
Wait-Free Handshaking using

Rainbow Coloring

Marina Papatriantafilou and Philippas Tsigas

Computing Sciences Department, Chalmers University of Technology and G�oteborg
University, S-412 96 G�oteborg

Email: fptrianta,tsigasg@cs.chalmers.se

The construction of shared data objects is a fundamental issue in asynchronous
concurrent systems, since these objects provide the means for communication and
synchronization between processes. Constructions which guarantee that concur-
rent access to the shared object by processes is free from waiting are of particular
interest, since they help to increase the amount of parallelism and to provide
fault-tolerance. The problem of constructing a k-valued wait-free shared register
out of binary subregisters of the same type where each write access consists of one
subwrite (constructions with one-write) is important, since it lies at the heart of
studying lower bounds of the complexities of register constructions and trade-o�s
between them. The �rst such construction was for the safe register case; it uses
k binary safe registers and exploits the properties of a rainbow coloring function
of a hypercube graph. The best known construction for the regular (atomic) case
uses

�
k

2

�
binary regular (resp. atomic) registers, while if the one-write requirement

is lifted, there exists a construction that uses 4(log k + 1) binary registers. Here
we show how rainbow coloring can be extended to simulate handshaking between
the reader and the writer of the register, thus o�ering a wait-free solution for the
atomic case with one reader, using only 3k � 2 binary registers. The best known

lower bound for such a construction is k � 1.

Received month date, year; revised month date, year

1. INTRODUCTION

Background

In all forms of communication in a concurrent system
the problem of sharing data between multiple processes
must be faced at some level. The traditional way to
share data among processes which either read or write
the data is to require either mutual exclusion or that
a write have exclusive access to the data, thus making
only concurrent reading possible [1]. The requirement
that some actions happen in an exclusive manner im-
plies waiting by some process for another. However, in
an asynchronous system, where some processors may be
inherently faster than others, the above approach would
slow a fast process down to the speed of a slow one.
A natural property to require from an implementa-

tion of a shared data object in an asynchronous con-
current system is to guarantee that any process can
complete any access to the object in a �nite number
of steps, regardless of the execution speeds of the other
processes. Such an implementation is called wait-free.
Wait-free shared data objects not only help in taking
advantage of the inherent parallelism in concurrent sys-
tems, but also guarantee resiliency to halting/stopping
failures, since a process that crashes while accessing the

object cannot block the progress of any other process
intending to access the same object.
A shared variable that supports concurrent read and

write operations in a wait-free manner is also called a
wait-free shared register ; from this point in the paper,
we adopt the convention to call it register.
A register is characterized by the number of readers

that may concurrently read it, the number of writers
that may concurrently write it, as well as the number
of values it can take on. Registers are also classi�ed
according to the consistency guarantees they provide
in the presence of concurrent operations. Three kinds
of consistency guarantees, namely safeness , regularity
and atomicity , have been de�ned by Lamport in [2] and
have become of fundamental importance in the study
of shared registers. According to those de�nitions, a
shared register, which can be concurrently accessed by
one writer process and one or more reading processes,
is called:

safe if it guarantees only that a read which does not
happen concurrently with any write always returns
the most recent value written to the register. The
safeness property ensures nothing for the value re-
turned by a read which overlaps with writes; it may
equal any possible value of the register;

The Computer Journal, Vol. 00, No. 0, 2000

2 M. Papatriantafilou, Ph. Tsigas

regular if, besides ensuring safeness, it guarantees that
a read that happens concurrently with one or more
writes returns a \reasonable" value, which might
be either the old one or one of the values written
by one of the overlapping writes;

atomic if it guarantees that even when read and write
operations overlap, there exists a way to \shrink"
each one of them in an atomic grain of time which
lies in its respective time duration, in a way that
the value returned by each read equals the value
written by the most recent write according to the
sequence of \shrunk" operations in the time axis.

These dimensions imply a hierarchy on registers. The
idea is to start with simple communication primi-
tives (such as single-writer single-reader safe registers),
which can be provided directly in hardware, and suc-
cessively construct more powerful multi-reader (even
multi-writer) multi-valued objects [2, 3]. This proce-
dure leads to modular system organization.

Contribution of this paper and related work

Despite the fact that there has been a great deal of
research on implementations of stronger registers out
of weaker ones [4, 5, 6, 7, 8, 9, 2, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20], to the best of our knowledge,
comparatively few results have appeared studying the
necessary costs incurred by such implementations [21,
22, 23, 16].
Chaudhuri and Welch in [22] summarize the issues

involved in the study of the intrinsic complexity of reg-
ister constructions: Since registers may di�er in several
dimensions, the inherent complexity of constructing a
strong register out of weaker ones has multiple cases to
be examined. They focus on two parameters of inter-
est: the number of values and the consistency guaran-
tees of the register. Thus, they propose the problem of
studying the inherent cost of constructing multireader,
single-writer, k-valued safe, regular and atomic regis-
ters out of multireader, single-writer, 2-valued (binary)
safe, regular and atomic registers, respectively. Follow-
ing their abbreviation, we refer to such constructions
as k-valued from 2-valued safe/regular/atomic register
constructions. The cost measures are the number of
binary registers used and the number of subreads and
subwrites performed during each read or write opera-
tion of the registers. In that paper the particular classes
examined are those of k-valued from 2-valued safe and
regular constructions. First they prove that for the case
in which the writer performs only one write subopera-
tion, k� 1 subregisters are necessary. As a second step
they give an algorithm which implements a safe reg-
ister, using as an encoding function a special function
that can vertex-color a (k � 1)-dimensional hypercube
(recalling its de�nition: a n-dimensional hypercube is a
regular undirected graph with 2n vertices labelled from
0 to 2n � 1, where two vertices are connected if the bi-

nary representation of their labels di�er in exactly one
bit; �gure 1 shows a 3-dimensional hypercube) with k

colors, after proving that such a coloring exists if and
only if k is a power of 2.
Kant and van Leeuwen in [24] independently have

shown the same result for this special coloring of hyper-
cubes and they applied it to the �le distribution prob-
lem.
The aforementioned special coloring of a (k � 1)-

dimensional hypercube with k colors is called rainbow
coloring and is such that each node of the hypercube
has exactly one neighbor with each one of the k � 1
colors other than its own.

011

001

111

101100

110

000

010

FIGURE 1. A 3-dimensional hypercube

In a subsequent paper [21], Chaudhuri, Kosa and
Welch give a construction of a k-valued regular (atomic)
register out of binary regular (resp. atomic) ones in
which each write performs only one subwrite to one of
them and which requires

�
k

2

�
subregisters. Both these

algorithms in [22] and in [21] are for the multi-reader
case while they have the writer perform only one subop-
eration per write. If the one-write requirement is lifted,
there exists a construction that uses 4(log k+1) binary
registers [16].
Here we show how a rainbow coloring |which has

been used to construct the weakest type of registers,
the safe one| can be extended to implement a power-
ful handshaking mechanism. The handshaking mecha-
nism is particularly important in wait-free algorithms,
as has been pointed out by Tromp in [16], by Kirousis,
Spirakis and Tsigas in [25] and by Dwork et al. in
[26, 27]. Roughly speaking, handshaking involves hav-
ing the processes play a \hide-and-seek" game by ac-
cessing di�erent physical locations (shared variables),
so as to minimize concurrent access of the same mem-
ory locations. In section 3, the mechanism is described
in more detail. Using our implementation, we get a
k-valued from 2-valued atomic construction where the
writer performs one write suboperation per operation
and there are no overlapping reads. Our construction
uses 3 � 2dlog ke � 2 subregisters (when k is a power of 2
this is 3k � 2), while the best known lower bound for
such a construction is k � 1.
Before proceeding to the description of our construc-

The Computer Journal, Vol. 00, No. 0, 2000

Wait-Free Handshaking using Rainbow Coloring 3

tion, the following section presents more precisely the
requirements of the problem.

2. PRELIMINARIES

A construction of a register comprises of a data struc-
ture consisting of memory cells called subregisters, a set
of initial values for the subregisters and a set of read
and write procedures (aka a protocol) which provide the
means to the processes to access the register.
When a process needs to perform either a read or a

write operation on the register it must invoke the re-
spective procedure; we call this process either reader
or writer, respectively. Each procedure execution, or
shortly operation, is a sequential execution of a proce-
dure's statements (steps), which may be either read or
write suboperations on the subregisters or some local
computations of the procedure. To avoid confusion be-
tween operations on the constructed register and oper-
ations on the subregisters used in the construction, the
term operations is used only for the former and subop-
erations is used for the latter.
A construction C is called wait-free if it guarantees

that any operation will complete in a bounded number
of steps. The wait-free condition rules out unbounded
busy waiting, as well as conditional waiting.

In a global time model [2] each operation q \occu-
pies" a time interval [s(q); f(q)] on one linear time axis
(s(q) < f(q)); think of s(q); f(q) as the starting and �n-
ishing time instants of q. During this time interval the
operation is said to be pending.
A precedence relation among a set of operations (de-

noted by `!') is a strict partial order: q1 ! q2 means
that q1 ends before q2 starts. The precedence relation is
extended to relate suboperations of operations that are
related: if q1 ! q2, then for any suboperations op1 and
op2 of q1 and q2, respectively, it holds that op1 ! op2.
A system execution � over the register is a tuple

(A;!), where A is a set of operations on the regis-
ter and ! is the relation describing precedence among
them, as above. Operations in A which are incompa-
rable under ! are called overlapping. It is assumed
that there exists a write operation, which initializes the
register, that precedes all other operations on it.
A sequential execution (A;)) over the register is one

whose operations are totally ordered according to the
transitive irreexive order). A sequential execution
(A;)) satis�es the sequential speci�cation of the regis-
ter if each read operation in A returns the value written
by the most recent write operation according to).
A system execution (A;!) is atomic or linearizable

[7, 6] if it is equivalent to a sequential execution over
the register which satis�es the sequential speci�cation
of the register.
A construction implements an atomic register if all

its possible system executions are atomic.

For the proof of the atomicity of our construction
we will use the following atomicity criterion for single-

writer register constructions, which is due to Lam-
port [2]:

Lemma 2.1. Lamport's Atomicity Criterion

[2]: A register construction is atomic if there exists
a reading function �, which, for any system execution
� = (A;!): (i) assigns to each read r 2 A a write
w 2 A, such that the value returned by r |according
to the read procedure invoked| is the value written by
w and (ii) satis�es the following three conditions:

No-Future: For any read operation r of � it is not the
case that: r ! �(r).

No-Past: For any read operation r of � there is no
write operation w such that �(r) ! w ! r.

No-New-Old-Inversion: For any two read opera-
tions r1 and r2 of � it is not the case that:
(r1 ! r2 and �(r2)! �(r1)).

Roughly speaking, the above conditions imply that
each read returns a written but not overwritten value
and that reads obtain correctly-ordered values. (Ac-
tually the �rst two conditions alone are su�cient for
regularity.)

Finally, the cost measures for the computation of
space and time complexities of a construction C are:

� the number of subregisters used by C and
� the maximum number of suboperations on the sub-

registers performed during any read and any write
operation in any system execution of C.

3. DESCRIPTION OF THE CONSTRUC-

TION

The protocol is given in �gure 2. We adopted the con-
vention that shared variables are denoted by upper-case
letters and local variables are denoted by lower-case let-
ters. From the notation point of view we adopt the use
of x to denote 1 � x, where x 2 f0; 1g. Also , bin(i)
denotes the binary representation of i in log k bits, �
and � represent bitwise exclusive-or and multiplication,
respectively (bin(i) multiplied by 0 is the zero-vector of
length log k and bin(i) multiplied by 1 is bin(i) itself).
Private variables are persistent, i.e. they retain their
values between di�erent invocations. The initializing
conditions will be made clear after the presentation of
the construction given in the following paragraphs.
The construction uses three sets of binary atomic

registers, namely H = fH1; : : : ; Hk�1g; L0 =
fL0

1; : : : ; L
0
k�1g and L1 = fL1

1; : : : ; L
1
k�1g. These sub-

registers are written by the writer and are read by the
reader. One more binary register, RM , is used in order
to allow the reader to pass a bit of information to the
writer.
Assume that k |the number of values that

the register under implementation will hold| is
a power of 2. Later we will show how to

The Computer Journal, Vol. 00, No. 0, 2000

4 M. Papatriantafilou, Ph. Tsigas

/* Shared variables declaration*/
var H1;: : : ; Hk�1; L

0
1; : : : ; L

0
k�1; L

1
1; : : : ; L

1
k�12 f0; 1g ;

/* init. 0; only L0
v0

= 1 */
RM 2 f0; 1g ;

/* Reader's Mode: init. 1 */

function COLOR(x1; : : : ; x2(k�1))

/* COLOR : f0; 1g2(k�1) ! f0; : : : ; k � 1g */
begin return(�i=1;:::;k�1((xi � xk�1+i) � bin(i))) end

procedure Read
/* returns a value 2 f0; : : : ; k � 1g */

var h1; : : : ; hk�1; l
0
1; : : : ; l

0
k�1; l

1
1; : : : ; l

1
k�1 2 f0; 1g ;

/* init. 0 */
rm;wm 2 f0; 1g ; /* init. 1 */

begin
for i = 1 to k � 1 do read Hi into hi od ;
wm := �i=1;:::;k�1hi ;
if rm 6= wm then

/* writer \moved" since last Read */

for i = 1 to k � 1 do read Lwm
i into lwmi od ;

rm := wm ;
endif
write wm to RM ;
for i = 1 to k � 1 do read Lrm

i into lrmi od ;
return(COLOR(hk�1; : : : ; h1; l

0
k�1 � l1k�1; : : : ; l

0
1� l11)) ;

end

procedure Write(v)
/* writes value v 2 f0; : : : ; k � 1g */

var h1; : : : ; hk�1, l
0
1; : : : ; l

0
k�1, l

1
1; : : : ; l

1
k�1 2 f0; 1g ;

/* init. same as shared var's */
wm; rm 2 f0; 1g ; /* init. 0 */
old; i 2 f0; : : : ; k � 1g ; /* init. v0 */

begin
if v = old then exit ;
compute i s.t. bin(i) = bin(v)� bin(old) ;
read RM into rm ;

/* check if reader \followed" */
if rm = wm then

wm := wm ; hi := hi ;
write hi to Hi ;

else lwmi := lwmi ; write lwmi to Lwm
i ;

endif
old := v ;

end

FIGURE 2. The atomic register protocol in pseudocode

remove this restriction. The 2(k � 1)-tuple:
(Hk�1; : : : ; H1; L

0
k�1 � L1

k�1; : : : ; L
0
1 � L1

1) (in that or-
der: High Order Bits, Low Order Bits) corresponds to a
vertex of a 2(k�1)-dimensional hypercube (recalling its
de�nition: a n-dimensional hypercube is a regular undi-
rected graph with 2n vertices labelled from 0 to 2n� 1,
where two vertices are connected if the binary represen-
tation of their labels di�er in exactly one bit; �gure 1
shows a 3-dimensional hypercube), which is colored us-

ing a function COLOR, which maps each vertex label
(2(k� 1) bit string) to one of k colors (log k bit string),
in a way such that each vertex has exactly two neighbors
with each of the k�1 colors other than its own (rainbow
coloring). Colors are in one-to-one correspondence with
the value of the register. Thus, function COLOR can be
used to extract the value of the register from the values
of the subregisters of H;L0 and L1. An example of the
coloring function COLOR for a 6-dimensional hypercube
is given in �gure 3. For reasons of readability of the �g-
ure, the connections that correspond to the high order
bits of the vertex labels are not shown in full; instead
three \representative" ones are drawn.

 b

 g

 y

 r

 y

 g

 r b

bit 6

000010

000000

 y

 r b

 y

 b

 g

 r

 g

bit 4

bit 5

bit 1

bit 2

bit 3

000001

000100

001000

010000

 b

 g

 y

 r

 y

 g

 r b

 y g

 b r

 b r

 g y

 b

 g y

 r

 b

 y

 r

 g

 b r

 g

 y g

 b r

 y

100000

 b

 g y

 r

 b

 y

 r

 g

 y g

 b r

 b r

 g y

FIGURE 3. A 6-dimensional hypercube, rainbow 4-
colored (r(ed), b(lue), y(ellow), g(reen)) using function
COLOR

To ensure atomicity, the construction employs hand-

The Computer Journal, Vol. 00, No. 0, 2000

Wait-Free Handshaking using Rainbow Coloring 5

shaking. This mechanism implies that there are two
\virtual places", also called modes, where the reader
and the writer may be during each access to the regis-
ter; the reader tries to be at the same place with the
writer, while the latter tries to avoid it, by \moving"
to the other virtual place when it sees that it has been
\followed". By having disjoint sets of subregisters that
can be accessed in each virtual place, the handshaking
mechanism guarantees the existence of a piece of in-
formation that can be accessed by each communicating
part without collision on the physical level.
The controller of the game here is the writer; in each

write operation it has to:

1. determine the reader's mode by reading the sub-
register RM and

2. assign the new value to the register and change its
virtual place place (i.e. change mode) if the reader
has \followed".

From the particular rainbow property of the coloring
function, it follows that the writer has the capability of
changing the value of the register by modifying a single
one of the construction's subregisters; moreover, in or-
der to do so, it has two options: to modify either one of
the High Order Bits (in H) or one of the Low Order Bits
(in L0 or L1). E.g. in �gure 3, if the binary registers
values correspond to node 000000 in the hypercube (i.e.
to value r(ed)) and the writer must write b(lue), it may
do so by modifying either bit 4 (thus leading to node
001000) or bit 1 (thus leading to node 000001). The
�rst option is taken when the writer has to change mode
besides having to modify the register's value. (There-
fore, a parity function of the subregister values of H
can be used by the reader to trace the writer's mode
each time.) The second option is taken when the writer
needs only to change the register's value. Depending on
which mode it is, it modi�es one of the subregisters of
either the set L0 or the set L1.
On the other hand, the reader, in each read opera-

tion, �rst assigns to its local variable wm the virtual
place (mode) in which the writer is. It determines this
from the values of the subregisters of H , using a par-
ity function, as explained in the previous paragraph. If
the writer has \moved" (changed mode) since the pre-
vious read, the reader reads the subregisters in Lwm, in
order to �nd which was the last con�guration of that
set when the writer had to \move" to virtual place wm.
(Note that, if the writer has not \moved" since the pre-
vious read, the information in Lwm remains intact since
it was last read.) After that, the reader updates RM
in order to show to the writer that it has followed it in
its new virtual place (mode). Subsequently, in either
case, it reads the subregisters in Lwm. At that point
the reader has a complete view of a recent enough (i.e.
the most recent view that is not subject to be updated
concurrently with it, i.e. after it started reading) set of
values of H;L0 and L1 and it can use COLOR to extract
the register's value from that information.

The construction components are initialized so that
the reader's mode is 1 (RM is set to 1), the writer's
mode is 0 and the register holds some initial value v0
(all Hi and all L1

i are set to 0; all L
0
i are set to 0, unless

v0 6= 0, in which case L0
v0

is set to 1).

4. PROOF OF CORRECTNESS

First we prove that the encoding adopted using function
COLOR is correct:

Lemma 4.1. The function COLOR as de�ned in Fig-
ure 2 has the property that for all x 2 f0; 1g2(k�1) and
for all v 2 f0; : : : ; k � 1g if v 6= COLOR(x) then there ex-
ist exactly two y1 and y2 which are both in f0; 1g2(k�1)

such that v = COLOR(y1) = COLOR(y2), y1 6= y2 and both
y1 and y2 di�er from x in exactly one bit.

Proof. It holds that for all x; y 2 f0; 1g2(k�1) such that
x; y di�er only in one bit (assume w.l.o.g either bit i or
bit k�1+ i, where 1 � i � k�1), COLOR(x) 6= COLOR(y)
because COLOR(x)�COLOR(y) = bin(i) which is not zero.
Moreover, given x and y as above there exists another

y0 2 f0; 1g2(k�1) such that y0 6= y and y0 di�ers from x

only in one bit, either bit k�1+ i or bit i, respectively,
and COLOR(y) = COLOR(y0). This is because COLOR(y)�
COLOR(y0) = 0.
On the other hand, given again x and y as above,

for any other y00 2 f0; 1g2(k�1) which di�ers from x in
only one bit excluding bits i and k � 1 + i (x and y00

di�er either in bit j or in bit k � 1 + j, 1 � j � k � 1
and j 6= i) it holds that COLOR(y) 6= COLOR(y00) because
COLOR(y) � COLOR(y00) = bin(i) � bin(j) which is not
zero, because i 6= j.

Next we focus in proving the atomicity of our con-
struction. We introduce some auxiliary terminology,
which helps the presentation:

� For a read operation r, put(r) denotes its subwrite
to RM ,mode(r) is the value it writes to RM , while
view(r) is the 3(k � 1)-tuple of values (h; l0; l1)
that it uses in its invocation of COLOR. We write
view(r)jH (resp. view(r)jL0, view(r)jL1), for the
restriction of the view to the tuple corresponding
to the values of h (resp. l0; l1).
For a write operation w, get(w) denotes its subread
from RM ,mode(w) is the value of the writer's local
variable wm when w performs its (unique) subwrite
operation, while view(w) is the tuple consisting of
the values of H;L0; L1 after the unique subwrite.
Observe that mode(w) equals �i=1;:::;k�1Hi then.
Here, too, we write view(w)jH (resp. view(w)jL0,
view(w)jL1), for the restriction of the view to the
tuple corresponding to the values of H (resp. L0,
L1).

� For a read operation r, let each one of its read sub-
operations be mapped to the most recent write op-
eration which modi�ed the respective subregister

The Computer Journal, Vol. 00, No. 0, 2000

6 M. Papatriantafilou, Ph. Tsigas

(according to the total order de�ned on the oper-
ations of the atomic subregister). We de�ne �(r)
to be the write operation of this set such that ev-
ery other operation of this set precedes it. (If the
only operation in this set is the initial write opera-
tion winit, which, must naturally write (initialize)
all the subregisters, then �(r) = winit.) This is a
well de�ned function because the write operations
are totally ordered, since there are no overlapping
writes.

As already indicated earlier in the paper, we will use
Lamport's atomicity criterion (lemma 2.1) to prove the
atomicity of our construction. Consider any arbitrary
system execution �. We �rst prove a couple of auxil-
iary lemmas (lemmas 4.2 and 4.3). These are followd by
three lemmas on important properties of the handshak-
ing implementation (lemmas 4.4, 4.5 and 4.6), namely
that (i) while a read r scans the subregisters in H (resp.
Lmode(r)), there can be at most one write that may con-
currently attempt a modi�cation in the same set; and

that (ii) if a read r scans Lmode(r), there is no write
that may concurrently a attempt to modify a register
in that set (i.e. that scan is \collision-free"), while if it

does not scan Lmode(r), then it does not miss any in-

formation, since the values in Lmode(r) could not have
been modi�ed since the last time that they were read.
These properties are then used to prove (lemma 4.7)
that � can play the role of the reading function � in
Lamport's atomicity criterion. Then we show that the
construction satis�es the three conditions in the crite-
rion ((lemma 4.9).

Lemma 4.2. For any read r and for any write w,
such that put(r)!get(w) and (:9 read r0 : put(r) !
put(r0)! get(w)), it is mode(r) = mode(w).

Proof. Since there are no overlapping reads, the lemma
hypothesis implies that r is the last read to modify RM
before w reads it. Thus w will read from RM into its
local variable rm the value that r wrote; either this
value will be complementary to the value of w's local
variable wm, or w will complement wm. In both cases,
due to the de�nitions of mode(r), mode(w), the lemma
follows.

Lemma 4.3. In any sequence of successive writes
with the same mode, only the �rst one could write to a
subregister of the set H .

Proof. From the protocol it follows that a write w has a
di�erent mode compared to its directly preceding write
i� it writes to a subregister of the set H .

Lemma 4.4. For any read r there can be at most
one write whose write suboperation occurs between the
start of r (i.e. s(r)) and put(r) and modi�es a subreg-
ister in the set H .

Proof. Since there are no overlapping reads, we can use
induction on the number of reads that occur in any

arbitrary system execution �.
Let ri denote the ith read in the execution. For the

induction basis, suppose, towards a contradiction, that
there exist write operations

wx ! wx+1 ! : : :! wx+q ! put(r1) (q � 1)

whose write suboperations modify subregisters inH and
occur between the �rst suboperation of r1 and put(r1).
From the initialization conditions it follows that each
write w such that get(w) ! put(r1) sees that RM = 1
and its local variable wm = 0; therefore, according to
the writer's protocol, w will not write in H . This leads
to the desired contradiction, which proves the induction
basis.
For the induction hypothesis, assume that the lemma

holds for all rk , 1 � i � k. We will show that it also
holds for rk+1. Assume, towards a contradiction that
there exist more than one write operations

wx ! wx+1 ! : : :! wx+q ! put(rk+1) (q � 1)

whose write suboperations modify subregisters inH and
occur between s(rk+1) and put(rk+1). There are two
cases to consider:

put(rk)! get(wx): Note that

put(rk)! get(wx)! : : :! get(wx+q)! put(rk+1)

By use of lemma 4.2 all wx; wx+1; : : : wx+q have

the same mode (i.e. mode(rk)). Note also that all
the other possibly existing intermediate writes (be-
tween wx and wx+q) also have the same mode, since
writes change mode only by writing to subregisters
in H . But then, by lemma 4.3, only the �rst of the
whole sequence of writes (i.e. wx) may write on a
subregister of H , hence we have a contradiction.

get(wx)! put(rk): From the induction hypothesis we
know that between s(rk) and put(rk) only one sub-
write to a subregister in H occurs. We can modify
execution � into one �0 where the subwrite of wx

occurs between s(rk) and put(rk), but at a time
so that rk "misses" it (i.e. rk reads the subregis-
ter modi�ed by wx before the subwrite takes place).
Execution �0 is equivalent to �, as the only two op-
erations involved in the modi�cation behave in ex-
actly the same way and do not a�ect the behaviour
of any other operation; hence, every operation in
�0 behaves the same as its equivalent in �. By the
induction hypothesis we know that between s(rk)
and put(rk) only one subwrite to a subregister in
H occurs. In this case it is the subwrite by wx,
which is \missed" by rk, Hence, if mode(wx) = m

then mode(rk) = m. Note also that

put(rk)! wx+1 ! : : :! wx+q ! put(rk+1)

This implies, by lemma 4.2, that the writes
wk+1; : : : wk+q also have mode equal to m. Note

The Computer Journal, Vol. 00, No. 0, 2000

Wait-Free Handshaking using Rainbow Coloring 7

also that all the other possibly existing interme-
diate writes (between wx and wx+q) also have the
same mode, since writes change mode only by writ-
ing to subregisters in H . But then, by lemma 4.3,
only the �rst of the whole sequence of writes (i.e.
wx)may write on a subregister of H , hence we have
a contradiction, as in the previous case.

Lemma 4.5. For any read r withmode(r) = m, there
can be at most one write whose write suboperation oc-
curs between put(r) and the �nishing time of r (i.e.
f(r)) and modi�es a subregister in the set Lm.

Proof. Assume, towards a contradiction that there exist
more than one write operations

wx ! wx+1 ! : : :! wx+q ! f(r) (q � 1)

whose write suboperations modify subregisters in Lm

and occur between put(r) and f(r). This implies that

put(r)! get(wx+1)! : : :! get(wx+q)! f(r)

By lemma 4.2, then, it will be that mode(wx+1) = : : : =
mode(wx+q) = m, hence their write suboperations will
be on subregisters in H or in Lm, which contradicts our
assumption.

Lemma 4.6. For any read r with mode(r) = m,
1. if r scans the subregisters in Lm, there is no write
which modi�es a subregister in Lm and whose write
suboperation occurs during that scanning interval of r.
2. if r does not scan the subregisters in Lm and r� is
the read directly preceding r in the execution (r� exists
since the �rst read in any execution scans Lm), there is
no write which modi�es a subregister in Lm and whose
write suboperation occurs between put(r�) and put(r).

Proof. 1. Assume, towards a contradiction that there
exists such a write w. Since r scans Lm, either r
is the �rst read in the execution or there exists a
read r� directly preceding r with mode(r�) = m.

In the former case we directly come to a contradic-
tion, since, due to the initializing conditions, any
write w such that get(w)! put(r) has mode(w) =
0 and writes to L0, while mode(r) is also 0.

In the latter case, it must be get(w) ! put(r�)
(otherwise, by lemma 4.2 it would bemode(w) = m

and hence, w would not write in Lm). Since r scans
Lm after having scanned H and we assumed that
w's subwrite in Lm occurs during the scan of Lm by
r, this implies that during the interval that r scans
the subregisters inH there is no write that modi�es
any of them and it holds that �i=1;:::;k�1Hi = m.
But then it should be that mode(r) = m, hence we
have a contradiction.

2. Assume, towards a contradiction that there exists
such a write w. Since r does not scan Lm, it must

be mode(r�) = m, as well. Then the following are
true:

a. The assumptions combined imply that there
must be a w�, such that w� ! w, with
mode(w�) = m, which modi�es a subregis-
ter in H and this modi�cation is \missed" by
r� (otherwise it would be mode(r�) = m),
but read by r.

b. Any other write w0 that possibly modi�es a
subregister in H and put(r�) ! w0 ! put(r)
(i.e. is possibly \seen" by r) has mode(w0) =
m.

These combined imply that mode(r) = m, hence
we have a contradiction.

The following is the main lemma to use in order to
apply Lamport's atomicity criterion.

Lemma 4.7. For any read r, view(r) = view(�(r)).

Proof. Let m be the value of mode(r).
If �(r)! r, then the lemma clearly holds.
If �(r) is overlapping r and its subwrite is on a

subregister in H , then, by lemma 4.4, view(r)jH =
view(�(r))jH . Also, view(r)jLm = view(�(r))jLm, oth-
erwise the de�nition of �(r) would be contradicted, since
r scans the subregisters in Lm after having scanned the
subregisters in H . The same holds for view(r)jLm and
view(�(r))jLm if r scans Lm. If r does not scan Lm, by
lemma 4.6 we have that Lm was not modi�ed since the
last scan, hence view(r)jLm = view(�(r))jLm in this
case also.
If �(r) is overlapping r and its subwrite is on a sub-

register in Lm, then, by lemma 4.5, view(r)jLm =
view(�(r))jLm. Also, the fact that mode(r) = m

implies that the last modi�cation to H (which pre-
cedes �(r) and either precedes or overlaps r as in
lemma 4.4) was \seen" by r (otherwise its mode
would have been equal to m), hence view(r)jH =
view(�(r))jH . Lemma 4.6 directly implies that
view(r)jLm = view(�(r))jLm, as well.
Note that it cannot be the case that �(r) is over-

lapping r and its subwrite is on a subregister in Lm.
If this was the case, then, due to the �rst part of
lemma 4.6, the subwrite of �(r) in Lm would have hap-
pened before r started to scan Lm. But the fact that
mode(r) = m would imply that there exists a write w

with mode(w) = m, modifying H , such that �(r) ! w,
and r \sees" the modi�cation of w. This would contra-
dict the de�nition of �(r).

From the previous lemma it follows that:

Corollary 4.8. For any read r, mode(r) =
mode(�(r)).

Lemma 4.9. The protocol satis�es lemma 2.1 (Lam-
port's Atomicity Criterion).

The Computer Journal, Vol. 00, No. 0, 2000

8 M. Papatriantafilou, Ph. Tsigas

Proof. We use �(r) as �(r), which, by lemma 4.7 assigns
to each read r a write w, such that the value returned
by r |according to the read procedure invoked| is the
value written by w. We next prove the three conditions
that are su�cient to imply atomicity.

No-Future: From the de�nition of �(r) it follows that
the last suboperation of �(r) occurs before the last
suboperation of r.

No-Past: Suppose, towards a contradiction, that there
exist a read r and a write w of � such that
�(r)!w!r. Let mode(r) = m. If w writes in
H or Lm, we have directly a contradiction to the
de�nition of �(r), since a read with mode m al-
ways scans H and Lm. Hence, the only possibil-
ity is that w writes in Lm. Note that this implies
that mode(w) = m. Since, due to corollary 4.8
mode(�(r)) = m and, due to the protocol, a write
has di�erent mode compared to its directly pre-
ceding write i� it writes to a subregister in H , we
have that there must be a write w0 that writes to a
subregister in H , and �(r)!w0 ! w!r. Hence, ei-
ther mode(r) = m (a contradiction to the assump-
tion) or there exists another write w00 such that
�(r)!w0 ! w!w00 that modi�es H and is \seen"
by r (a contradiction to the de�nition of �(r).

No-New-Old-Inversion: Suppose, towards a contradic-
tion that 9 reads r1, r2 in � such that r1 ! r2
and �(r2) ! �(r1). From the de�nition of �(r1) it
follows that the last suboperation of �(r1) occurs
before the last suboperation of r1. This implies
that �(r2) ! �(r1) ! r2, since r1 ! r2. But this
is a contradiction to the No-Past condition, which
has already been shown to hold.

For the case that k is not power of 2, the protocol
can use 3l � 2 subregisters, where l = 2dlog ke, i.e. l

is the smallest power of 2 larger than k. In this way
the protocol will in fact implement an l-valued atomic
register (k < l), which can also serve as a k-valued one.
Hence, we have the following:

Theorem 4.10. The presented construction cor-
rectly implements a wait-free k-valued atomic register
using 3 � 2dlog ke � 2 atomic binary subregisters. The
maximum number of suboperations performed during
any read r is 3 �2dlog ke�3, while each write w performs
one read and one write suboperation.

ACKNOWLEDGEMENTS

This work was done while the authors were guest re-
searchers at CWI, Amsterdam and were partially sup-
ported by the ESPRIT II BRA Program of the Euro-
pean Community, under contract no. 7141 (project AL-
COM II). The �rst author was also partially supported
by a NUFFIC Fellowship. The second author was also

partially supported by NWO through NFI Project AL-
ADDIN under contract number NF 62-376.
The authors gratefully acknowledge Jaap-Henk Hoep-

man, John Tromp and Paul Vit�anyi for all the helpful
discussions.
Special thanks also goes to the anonymous referees,

whose constructive comments helped to improve the
readability of the paper.

REFERENCES

[1] P.J. Courtois, F. Heymans and D.L. Parnas. (1971)
Concurrent Control With Readers and Writers. Com-
munication of the ACM, 14(10), 667-668.

[2] L. Lamport. (1986) On Interprocess Communication,
Part I: Basic Formalism, Part II: Basic Algorithms. Dis-
tributed Computing, 1, 77-101.

[3] N. Lynch (1996) Distributed Algorithms. Morgan Kauf-
mann.

[4] B. Bloom. (1988) Constructing Two-writer Atomic
Registers. IEEE Transactions on Computers, 37, 1506{
1514.

[5] J.E. Burns and G.L. Peterson. (1987) Constructing
Multi-reader Atomic Values From Nonatomic Values.
Proceedings of the 6th ACM Symposium on Principles
of Distributed Computing, 222{231.

[6] M. P. Herlihy. \Wait-free synchronization". ACM
Transactions on Programming Languages and Systems
13, 1 (1991), 124{149.

[7] M. Herlihy and J. Wing. (1990) Linearizability: A
Correctness Condition for Concurrent Objects. ACM
Transactions on Programming, Languages and Systems
12(3), 463{492.

[8] A. Israeli and A Shaham. (1992) Optimal Multi-Writer
Multi-reader Atomic Registers. Proceedings of the 11th
Annual ACM Symposium on Principles of Distributed
Computing, 71{82.

[9] L.M. Kirousis, E.Kranakis, P.M.B. Vit�anyi. (1987)
Atomic Multireader Register. Proceedings of the 2nd
International Workshop on Distributed Algorithms, vol.
312 of LNCS, Springer-Verlag, 278{296.

[10] M. Li, J.Tromp and P.M.B. Vit�anyi. (1986) How to
Construct Concurrent Wait-free Variables. Journal of
the ACM, 43(4), 723{746.

[11] R. Newman-Wolfe. (1987) A Protocol for Wait-free,
Atomic, Multi-reader Shared Variables. Proceedings of
the 6th ACM Symposium on Principles of Distributed
Computing, 232{248.

[12] G.L. Peterson and J.E. Burns. (1987) Concurrent Read-
ing While Writing II: The Multiwriter Case. Proceed-
ings of the 28th IEEE Symposium on Foundations of
Computer Science, 383{392.

[13] G.L. Peterson. (1983) Concurrent Reading While Writ-
ing. ACM Transactions on Programming Languages
and Systems 5(1), 46{55.

[14] R. Scha�er. (1988) On the Correctness of Atomic Multi-
writer Registers. Technical Report MIT/LCS/TM-364,
MIT Lab. for Computer Science.

[15] A.K. Singh, J.H. Anderson and M.G. Gouda. (1987)
The Elusive Atomic Register Revisited. Proceedings of
the 6th ACM Symposium on Principles of Distributed
Computing, 206{221.

The Computer Journal, Vol. 00, No. 0, 2000

Wait-Free Handshaking using Rainbow Coloring 9

[16] J. Tromp. (1989) How to Construct an Atomic Variable.
Proceedings of the 3rd International Workshop on Dis-
tributed Algorithms, vol. 392 of LNCS, Springer-Verlag,
492{302.

[17] K. Vidyasankar. (1988) \Converting Lamport's Regular
Register to Atomic Register". Information Processing
Letters, 28, 287{290.

[18] K. Vidyasankar. (1989) An Elegant 1-Writer Multi-
reader Multivalued Atomic Register. Information Pro-
cessing Letters, 30, 221{223.

[19] K. Vidyasankar. (1990) Concurrent Reading While
Writing Revisited. Distributed Computing, 4, 81{85.

[20] P. Vit�anyi and B. Awerbuch. (1986) Atomic Shared
Register Access by Asynchronous Hardware. Proceed-
ings of the 27th IEEE Symposium on Foundations of
Computer Science, 233{243.

[21] S. Chaudhuri, M.J. Kosa and J.L. Welch. (1991) Upper
and Lower Bounds for One-Write Multivalued Regular
Registers. Proceedings of the 3rd IEEE Symposium on
Parallel and Distributed Processing, 134{141.

[22] S. Chaudhuri and J.L. Welch. (1990) Bounds on the
Costs of Register Implementations. Proceedings of the
4th International Workshop on Distributed Algorithms,
vol. 486 of LNCS, Springer-Verlag, 402{421.

[23] P. Jayanti, A. Sethi and E.L. Lloyd. (1992) \Minimal
Shared Information for Concurrent Reading and Writ-
ing". Proceedings of the 5th International Workshop on
Distributed Algorithms, vol. 579 of LNCS, Springer-
Verlag, 212{228.

[24] G. Kant and J. van Leeuwen. (1990) The File Distri-
bution Problem for Processor Networks. Proceedings of
the Second Scandinavian Workshop on Algorithm The-
ory, vol. 447 of LNCS, Springer-Verlag, 48{59.

[25] L.M. Kirousis, P. Spirakis, Ph. Tsigas. (1994) Reading
Many Variables in One Atomic Operation: Solutions
With Linear or Sublinear Complexity. IEEE Transac-
tions on Parallel and Distributed Systems, 5(7), 688-
696. (Prel. version in Proceedings of the 5th Interna-
tional Workshop on Distributed Algorithms, vol. 579 of
LNCS, Springer-Verlag, 229{241.)

[26] C. Dwork, M. Herlihy, S. Plotkin and O. Waarts. (1992)
Time-Lapse Snapshots. Proceedings of the First Israel
Symposium on the Theory of Computing and Systems,
vol. 601 of LNCS Springer-Verlag, 154{170.

[27] C. Dwork, O. Waarts. (1992) Simple and E�cient
Bounded Concurrent Timestamping or Bounded Con-
current Timestamp Systems are Comprehensible! Pro-
ceedings of the 24th ACM Symposium on Theory of
Computing, 656{666.

The Computer Journal, Vol. 00, No. 0, 2000

