as in the single-update rearrange order (k);
case. This necessitates the extension of each data structure WRITE(BUFFER[K][prep-next[k]] := nil);
for each component into an array, each entry of which is to end.for / must “clean” it before the next scan
give guidance or trace information to/from a specific scan- rew}naaeread_value);

ner. It also necessitates the availability of one value-holder| end
sub-registerfor each concurrent update for each compo-
nent; hence, for each component now we needthEFER
array to be of dimensiom + 2, instead of 3 which was
the case for the single updater per component. It must be
pointed out that, during eadean, a unique sub-register is
forwarded to the updaters of each componierds before.

It is the asynchrony among the updaters that necessitateg_Analytical evaluation
tracing each one separately, hence having situations of
“dangerous” sub-registers for a component.

Figure 4. Wait-free snapshot (single updater per compo-
nent, ¢ components): The scanprocedure

In this section we define equations to calculate the over-
head that each type of snapshot implementation imposes

to the RT-system. We then analytically compare our wait- task will be reading (see the code in figure 3 and 4). For
free snapshot algorithm with lock-based and lock-free im- other memory accesses no modifications are needed, but
plementations. We will focus on uniprocessor systems evenwe have to add two extra buffers for each component of
though our wait-free algorithm also can be used, without the composite register (snapshot object). The response time

modifications, in a multiprocessor system. equation forall tasks becomes:

We assume that we havetasks in the system, indexed R
t ...t,. Fortaskt; we will use the standard notatioff, R =C} + Z {Tﬂ) 2)
C;, R;, D; and B; to denotes the period, worst case exe- jehp(i) | I

cution time, worst case response time, deadline and block- o
ing time (the time the task can be delayed by lower priority Where the execution time; for all tasks except the snap-
tasks), respectively. Alsdp(i) andhp(i) denote the set of shot task has been extended to include the extra time to do
tasks with less and higher priority than taisk andpri(i) update operations instead of write operations, i.e:

denotes the priority of task. We usecs(i) to denote the /

" . C:Cz i,update Cu ae_erie 3
set of critical sectiorfsthat taski; accesses); , to denote i + 1 update * (Cupdat te))
the worst case execution time. for tazgldq critical. gection and for the snapshot task,,,,:

s, andceil(s) to denote the ceiling priority of critical sec-

tion s. The ceiling priority is the highest priority of any C! =Ci+niscan * (Cscan — Cread) (4)
task that may access the critical section. Finally, to estimate
how much other tasks will be affected by the snapshot, we

. L ock-based pr Is: In a lock- r | h
letn; ,, denote the number of times taskmakes the oper- ock-b protocols a lock-based protocol, eac

ationop andC,, denote the worst case execution time for component of the composite register (snapshot object) con-
making the opoé)rationp sists of one atomic sub-register that holds the value of the
' component and has a lock associated with An update
For a system to be safe, no task should miss its deadlinesy, st get the lock of the component that it wants to update
i.e.Vi| R; < D;. The response timg&; for atask inthe pefore writing the new value to the sub-register. A scan
initial system can be calculated using the standard responsen st get the locks of all the sub-registers (i.e. nfesize all

time analysis [6] as: the updaters) before reading the components values. During
R the actual reading time there is no overlapping write (they
R;=C; + [—’-‘ C; (1) have to wait for the locks), hence the snapshot obtained is
jehp(i) T; consistent.

As mentioned in the introduction, the use of locking
must be accompanied by the use of an appropriate method
to prevent priority inversion. The priority ceiling proto-

ol (PCP) [14] and the immediate priority ceiling protocol

IPCP) [20] ensure that a tagkcan only be blocked (or de-
layed) at most byne critical section of any lower priority
ask locking a semaphore with ceiling greater than or equal
o0 the priority of task.

The summand in the formula gives the time that tasiay

be delayed by higher priority tasks. As noted before, we
assume a uniprocessor system and to simplify the formu-
las we assume that tasks have no jitter, can be preempte
at arbitrary points during their execution, has unique prior-

ities (given in a deadline monotonic order), do not experi- ;
ence blocking, and that there are no overheads for context[
switching or interrupt handling. We also assume that one of

the tasks in the system acts as a snapshot task,,sgy but When having lock-based snapshot in the system, both
in the original system doesn’t have any mechanism to get aPCP and IPCP have a response time formulaafbtasks
consistent snapshot. like:

In the following subsections we estimate the overhead, , R;| .,
both ont,,, and on the other tasks in the system, that each Ri=Ci+Bi+ . Z {TJ G (5)
type of snapshot implementation will impose to the original j€hp(i)

system. As we shall see baft) andC; will be changed. where

The Wait-Free Protocol: The cost for running our wait-
free implementation of the snapshot algorithm is easily
bounded. We only have to add the extra computation time gnd

to each task for performing memory accesses, (iead or

write) needed to determine and control where the snapshot Ci = Ci + Nitake * Crake + Nirer * Crei (7)

i = MAT{ s | jelp(i) A sees(s) A ceil(s)>pri(i) }Cjs (6)

2throughout this section we often abuse the teritical section to also 3Another solution is to have a unique lock for all the components, but
denote “access to shared data” even in the lock-free and wait-free cases this would reduce the concurrency even further.

and take andrel are the operations to take and release where
semaphores, respectively. The maximum blocking tiBye,

which a taski can wait for a lower priority task to execute,

is calculated by investigating all tasks with lower priority

than task and all the semaphores that these tasks can Iock.for the snapshot ta,%”“” '))
For those semaphores with a ceiling higher than or the same The summand in the outer formula (8) gives the time
as the priority of task, the maximum blocking time is the ~ that the scan can be delayed by higher priority tasks and

longest computation time a lower priority task might exe- the summand in the inner formula (9) gives an upper limit
cute in a critical section. on how much time the snapshot task might spend in retry

In a uni-processor system we can exploit the priority loops. _
structure of the tasks so that semaphore taking and releas- Ve note thatC’; can become quite large for the snap-
ing can be implemented using just priority changes. But ?hOt tas_k when we are spending time in retry |00p§_ E_ach
still these priority changes will be costly concerning execu- {ime R is recalculated, the worst possible computation time
tion time when they will be implemented using operating Must also be recalculated. Actually, Equation 9 is very pes-
system calls. If we implement the snapshot task as a lowSIMIStic, in that it for each preemphon.of a potent|allly in-
priority task most high priority tasks will also experience terfering task assumes the worst-case interference (i.e., that

Cz{l = Cz + erite + Cread + Ccompare (10)

large amount of blocking.

L ock-free Protocols: A very simple lock-free snapshot im-

the scan has to be restarted immediately before it success-
fully completes). It shall be noted that it is only tasks with
priority lower than the snapshot task that will have modified

plementation, with minimal overhead in each update and response times. This should be compared to the lock-based

memory requirements is the following:

Each component of the composite register (snapshot ob-
ject) consists of one atomic sub-register that holds the value
of the component, asin thelock-based case. In addition, the
implementation requires a boolean variable NOTE, shared
by the scanner and all the updater tasks. On each update,
before writing the new value to its component, the updater
makes a “ note” (by writing the value 1 to NOTE). A scan
starts to take the snapshot by resetting NOTE to 0 and sub-
sequently reading the values of all the components; it then
checks whether there have been overlapping updates (by
checking the value of NOTE) and decides whether it should
retry.

For estimating the worst case response time for the snap
shot task assume that the snapshot task gets preempted (
a higher priority task) when it is almost finished, i.e., the
scan is invalidated just before it successfully complete.

We can observe that a high priority task which restarts
the snapshot will never restart it more than once during the
same instance, since it will execute until completion be-

approach, where all tasks except the ones with lowest prior-
ity are penalized.

The major disadvantage with lock-free snapshot imple-
mentations is that the risk for repeated retries, especially
when we are running the scan at low priority (and running
it at a high priority will penalize a larger set of tasks).

Schedulability Testing: To evaluate which snapshot im-
plementation gives highest chance for schedulability, we
started by creating a system without a snapshot mechanism,
but with a snapshot task,,,, that just reads the snapshot
values without providing any guarantee that they are consis-
tent. In the evaluation we only use task sets, including such
atsnap task, that are schedulable using the schedulability

6§I)rmula Q).

Three different systems using the three different snap-
shot mechanisms (lock, lock-free and wait-free) are then
added and new schedulability tests are performed on each
system.

We use high priority tasks with relatively short execu-

fore the snapshot task (which executes at lower priority) cantion time ;) to model I/O-devices. In our evaluation, we

restart.
The response time formula therefore becomes:
R
Ri=Ci+ Y {Tl o (8)
jenp(i) | Y

fixed the number of tasks and 1/O-devices and their frac-

tion of the system load, but varied the total system load.

The values assumed for scanning, reading, etc. were fixed
assuming (pessimistically) that the wait-free operation for

reading a value will take the same time as taking/releasing
a semaphore. Th€;, P;, D; andcs(i) parameters for each

whereC] = C; for tasks that do not access the snapshot task were randomly generated between specified limits. The
memory,C} = C; + C\yrite fOr tasks that accesses snapshot parameters used are given in figure 6. The analysis results

memory and

Ci=C!+

> [ﬁ G (9)

Is|j€hp(i)As€cs(i)AsEes(]) J

are presented in figure 5 (a) and (b).

The result clearly indicates that for the parameters used
both the wait-free and lock-free methods outperform the
lock-based one. Other observations from this and related

Low Priority Snapshot Task Medium Priority Snapshot Task
T T T T

T
LOCK —— LOCK —-—
LOCK-FREE -+-- LOCK-FREE -+--
WAIT-FREE -&-- 3 WAIT-FREE -&--
t

Schedulability Probability
Schedulability Probability

Loy g

. " . .
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6
CPU Load CPU Load

(a) low priority snapshot task (b) medium priority snapshot task

I
0.8 1

Figure 5. Schedulability admission tests for system with the parameters given in figure 6.

experiments is that when the number of small tasks or the B (. e NODE
number of snapshot values increases the lock-free method H
deteriorates, since the chance of repeated retries increases.

INTERNA
BUS

In the lock-based method the blocking for high priority caneus
tasks increase with the number of snapshot values, hence

MEMORY

larger number of values gives lower chance of schedulabil- %

ity. %% CAN-BUS

4. Experimental evaluation Figure 7. A CAN-based architecture with four micro-

controllers

We are currently performing a simulation study, in which

we compare our wait-free snapshot algorithm with the lock- . o) .]

based and lock-free methods outlined in Section 3. that the fixed priority response time equations can be easily
extended for analysis of CAN-bus message delays.

Experimental Architecture: The basic component of our We assume that the tasks in each node read values from

experimental architecture is a micro-controller with sev- the sensors as well as produce values that other tasks can
eral I/0O-devices, one CPU (without cache) and RAM mem- use in their computations. The hardware supports Test&Set
ory. Furthermore, we assume a real-time operating systenoperations (used by the wait-free snapshot) and the oper-
which supports preemption, that the 1/0O-devices produce ating system provides the semaphores needed for the lock-
values by reading sensors regularly, and that they interruptbased schemes. We further assume that only the most re-
the CPU when they need I/O transfer from the device to cent sensor value can be buffered at the corresponding 1/O-
memory. Upon an interrupt, the CPU executes the codedevice, that the interrupt handlers (I/O-controllers) have pri-
given in a user-provided interrupt routine. ority over application tasks, and that higher priority inter-
We also extend our study to the case of several noded'UPts can preempt lower priority interrupts.
connected via an interconnection network, e.g., a CAN-
bus, which is the network we will consider. Basically, the Snapshot in a single node system: The simulations will
CAN-bus arbitration works as a priority driven scheduler, be made using a discrete event simulator written in the pro-
where the highest prioritized message at any of the con-gramming language Erlang [4]. A selection of the same
nected nodes will be transmitted. The CAN-bus is broadcastscenarios generated for the schedulability tests will be sim-
bus on which all nodes conceptually receive all messages si-ulated to get an average performance. To estimate the cost
multaneously. On each node, network accesses are handleititroduced by adding a snapshot task, the average comple-
by a CAN controller, which can be seen as an I/O-processortion time for tasks, the maximum number of missed writes
for message handling. When a message arrives, the CPland average extra delay on other tasks due to an added snap-
is notified by an interrupt. Tindell et.al. [22] have showed shot task will be measured.

Fixed values Varying values Min Max Min Max
Number of tasks 10 Cread, Cuwrite 2 Task accesses to cs 1 100| Task Deadline D;) 20000 50000
Number of devices 4Q Tasks Tot CPU load 90% Device accesses to cs 1 2 Device CompTime 10 20
Csemtakes Csemrer 10 | Device Tot CPU load 10% Task CompTime;) 100 2000 | Device Period 50 1000
Cscan, Cupdate 10 | Analysis per Load 100 Task Period P;) 2000 50000 Device Deadline 500 2000

Figure 6. Schedulability analysis parameters

Snapshot in CAN-multiple-node systems:. We will also The wait-free approach: In response to the “scan-start”
extend our study to snapshots in multiple micro-controller message, th&VRITE(N EXT := prep_next;) is executed
CAN-bus connected systems, assuming that the scannein each component and the process responsible for the scan
task is running in one of the controllers in the system and in each node is activated to execute the scan on the local
that the snapshot involves all the I/O devices and sensorscomponents, after which it reports the values to the global
in the system. When the scanner takes a snapshot it sendscanner. The difference in the initiation time between dif-
a shapshot-request message (with high or low priority, de-ferent nodes can safely be assumed (cf. CAN-behavior de-
pending on how urgently the snapshot is needed) on thescription earlier in this section) to be smaller than the time
CAN-bus. This message will reach all the nodes at almostit takes an update to complete uninterrupted, hence the cor-
the same time and each CAN-controller will raise an inter- rectness of the solution is guaranteed (cf. also section 5)
rupt to its CPU.

Below we explain how the snapshot implementations 5C t f Wait-f shot
of the previous sections are made for this system. In all - Orrectness or walt-ree shapsnots

three approaches the update protocols are as before, and the

scanner protocols start by sending a single broadcast *scantyg pasic correctness condition for a wait-free implementa-
start” message on the bus. Then the different scan protocols;y, of an object idinearizahility, i.e. although operations
behave as follows: of concurrent processes may overlap in time, each one of
The lock-based approach them appears to have effect instantaneously, in an order that

1. onreception of the “scan-start” message, the processefreserves the register actions’ semantics.
responsible for the scan in each node locks all the lo- In a global time model each operatign‘occupies” a
cal variables of the node components and reads andtime interval[b,, f,] on one linear time axigb, < f,);
returns their values (via messages over the CAN-bus) There is a precedence relation on operations (denoted by
in response to the above message ‘—"), which is a strict partial ordery; — ¢» means that
2. the scanner waits to receive responses from all nodeg: €nds beforgs, starts; Operations incomparable under
and then sends an "unfreeze” message on the bus are calledbverlapping. The precedence relation is extended
3. the process responsible for the scan in each node un!O relate sub-operations of operations; naturally; it> g,
locks its components in response to the "unfreeze” then for any sub-operationg: andop. of ¢1 andg,, re-
message spectively, it holds thaip; — op-.
A run is an execution of an arbitrary number of oper-
The lock-free approach ations according to the respective protocols. Given a run
1. on reception of the “scan-start”, the process responsi-of a composite register implementatiorm,eading function
ble for the scan in each node resetdNGTE variable, 7, for any componenk is a function that assigns an up-
reads the values of its components in the node and re-date operation: to each scan operatiof) such that the
ports them to the scanner via the bus value returned by for componentt —according to the
2. the scanner waits to hear from all nodes and then send$canoperation performed— is written hy —according to
a new message requesting the nodes to check theithe updateoperation performed. It is assumed that for each
NOTE variables component there exists an update operation which initial-
3. the process responsible for the scan in each node reizes the component and precedes all other operations on it.
ports the value of it’NNOTE variable to the scanner A run on a composite register constructioratemic or
4. the scanner checks whether all M®TE variables are linearizable, if the partial order— on its operations can be
0, in which case the snapshot is complete and consis-€xtended to a stridbtal order=>, such that for any sca
tent, otherwise it repeats the scan, starting with the first 2nd for each componeatit holds that [13]:
step above. 1. m(s) = sand
2. thereis no update on X, such thatry(s) = u = s.

A construction is atomic if all its runs are atomic. When larly, enumerate the instancesNEXT, as they become for-

sub-registers are atomic, the precedence relatian a to-

warded by the scan operations (via the W&RI TE in each

tal order when restricted to sub-operations on a single sub-of them); NEXT!! is forwarded bysll. Let also, if some

register.

Lemmal [Atomicity Criterion, [2, 10]] A construction
of a single scanner composite register (snapshot object) is
atomicif and only if for each component X, the updateson
it can be serialized by atotal order =, whichiscompatible
with the precedence relation — and satisfies the following
conditions:

1. Each component independently is a consistent
atomic register; i.e. each =, and =, satisfy all the
following:

e (No-Irrelevant)for each scan s, it is not the case
that s — 7 (s)

e (No-Old) for each scan s there exists no update
uon Xy sothat i (s)=r u — s

e (No-New-Old-Inversion)for any two scans s
and s, and for any component X, it is not the
casethat: s; — s2 and my (s2)=>k 7k (s1)-

2. For any pair of components X;, and X; and for any
scan s, it is not the case that there exist updates v and
u on X, and X; respectively such that 7 (s)= v —
u =; m(s), whereu =; m/(s) means that either
u=r; m(s) or u = m(s).

x = NEXTU[k], thentag(z) = i. In other words, by the
enumerating the scans, we assign to each pointer to a sub-
register that is being forwardedag, which equals theag

of the scan that forwards it (vilEXT and the copy that it
writes inPREF_SCAN).

For any update: let uptr, denote the pointer to the
sub-register where writes its value. Let thermag(u) =
tag(uptr,). In other words, each updateinherits the tag
of the scan that forwarded the pointer to the sub-register
whereu writes its value.

The lemmas below prove one-by-one the conditions re-
quired by the lemma 2 for an arbitrary runand an arbi-
trary componenk, first for thesingle updater per compo-
nent case, i.e=>, is actually— .

Lemma 3 (No-Irrelevantyor each scan s, it isnot the case
that s — 7 (s)

Proof: (outline) It is straightforward from the protocol, that
a scan returns values only from updates which have com-
pleted.]

Lemma4 If u, u’ areupdatesin component k andu — v/,
then tag(u) < tag(u').

The second condition guarantees that a scan may not reb ;. i Each upd . lue th
turn for one component a value which is very old compared . roof: (outline) Each update assignsdgtr a value that

to the value it returns for another component (cf. fig.1).

The proof here follows the lines of the proof of the de-
terministic snapshot implementation in [10]. The following

lemma enables to argue abaatch component separately,
which means a great simplification.

Lemma 2 If a snapshot implementation satisfies the first
condition of the atomicity criterion of lemma 1 and it also
satisfies that, for every run, for each scan s and each com-
ponent k, if u = mi(s) or u=m(s) then b, < bs, then
theimplementation al so satisfies the second condition of the
atomicity criterion of lemma 1.

it read fromNEXT][k] or from PREF_SCAN[k]. Clearly, the

tag of the value thai’ reads fronfNEXT[k] is greater that or
equal to the tag of value thatreads fronNEXT[], since it

is either the same or there has been some new scan that for-
warded a new instance &fEXT in betweeru andu’ read

of NEXT. Moreover, the tag of the value that any update
u gets fromPREF_SCAN[4] (if it reads PREF_SCAN[k] at

all, i.e. if it fails in the TEST& SET invocation) is greater
that or equal to the tag of value that it reads frNEXT[£].

This is because in order that fails in tH&ST& SET in-
vocation, there must be an overlapping seawhich in-
voked theTEST& SET(T'S[k]) afteru reset it and before
invoked it. This scan’s PREF_SCAN[k] has the same tag
as itsNEXT, and there can be no other scan in between

Proof: Suppose, towards a contradiction, that there are up-that write of PREF_SCAN[%] by s and the invocation of

datesy and au on two component¥’;, and.X;, respectively,
such thatri(s)=, v — v =; m(s). Then, since by hy-
pothesid,, < bs, we get thatr,(s)= v — s, a contradic-

tion.

TEST& SET(T'S[k]) by u (because of th&MITU[k] check-
ing), hence the claim holds. O

Lemma5 (No-Old)For each scan s there exists no update

Since we have a single scanner case, we have that the, on X}, sothat 7 (s)— u — s.
scan operations are totally ordered in time, hence we can

enumerate them, having’ denote theth scan. We also

define for each scam, tag(s) = i if s = sll. Simi-

Proof: (outline) By contradiction, using the previous
lemma, and the fact that from the scanner procedure we

have (sub-proceduread_registers) that the sub-registersin [5]
BUFFER[k] are read in decreasing tag value. |
Lemma6 For eachscans, if u = mi(s) or u—mg(s) then [6]
by, < bs.

Proof: (outline) Suppose, towards a contradiction that ex- [7]

istss such thab,, ;) > b, i.e. thats returns a value written
by an update that starts aftehas started.

Since every update completes with the atomic write of
its value to a place iBUFFER[X], it holds thatf,, < fs, i.e.
thatmy (s) completes before completes.

(8]

We know that the value that(s) reads forNEXT [°]
is the one written bys. Using similar reasoning as in
lemma 4 (using th&MTU and TEST& SET tracing game [10]

between the scanner and the updater) it follows thdt)
will write its value in the register pointed to BYEXT[£]
(as s wrote it andm(s) read it). Buts does not read
BUFFER[k][NEXT[k]], hence we have the contradiction.

Since it holds thab,) < bs, it will also hold thath,, <
b, for anyu thatu— ;my(s). O

(11]

[12]

Lemma7 (No-New-Old-Inversion¥or any two scans s;
and s, and for any component X, it is not the case that:
S1 — S2 and 7Tk(82)—)k Wk(sl).

(23]

[14]
Pr oof:
lemma.

(outline) By contradiction, using the previous
O

15
For the multiple-updater-per-component case, we need (o]

to define=;. Define the total order among updates in one
component, using theitag values, as defined above; up-
dates with same tag write on the same sub-register, hencejis]
order them by the atomicity of that sub-operation. The
proof then follows the same lines, using the defined order-

ing. [17]

References
[18]
[1] Y. AFEK, H. ATTIYA, D. DOLEV, E. GAFNI, M. MERRITT, AND
N. SHAVIT Atomic shapshots of shared memadyAssoc. Comp. [19]

Mach., 40:4(1993), 873—-890.
[2] J. ANDERSON Composite registers.Distributed Computing
6(1993), 141-154. Multi-writer comosite registerBistributed
Computing 7 (1994), pp. 175-195. [20]

(3]

J. ANDERSON S. RAMAMURTHY, M. MOIR, AND K. JEF-
FAY Lock-Free Transactions for Real-Time SysterReal-Time

Database Systems: Issues and Applications, A. Bestavros, K.J. Lin, [21]
and S.H. Son, (eds.), Kluwer Academic Publishers, pp. 215-234,
May 1997.

[22]

J. ARMSTRONG AND R. VIRDING AND C. WIKSTROM AND
M. WiLLIams Concurrent programming in Erlang, Prentice Hall,
1996.

(4]

H. ATTIYA, M. HERLIHY AND O. RACHMAN Efficient Atomic
Snapshots Using Lattice AgreemeRtoc. of the 6th Int’| Workshop
on Distributed Algorithms, pp. 35-53, 1992.

N.C. AUDSLEY, A. BURNS, R.I. DAvis, K.W. TINDELL AND
A.J. WELLINGSFixed Priority Pre-emptive Scheduling: An Histor-
ical PerspectiveReal-Time Systems, Vol. 8, Num. 2/3, pp. 129-154,
1995.

T. BAKER Stack-based scheduling on real-time procesBesl-
Time Systems, 3(1), pp. 97-69, March 1991.

J. CHEN AND A. BURNS Asynchronous Data Sharing in Mulipro-
cessor Real-Time Systems Using Process Conset@thsEuromi-
cro Workshop on Real-Time Systems, 1998. also Research report,
Department of Computer Science, Un. of York, 1997.

M. HERLIHY Wait-Free Synchronizatio’ACM TOPLAS, \Vol. 11,
No. 1, Jan. 1991, pp. 124-149.

L.M. KIROUSIS, P. SPIRAKIS AND PH. TSIGAS Reading Many
Variables in One Atomic Operation: Solutions with Linear or Sub-
linear Complexity.| EEE Transactions on Parallel and Distributed
Systems, 5(7), pp. 688-696, July 1994.

H. KoPETZ AND J. REISINGERThe Non-Blocking Write Protocol
NBW: A Solution to a Real-Time Synchronization Problernoc.
of the 14th Real-Time Systems Symp., pp. 131-137, 1993.

L. LaAmMPORTConcurrent Reading and WritinGomm. of the ACM,
Vol. 20, No. 1, Nov. 1977, pp. 806—-811.

L. LAMPORT (1986) Oninterprocess communication, part i: basic
formalism, part ii: basic algorithm®istributed Computing 1, 77-
101.

J.P. LEHOCZKY AND L. SHA AND J.K. STROSNIDER Aperi-
odic Responsiveness in Hard Real-Time Environments. Proc. of the
IEEE Real-Time Systems Symp., pp. 262-270, 1987.

C.D.LOCKE, L. LucAs,AND J. GOODENOUGHGeneric Avionics
Software Specification, Technical Report CMU/SEI-90-TR-8, Soft-
ware Engineering Institute, Carnegie Mellon University, December
1990.

M. PAPATRIANTAFILOU AND PH. TSIGASWait-Free Consensus in
In-Phase Multiprocessor Systenfsoc. of the 7th IEEE Symp. on
Parallel and Distributed Processing, pp. 312-319, 1995.

C.-S. ENG, K.J. LIN, AND C. BOoETTCHERReal-Time Database
Benchmark Design for Avionics Systeni®oc. of the First Interna-
tional Workshop on Real-Time Databases: |ssues and Applications,
pp. 92-99, March 1996.

R. RAJKUMAR Synchronization in Real-Time Systems — A Priority
Inheritance ApproachKluwer Academic Publications, 1991.

S. RAMAMURTHY, M. MOIR, AND J. ANDERSONReal-Time Ob-
ject Sharing with Minimal System SuppoRroc. of the 15th Annual
ACM Symp. on Principles of Distributed Computing, pp. 233-242,
May 1996.

L. SHA, R. RAJKUMAR, AND J. P. LEHOCZKY Priority Inheri-
tance Protocols: An Approach to Real-Time SynchronizatiBRE
Trans. on Computers, vol. 39, pp. 1175-1185, Sep. 1990.

P. SORENSEN AND V. HEMACHER A Real-Time System design
Methodology.INFOR, 13(1), Feb 1975, pp.1-18.

K.W. TINDELL AND H. HANSSON AND A.J. WELLINGS
Analysing Real-Time Communications: Controller Area Network
(CAN). Proc. of IEEE RTSS 94, pp. 259-263, 1994.

