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Abstract

A space efficient wait-free algorithm for implementing a
shared buffer for real-time multiprocessor systems is pre-
sented in this paper. The commonly used method to imple-
ment shared buffers in real-time systems is based on mu-
tual exclusion. Mutual exclusion is penalised by blocking
that typically leads to difficulties in guaranteeing deadlines
in real-time systems. Researchers have introduced non-
blocking algorithms and data structures that address the
above problems. Many of the non-blocking algorithms that
appeared in the literature have very high space demands
though, some even unbounded, which makes them not suit-
able for real-time systems. In this paper we look at a simple,
elegant and easy to implement algorithm that implements a
shared buffer but uses unbounded time-stamps and we show
how to bound the time-stamps by using the timing informa-
tion that is available in many real-time systems. Our analy-
sis and calculations show that the algorithm resulting from
our approach is space efficient. The protocol presented here
can support an arbitrary number of concurrent read and
write operations.

1. Introduction

In real-time systems and in distributed systems in general
we have several concurrent tasks that need to communicate
and synchronise in order to be able to fulfil the responsi-
bilities of the system. There are several different means to
accomplish this in a multiprocessor system. In general the
tasks communicate using shared data objects. The shared
data objects can be centralised or distributed, and can be
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accessed uniform or non-uniform. The major requirement
from manufacturers when designing these shared data ob-
jects is to keep space constraints on random access mem-
ory as low as possible; in 1998, 1.5 billion 8-bit micro-
controllers were sold, compared to only 63.7 million 32-bit
micro-controllers [7].

In order to enforce consistency on shared data objects
one commonly used method is mutual exclusion. Mutual
exclusion protects the consistency of the shared data by al-
lowing only one process at time to access the data. Mu-
tual exclusion i) causes large performance degradation es-
pecially in multiprocessor systems [16]; ii) leads to complex
scheduling analysis since tasks can be delayed because they
were either preempted by other more urgent tasks, or be-
cause they are blocked before a critical section by another
process that can in turn be preempted by another more ur-
gent task and so on (this is also called as the convoy effect)
[11]; and iii) leads to priority inversion in which a high pri-
ority task can be blocked for an unbounded time by a lower
priority task [15]. Several synchronisation protocols have
been introduced to solve the priority inversion problem for
uniprocessor [15] and multiprocessor [13] systems. The so-
lution presented in [15] solves the problem for the unipro-
cessor case with the cost of limiting the schedulability of
task sets and also making the scheduling analysis system,
where a task may be blocked by another task running on a
different processor [13].

To address the problems that arise from blocking, re-
searchers have proposed non-blocking implementations of
shared data structures. Two basic non-blocking methods
have been proposed in the literature,lock-free and wait-
free. Lock-free implementations of shared data structures
guarantee that at any point in time in any possible execu-
tion some operation will complete in a finite number of
steps. In cases with overlapping accesses, some of them
might have to repeat the operation in order to correctly com-
plete it. This implies that there might be cases in which



the timing may cause some process(es) to have to retry a
potentially unbounded number of times, leading to a for
hard real-time systems unacceptable worst-case behaviour,
although usually they perform well in practice. Inwait-free
implementations each task is guaranteed tocorrectly com-
plete any operation in abounded number of its own steps,
regardless of overlaps and the execution speed of other pro-
cesses; i.e. while the lock-free approach might allow (un-
der very bad timing) individual processes to starve, wait-
freedom strengthens the lock-free condition to ensure indi-
vidual progress for every task in the system.

Non-blocking implementation of shared data objects is
a new alternative approach for the problem of inter-task
communication. Non-blocking mechanisms allow multiple
tasks to access a shared object at the same time, but with-
out enforcing mutual exclusion to accomplish this. Non-
blocking inter-task communication does not allow one task
to block another task, and gives significant advantages over
lock-based schemes because:

1. it cannot cause priority inversion and avoids lock con-
voys that make scheduling analysis hard and delays
longer.

2. it provides high fault tolerance (processor failures will
never corrupt shared data objects) and eliminates dead-
lock scenarios from two or more tasks both waiting for
locks held by the other.

3. and more significantly it completely eliminates the in-
terference between process scheduling and synchroni-
sation.

Non-blocking protocols on the other hand have to use more
delicate strategies to guarantee data consistency than the
simple enforcement of mutual exclusion between the differ-
ent operations on the data object. These new strategies on
the other hand, in order to be useful for real-time systems,
should be efficient in time and space in order to perform un-
der the tight space and time constraints that real-time sys-
tems demand.

Some of the wait-free protocols presented in the litera-
ture have very high space demands, some even require un-
bounded space, which makes them of no practical interest
for real-time systems. In real-time systems usually tasks
come together with their timing characteristics, such as their
worst-case execution time, their period and etceteras. In
this paper we look at a simple, elegant and easy to imple-
ment algorithm that implements a shared buffer but uses un-
bounded time-stamps and we show how to bound the time-
stamps by using the timing information that is available in a
real-time system. The solution allows any arbitrary number
of readers and writers to concurrently access the buffer. The
resulting algorithm as we show has low memory demands.

Previously Chen and Burns in [6], exploited the use
of the timing information for the construction of a non-
blocking shared buffer; they were the first to show how
to use timing-based information to implement a fully asyn-
chronous reader/writer mechanism; in their work they con-
sidered the case where there is only one writer. The al-
gorithm presented in this paper allows arbitrary number of
readers and writers to perform their respective operations.
Research at the University of North Carolina [2, 3] and [14]
by Anderson et al. has shown that wait-free algorithms can
be simplified considerably in real-time systems by exploit-
ing the way that processes are scheduled for execution in
such systems. Research work investigating the relation be-
tween non-blocking synchronisation and real-time systems
dates back to 1974 [17, 18]. Massalin and Pu [12] and
Greenwald and Cheriton [9] were the first to develop lock-
free real-time kernels. Last but not least the real-time spec-
ifications of JAVA [5] include wait-free synchronisation.

The rest of this paper is organised as follows. In Sec-
tion 2 we describe basic characteristics of the computer
systems that we are considering together with the formal
requirements that any solution to the synchronisation prob-
lem that we are considering must guarantee. In Section 3 we
show how to use the timing information in order to bound
the time-stamps of the unbounded protocol that is also pre-
sented in this section. Section 4 presents some examples
showing the effectiveness of our results. The paper con-
cludes with Section 5.

2. System and Problem Description

2.1. Real-time Multiprocessor System Configura-
tion

A typical abstraction of a shared memory multiprocessor
real-time system configuration is depicted in figure 1. Each
node of the system contains a processor together with its
local memory. All nodes are connected to the shared mem-
ory via an interconnection network. A set of co-operating
tasks1 (processes) with timing constraints are running on
the system performing their respective operations. Each
task is sequentially executed on one of the processors, while
each processor can serve (run) many tasks at a time. The
co-operating tasks, possibly running on different processes,
use shared data objects built in the shared memory to co-
ordinate and communicate. Every task has a maximum
computing time and has to be completed by a time specified
by a deadline. Tasks synchronise their operations through
read/write operations to shared memory. The shared mem-
ory may not though be uniformly accessible for all nodes

1throughout the paper the termsprocess andtasks are used interchange-
ably
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Figure 1. Shared Memory Multiprocessor Sys-
tem Structure

in the system. Some processors can have slower access or
other restrictions like no access at all to some part of the
shared memory.

2.2. The Model

In this paper we are interested in the problem of con-
structing an atomic shared buffer.

The accessing of the shared object is modelled by a his-
toryh. A historyh is a finite (or not) sequence of operation
invocation and response events. Any response event is pre-
ceded by the corresponding invocation event. For our case
there are two different operations that can be invoked, a read
operation or a write operation. An operation is called com-
plete if there is a response event in the same historyh; oth-
erwise, it is said to be pending. A history is called complete
if all its operations are complete. In a global time model
each operationq “occupies" a time interval[sq ; fq] on one
linear time axis(sq < fq); we can think ofsq andfq as the
starting and finishing time instants ofq. During this time
interval the operation is said to bepending. There exists
a precedence relation on operations in history denoted by
<h, which is a strict partial order:q1 <h q2 means thatq1
ends beforeq2 starts; Operations incomparable under<h

are calledoverlapping. A complete historyh is linearisable
if the partial order<h on its operations can be extended to
a total order!hthat respects the specification of the object
[10]. For our object this means that each read operation
should return the value written by the write operation that
directly precedes the read operation by this total order (! h).

To sum it up, as we are looking for a non-blocking solu-
tion to the general reader/writer problem for real-time sys-
tems we are looking for a solution that satisfies:

� Every read operation guarantees the integrity and co-
herence of the data it returns.

� The behaviour of each read and write operation is pre-
dictable and can be calculated for use in the scheduling
analysis.

� Every possible history of our protocol should be lin-
earisable.

3. The Protocol

3.1. The Unbounded Algorithm
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Writers
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Figure 2. Architecture of the Algorithm

We first start with a simple, elegant and easy to imple-
ment unbounded protocol that appeared in [19]. The algo-
rithm uses a matrix of 1-reader 1-writer registers, see figure
2. We denote the reader task and the writer task running on
processori with Rdi andWri respectively. The matrix is
formed in a way such that each registerRgij can be read by
processorj and written by processori.

The algorithm originally uses unbounded time-stamps
and consequently the data read from or written into each
of the registers contains a data pair of a value and a tag,
see figure 4. Each of the registers are read from or written
to in one atomic operation. In the algorithm the tag value
is unbounded. The pseudo-code for the algorithm can be
viewed in figure 3. The tag value indicates the freshness of
the value, a higher tag means a newer value. In this algo-
rithm the reader reads in columns and the writers writes in
rows as seen in figure 2. When the reader wants to get the
latest value from the shared register it reads all the registers
in its column and takes the value with the highest tag. Then
it writes this value together with the tag to all registers in
its row. When the writer wants to write a new value it first
looks for the highest possible tag in the matrix by reading
a column. Then it writes the new value in its row together
with that tag value incremented by one.



THE UNBOUNDED ALGORITHM FOR N-READER

N-WRITER SHARED REGISTER

Reader (on processor i):
tagmax := 0
for j := 1 to n

if tag(Rgji) > tagmax then
tagmax := tag(Rgji)
value := value(Rgji)

for j := 1 to n
Rgij := (value,tagmax)

return value

Writer (on processor i):
tagmax := 0
for j := 1 to n

if tag(Rgji) > tagmax then
tagmax := tag(Rgji)

for j := 1 to n
Rgij := (value,tagmax + 1)

Figure 3. The unbounded algorithm

0 1 nk

Value Tag

Figure 4. The Register Structure

The value for the tags during the execution increase
rapidly and thus many bits have to be allocated for the tag
value on the register to ensure there is no overflow. As the
register contains a limited number of bits, this means that
we have fairly few bits to allocate for the actual value. In
real-time systems random access memory is also a limited
resource and registers usually contain few bits. Further the
system is usually required be able to run continuously for a
very long period, which means that we have to allocate a lot
of bits for the tag field, to ensure there is no overflow.

Let us now consider a system with eight processors and
eight writer tasks, one task on each CPU. Assume that the
period of each task is 10 ms, and that the tasks are inter-
leaved in time as it is shown in figure 5. Each task starts its
execution after the previous task has started to write the in-
cremented tag to one of the registers, but not necessarily all.
In this way this register will be scanned by the next writer
tasks when they are scanning for the highest tag value in
the system. The last writer finishes its execution before the
first writer restarts its execution and the procedure repeats
itself over and over. In this scenario, each invocation of a

writer task will increase the tag by one, and in each period
we will have increased the tag by eight. This means that
in just a second of the systems execution we will have a tag
value of 800, that requires 10 bits. For an hour of execution,
we will have a tag value of 2 880 000, occupying 22 bits.
This clearly indicates that we cannot use the algorithm as is
in a real-time system with limited memory capabilities, and
therefore it is of great importance to be able to bound the
size of the tag field. In the next subsection we show how
to use the timing information that is available in real-time
systems to efficiently bound the size of the time-stamps.
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Figure 5. Rapidly Increasing Tags

3.2. Bounding The Time-Stamps

In this part of the paper we will see how to recycle the
tags. The way that the algorithm is going to work is similar
to the way the algorithm that uses unbounded time-stamps
works. Namely, the writer produces a new time-stamp ev-
ery time it writes, and the reader returns the value of the
most recent time-stamp. The idea is to maintain a bounded
number of time-stamps, and keep track of the ordering in
which they were issued.

We are assuming that all tasks are periodic and that all
tasks will meet their deadlines which are shorter than their
respective periods. In real-time systems it is very often the
case that we have very good information about the tasks.

We assume that we haven tasks in the system, indexed
t1 : : : tn. For each taskti we will use the standard notations
Ti, Ci, Ri, Di andBi to denote the period, worst case exe-
cution time, worst case response time, deadline and block-
ing time (the time the task can be delayed by lower priority
tasks), respectively. Alsohp(i) denotes the set of tasks with
higher priority than taskti. The deadline of a task is less or
equal to its period.
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Figure 6. Tag Range

For a system to be safe, no task should miss its deadlines,
i.e. 8i j Ri � Di. The response timeRi for a task in the
initial system can be calculated using the standard response
time analysis techniques [4] as:

Ri = Ci +Bi +
X

j2hp(i)

�
Ri

Tj

�
Cj (1)

In the next part of this section we are going to use the
following notation, whereRdi andWri denotes the reader
respective the writer tasks:

TWrmax = maxi2f1::ng TWri

TRdmax = maxi2f1::ng TRdi
Tmax = maxfTWrmax ; TRdmaxg

RWrmax = maxi2f1::ngRWri

RRdmax = maxi2f1::ngRRdi

Rmax = maxfRWrmax ; RRdmaxg

In order to bound the time-stamps we will first try to find
an upper bound fort2 � t1, wheret1 is andt2 are respec-
tively the time stamps that a task can observe in two con-

secutive invocations in any possible execution of the un-
bounded algorithm.

Let us now take an arbitrary execution�, for simplicity
we assume that the tags have been initialised to 0. We are
considering the worst possible scenario. Like in the previ-
ous section we assume that each writer task will increase
the highest tag value by one. We are assuming for the worst
case that the task with the longest periodTmax is scanning
the matrix for the highest tag in the beginning of its execu-
tion, before any other task has written any other value. This
task is then suspended for almost all of its period and writes
the highest tag value in its row at the very end of the task
period. Thus the lowest tag will still be zero and the upper
boundary for the highest tag will be:

S1 =
Pn

i=1

l
Tmax
TWri

m

At the start of the execution of the task with the longest
response timeRmax, this task starts to scan for the highest
value and will therefore getS1 as the result. We are now
assuming that this task is writing this tag in its row at the
very end of its response time. And thus the lowest tag in the
system will now beS1. During the execution of this task,
the highest tag may have been increased at most by:
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Figure 7. Tag Value Recycling

S2 =
Pn

i=1

l
Rmax
TWri

m

Therefore the highest possible tag in the system at the
end of this execution of this task is:

MaxTag =
Pn

i=1

l
Tmax
TWri

m
+
Pn

i=1

l
Rmax
TWri

m

This means that during the execution that spanned from
time 0 to timeTmax + Rmax the tag values will span be-
tween zero andS1 + S2.

Lemma 1 In any possible execution the time-stamps that
two consecutive tasks can observe are going to be

MaxTag =
Pn

i=1

l
Tmax
TWi

m
+
Pn

i=1

l
Rmax
TWi

m
far apart.

The above lemma gives us a bound on the length of the
"window" of active time-stamps for any task in any pos-
sible execution. In the unbounded construction the writ-
ers, by producing larger time-stamps every time they slide
this window on the[0; : : : ;1] axis, always to the right.
The approach now is instead of sliding this window on the
set [0; : : : ;1] from left to right, to cyclically slide it on
a [0; : : : ; X ] set of consecutive natural numbers, see fig-
ure 7. Now at the same time we have to give a way to the
tasks to identify the order of the different time stamps be-
cause the order of the physical numbers is not enough since
we are re-using time-stamps. The idea is to use the bound
that we have calculated for the span of different active time-
stamps. Let us then take a task that has observedt1 as the
lowest time-stamp at some invocation� . When this task
runs again as� 0, it can conclude that the active time-stamps
are going to be betweent1 and(t1 +MaxTag) mod X .
On the other hand we should make sure that in this interval
[t1; : : : ; (t1 + MaxTag) mod X ] there are no old time-
stamps. By looking closer to the previous lemma we can
conclude that all the other tasks have written values to their
registers with time stamps that are at mostMaxTag less
thant1 at the time that� wrote the valuet1. Consequently
if we use an interval that has double the size ofMaxTag,
� 0 can conclude that old time-stamps are all on the interval
[(t1 �MaxTag) mod X; : : : ; t1].

Task Period Task Period

Wr1 1000 Rd1 500
Wr2 900 Rd2 450
Wr3 800 Rd3 400
Wr4 700 Rd4 350
Wr5 600 Rd5 300
Wr6 500 Rd6 250
Wr7 400 Rd7 200
Wr8 300 Rd8 150

Table 1. Example task scenario on eight processors

Therefore we can use a tag field with double the size of
the maximum possible value of the tag.

TagF ieldSize= MaxTag � 2
TagF ieldBits = dlog2 TagF ieldSizee

In this way� 0 will be able to identify thatv1; v2; v3; v4
(see figure 8) are all new values ifd2 + d3 < MaxTag and
can also conclude that:

v3 < v4 < v1 < v2

0 X

d1d2 d3

v1 v2 v3 v4

t1t2

Figure 8. Tag Reuse

The new mechanism that will generate new tags in a
cyclical order and also compare tags in order to guarantee
the linearisability is presented in figure 9.

The proof for the linearisability of this construction is the
same as the linearisability proof of the unbounded one.

Theorem 1 The algorithm presented in this section imple-
ments a bounded multi-reader, multi-writer buffer that uses
bounded memory space.

4. Examples

In order to show the effectiveness of our analysis, con-
sider the scenario described in table 1. The tasks are running
on 8 processors, where writerWri and readerRdi are ex-
ecuting on the same processor. We are also assuming that



COMPARISON ALGORITHM FOR BOUNDED TAG SIZE

tagmax := tag(Rgj1)
for j := 1 to n

tag := tag(Rgji)
if (tag > tagmax and (tag - tagmax) � MaxTag)

or ( tag < tagmax

and ( tag + TagFieldSize - tagmax ) � MaxTag )
then

tagmax := tag

NEW TAG GENERATION FOR BOUNDED TAG SIZE

for j := 1 to n
Rgij := (value,

(tagmax + 1) modulo2TagFieldBits )

Figure 9. Algorithm changes for bounded tag size

the reader and writer on the same processor are executing
atomically with respect to each other. All deadlines are con-
sidered to be met.

If we assume that the maximum response time is equal
to the maximal task period and apply the formulas from the
analysis we get:

Tmax = Rmax = 1000

MaxTag = 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
3 + 3 + 3 + 3 + 4+ 4 = 38

TagF ieldSize= 38 � 2 = 76

TagF ieldBits = dlog2 76e = 7

A tag field size of 7 bits is relatively low considering that
we are looking at a scenario with different task periods. Us-
ing 16-bit registers for implementing the shared register we
can safely use 9 bits for the actual value contents. Without
bounding the tag size, we would have reached a maximum
tag value of 68400 in only one hour of execution, thus need-
ing more than 16 bits.

If we consider the scenario discussed in subsection 3.1 of
this paper, where we had 8 writer tasks, the bounded version
that we propose needs only 4 bits.

5. Conclusions

We have studied an algorithm for wait-free implemen-

tation of an atomic n-reader n-writer shared register. The
algorithm uses unbounded time-stamps.

We have shown how to use timing information available
on real-time systems to bound the time-stamps. According
to our examples the modified algorithm has small space re-
quirements.
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