
Parallel Processing Letters,
fc World Scienti�c Publishing Company

ON SELF-STABILIZING WAIT-FREE CLOCK SYNCHRONIZATION

MARINA PAPATRIANTAFILOU and PHILIPPAS TSIGAS

Max Planck Institut f�ur Informatik, Im Stadtwald

D-66123 Saarbr�ucken, Germany

Email: fptrianta,tsigasg@mpi-sb.mpg.de

Received February 1996
Revised May 1997

Communicated by Michel Cosnard

ABSTRACT
A protocol which can tolerate any number of processors failing by ceasing operation

for unbounded time and resuming operation (with or) without knowing that they were
faulty is called wait-free; if it also works correctly even when the starting state of the
system is arbitrary, it is called wait-free, self-stabilizing. This work is on the problem
of wait-free, self-stabilizing clock synchronization of n processors in \in-phase" multi-
processor systems and presents a protocol that achieves quadratic synchronization time,
by \re-parameterizing" and improving the best previously known solution, which had
cubic synchronization time. Both the protocol and its analysis are intuitive and easy to
understand.

Keywords: Concurrency, Fault Tolerance, Logical Clocks, Multiprocessor Systems, Self-
Stabilization, Wait-Free Synchronization

1. Introduction

Synchronization among the processors of a multi-processor system is commonly

obtained using logical clocks. Since by today's technology multiprocessor systems

have large numbers of processors and since the probability of failure increases with

the number of processors in the system, it is important both to study which mul-

tiprocessor models can support protocols that tolerate failures, as well as to design

such fault-tolerant protocols for them.

In the past clock synchronization solutions that can tolerate failures have been

proposed for the case of arbitrary, or Byzantine faults ([1,2,3] are just a few exam-

ples). In those models it has been proven that it is impossible to have a solution if

the fraction of the non-faulty processors is less than one third [1] of the total. In

the case of authenticated Byzantine faults the situation is not so bad; there exist

algorithms that can tolerate any number of faults [4]. The negative results in that

model are that the faulty processors can in
uence the clocks of the non-faulty ones

by speeding them up, and that re-accession of repaired processors is not possible

unless more than half of the processors are non-faulty [4]. Self-stabilizing algorithms

for the clock synchronization problem have also been proposed [5,6]. An algorithm

is called self-stabilizing if it can tolerate transient faults in the sense that, after a

1

2 Parallel Processing Letters

transient fault leaves the system in an arbitrary state, if no further fault occurs for

a su�ciently long period of time, then the system converges into a consistent global

state and solves the task. For an introduction and a survey on self-stabilization,

see [7,8].

To sum it all up, the \ideal" clock synchronization algorithm, that is highly

resilient to failures, would have the following features:

(i) it would not only tolerate any number of processors' napping faults like in

the authenticated Byzantine model, but also guarantee that the non-faulty

processors' clocks remain una�ected by the failures;

(ii) it would allow faulty processors to rejoin the system when they resume normal

operation and to become synchronized in a number of steps k (synchronization

time) independent of the number of the working processors;

(iii) it would function correctly regardless of the system state in which it is started.

Recently, Dolev and Welch presented this highly resilient view of the problem

as wait-free, self-stabilizing clock synchronization [9]; the �rst two aforementioned

conditions capture the spirit of the wait-freedom [10,11] which implies maximum

resilience to processor halt/napping failures and the third condition captures the

spirit of self-stabilization which implies tolerance to system transient faults that

cause the state of the system to change arbitrarily. They presented two wait-free

clock synchronization algorithms for in-phase multiprocessors, achieving synchro-

nization within O(n3) and O(n2) steps, respectively; the former solution is also

self-stabilizing, while the latter depends on the initialization.

In this paper, by pointing out a simple approach in analyzing the di�culties of

the problem we show how to \re-parameterize" the O(n3) algorithm of [9], to de-

rive a clock synchronization protocol for in-phase multiprocessors |protocol Sync,

described in section 3| which is both wait-free and self-stabilizing, and achieves

synchronization time (4n + 1)(n � 1). The analysis and proof of correctness of

the protocol, given in section 4, are simple and intuitive. Before proceeding with

the presentation of the solution, in the next section we describe in more detail the

system model.

2. The system model

The system consists of n identical processors, each of which is a |possibly

in�nite| state machine. The processors communicate via a set of single-writer,

multi-reader atomic shared variables. Each variable is owned by one processor,

which is the only one that can write it, while all the others can read it. Part of

the state of each processor pi (0 � i � n) is a pointer to the variables of some

other processor. In each one of its steps, pi (i) reads the variables of the processor

pointed to by its current pointer value, (ii) changes state and (iii) updates its own

variables. It must be noted that pi has to read its own variables at each step, since,

it has been proven, there can be no wait-free, self-stabilizing clock synchronization

On Self-Stabilizing Wait-Free Clock Synchronization 3

algorithmwith only blind write operations |i.e. updates of shared variables without

knowledge of their previous values [9].

We consider in-phase systems, in which processors share a common clock pulse.

Each pulse is a (possibly empty) set of processor names, exactly those which make

a step in the pulse. Each processor can make at most one step in one pulse. For a

processor that does not make a step in a certain pulse we say that it missed that

pulse. A con�guration is a tuple of the processor states and the values of the shared

variables. A system execution E is a sequence c0�1c1�2 : : : of alternating pulses

(denoted by �x) and con�gurations (denoted by cx). Each con�guration ci in an

execution is derived from its directly preceding one ci�1 by the state transitions

and the shared variable updates of the processors that make a step in �i. The

shared variable reads in �i return the respective values of ci�1. An execution is

initialized if its �rst con�guration is explicitly speci�ed by the protocol. We refer

to a sub-sequence (starting and ending with a con�guration) of a system execution

E as a sub-execution of E . We say that a processor pi makes l continuous steps if it

makes steps for l consecutive pulses.

This system model is an enhanced-with-failures version of the Parallel Random

Access Machine model (cf. [12,13]). It describes common-clock-pulse multiproces-

sors (cf. [14]), in which faults may occur, or processors are scheduled independently;

pause intervals also model faults in the connections of the pausing processor or tran-

sient faults, or even processor crashes. It is an important system architecture model

that has been also shown to support universal wait-free consensus [15], which is not

a trivial task and is a key to the power of the system [10].

In a solution to the clock synchronization problem, each processor owns a shared

variable which encodes the value of its clock. The requirement from a wait-free clock

synchronization algorithm is that there should be a positive integer k such that in

any execution E the following conditions are satis�ed:

� Adjustment: For any l > k and for any processor pi that makes l steps during

a sequence of l consecutive pulses �x+1; : : : ; �x+l, pi's clock in cj+l equals its

clock in cj+l�1 incremented by one.

� Agreement: For any two processors pi and pj and any sequence of l � k

consecutive pulses �x+1; : : : ; �x+l, in which both pi and pj make l steps, pi's

and pj 's clocks in cj+l are equal.

For self-stabilization to be guaranteed, the above two requirements should be

met even in non-initialized executions; this su�ces because a sub-execution starting

after transient faults cease can be viewed as a non-initialized execution.

3. Protocol Sync

Our wait-free self-stabilizing clock synchronization protocol |shown in pseudo-

code in Fig. 1|is based on the following strategy: each processor pi (which has

possibly missed some pulses) tries to catch up with the maximal clock in the sys-

tem, by scanning in cyclic order the other processors' clocks and updating its own

4 Parallel Processing Letters

shared var (clock1;cnt1); : : : ; (clockn;cntn): (int, int) ;

protocol Sync(i)
var j; clock j; cnt j; df; my clock; my cnt; susp; prev[1::n]: int ;
repeat

for j = 1 to n (j 6= i) do
(clock j; cnt j) := read(clockj ;cntj) ;
my cnt := my cnt+ 1 ; df := cnt j � prev[j] ; prev[j] := cnt j ;
if susp 6= 0 then susp := susp� 1 end if ;
if df > n� 1 then susp := 2n(n � 1) end if ;
if susp = 0 then my clock := max(clock j;my clock) + 1 end if ;
write ((clocki;cnti), (my clock;my cnt)) ;

end for

forever

Fig. 1. Protocol Sync for processor pi

clock to the maximum value it knows in each step, incremented by one. The dif-

�culty is the following: the maximal clock in the system can remain hidden from

pi arbitrarily long, because the processors which hold and increment this maximal

value may miss pulses just before being checked by pi. Such a \game" may have

unbounded duration (cf. [9]), thus violating the requirements for adjustment and

agreement in bounded time. Since the problem is due to processors that misbehave

by interchangeably switching between incrementing the maximal clock during some

pulses and stopping operation in subsequent ones, the solution aims at preventing

these processors from misleading the others that correctly and continuously work.

Namely, when a processor realizes that it missed some pulse(s), it suspends its op-

eration by not incrementing its clock for a certain number of its steps. Each pi can

detect whether it had stopped executing for some pulse(s), by counting, using its

local array prev and the cntj shared variables, the number of steps that each pj
made since that last time pi checked it.

In the approach taken in [9] the idea was that a continuously working processor,

in order to catch up with the maximal clock in the system, needs 2(n � 1) pulses

during which no processor that increments its clock (i.e. that is not suspended)

misses a pulse. Taking into account that in the worst case a processor might need

2n � 3 steps to realize that it had missed a pulse and that there may be n �

1 processors that try to mislead a correctly and continuously working one, that

approach implied a suspension time of at least 2(n� 1)2(2n� 3) steps, and, hence,

a synchronization time of roughly 8n3 continuous steps (pulses).

Here we take a new approach, which improves the synchronization time by a

factor of n. Consider a processor pi that has taken some pause and its clock needs

adjustment. During the pulses following its suspension period, if pi correctly keeps

making continuous steps, it is guaranteed that after it has performed a complete

scan of the other processors' variables (this takes n�1 steps) its own clock value will

be no less than n � 1 units smaller than the maximal clock value of the system at

On Self-Stabilizing Wait-Free Clock Synchronization 5

that time. During the 2n(n�1) pulses following that point, if the suspension period

is 2n(n� 1) steps long for each processor, there will be either (i) n� 1 consecutive

pulses in which a processor with the maximal clock value continuously makes steps,

or (ii) (by the pigeon-hole principle) n � 1 pulses, not necessarily consecutive, in

which the maximal clock value is not incremented. Both these cases are convenient

for pi because it will either (i) actually read the maximal clock value in one of those

steps, or (ii) have enough time to catch up with that value, respectively. Once

pi has the maximal clock value, it will continue holding it for as long as it keeps

making continuous steps, since it will increment its clock by one at each step.

4. Analysis of protocol Sync

We introduce some auxiliary terminology to simplify the presentation.

� A processor pi is called suspended in a con�guration c if its local variable susp

has a non-zero value in c.

� If c is a system con�guration then clocki(c) is the value of clocki in c,

max clock(c) = maxfclocki(c) : 1 � i � ng, and di(c) = max clock(c)�

clocki(c) |i.e. di(c) is the \distance" between the clock of pi and the

maximal clock of the system in c.

� Processor pi makes a forwarding step in a pulse �j if it makes a step in �j and

clocki(cj) = max clock(cj) and max clock(cj) = max clock(cj�1) + 1.

� A pulse �j is called forwarding if there exists some pi which makes a for-

warding step in �j ; otherwise it is called non-forwarding (in which case it is

max clock(cj) = max clock(cj�1)).

Let E be an arbitrarily initialized execution and Es be a sub-execution of E of

length k = (4n+ 1)(n� 1) pulses and pi be some processor that makes steps in all

pulses in Es. We will prove that by the end of Es, pi will hold the maximal clock

value in the system. Let c0 and c4 be the �rst and the last con�gurations of Es,

respectively; let also c1 be the con�guration after the (n�1)-th pulse of Es, c2 be the

con�guration following the 2n(n� 1)-th pulse after c1 and c3 be the con�guration

following the (n� 1)-th pulse after c2.

Lemma 1 In any con�guration c of Es after con�guration c1 it will be df � n� 1,

where df is pi's local variable.

Proof. In its �rst n� 1 steps in Es, pi loads its array prev with the value of the

cntx shared variable of every other processor px. >From that time on, since pi is

not missing pulses, it will calculate in df the exact number of steps that each px

makes during every interval of n� 1 pulses. 2.

Lemma 2 In any con�guration c of Es after con�guration c2, pi's local variable

susp equals zero.

Proof. >From the previous lemma we have that after c1, pi will be �nding

df � n� 1, and, consequently, it will be decrementing the value of susp by one at

6 Parallel Processing Letters

each pulse |if susp 6= 0| and will never increment it. Therefore, by the 2n(n�1)-

th pulse following c1, pi's local variable susp will equal zero. 2.

Lemma 3 In con�guration c3 of Es it will be di(c3) � n�1. Moreover, for any two

con�gurations cj and cj+l that occur after c3 it will hold that di(cj) � di(cj+l) + lnf ,

where lnf is the number of non-forwarding pulses in the sub-execution speci�ed by

cj and cj+l.

Proof. We �rst prove the �rst part of the lemma. Since at each step the maximal

clock of the system can be incremented by at most one, it follows that:

max clock(c3)�max clock(c2) � n� 1

But max clock(c2) is the value of clockx of some px in c2, which pi reads in one

of these n� 1 steps. Since clock variables are never decremented it follows that:

clocki(c3) � max clock(c2))

max clock(c3)� clocki(c3) � max clock(c3)�max clock(c2)

which, combined with the �rst inequality, implies that:

di(c3) = max clock(c3)� clocki(c3) � n� 1

The second part of the lemma is derived by combining the two inequalities below:

clocki(cj+l) � clocki(cj) + l

max clock(cj+l) = max clock(cj) + l � lnf

The former holds because pi is not suspended (from lemma 2) and, thus, it in-

crements its clock by at least one in each step. The latter holds because the

system's maximal clock is incremented by one in each pulse, unless the pulse is

non-forwarding. 2.

Lemma 4 If between con�gurations c3 and c4 in Es there are at least n � 1 non-

forwarding pulses, then it will be di(c4) = 0.

Proof. The lemma follows from Lemma 3 and from the following fact: if pi at some

step reads the maximal clock value of that time, then, as long as it works continu-

ously it will keep holding the maximal clock value in the system and incrementing

it (by incrementing its own clock) by one at each pulse. 2.

Lemma 5 In con�guration c4 of Es it will be clocki(c4) = max clock(c4).

Proof. Assume, towards a contradiction, that clocki(c4) < max clock(c4). Let

EA denote the sub-execution speci�ed by c2 and c4. Also, consider any processor

px (x 6= i) which makes steps during EA.

Suppose that px performs n � 1 continuous forwarding steps during EA. Since

clockx is read by pi every n � 1 steps and pi's steps in the speci�ed interval are

continuous by assumption, pi would have adjusted its own clock to clockx and,

On Self-Stabilizing Wait-Free Clock Synchronization 7

hence to the maximal clock of the system during one of these n � 1 steps of px.

Combining this with lemma 4 derives a contradiction.

Then the case that is left to be considered is the one that no px (x 6= i) performs

n � 1 continuous forwarding steps during EA: Once px makes its �rst n � 1 steps

(not necessarily continuous) in EA, it is guaranteed that its variable prev[i] contains

a correct value of cnti |i.e. one written by pi during EA; thus, px will have a

consistent reference time-point for detecting its pauses thereafter. After that point,

px cannot make more than n � 1 forwarding steps in EA. This is so because if it

does, we know from the previous case that these steps will not be continuous; but

then, by at most the (n� 1)-th such step it will detect its pause, and, as a result it

will become suspended. Since the length of a sub-execution in which a processor is

continuously suspended is at least equal to 2n(n� 1) pulses, which implies that px
will not increment its clock again during EA. What the above reasoning essentially

implies is that the number of forwarding steps of each processor px (x 6= i) in EA
can be at most 2(n�1), which makes a total of at most 2(n�1)2 forwarding pulses

in EA. The latter implies the existence of at least 2(n � 1) non-forwarding pulses

during EA, hence at least (n � 1) ones after c3. But then, by Lemma 4, pi should

hold the maximal clock value at c4, which contradicts our assumption. 2.

Theorem 1 Protocol Sync is a self-stabilizing wait-free clock synchronization

solution with k = (4n+ 1)(n� 1).

Proof. After a processor pi has worked continuously for k = (4n+1)(n�1) steps,

it is guaranteed by Lemma 5 that it will hold the maximal clock value in the system.

After that, as long as it continues working correctly it will still hold the maximal

clock value in the system and it will increment its clock by one at each pulse, thus

satisfying the adjustment requirement. The same will hold with any other processor

that has been working continuously for at least k pulses concurrently with pi, hence

its clock value will agree with the clock value of pi, and the agreement requirement

is satis�ed. The self-stabilizing property of the protocol is due to the fact that no

initialization conditions were assumed for the analysis. 2.

Conclusions

We have shown a wait-free and self-stabilizing protocol for in-phase multipro-

cessors, which achieves clock synchronization among n processors in at most 4n2

steps, and which improves the previously known solution which had synchronization

time O(n3) steps. The best known non-stabilizing solution to the same problem has

synchronization time O(n2), as well [9]. Given these two facts and the importance

of the system model [15], what deserves consideration is to study if linear-time

synchronization is achievable or if the requirement for self-stabilization imposes an

inherent overhead on the complexity.

Acknowledgments

This work was done while the authors were visting CWI, Amsterdam as guest

8 Parallel Processing Letters

researchers and were students of the Computer Engineering and Informatics Depart-

ment, Patras University, Greece. It has been partially supported by NWO through

NFI Project ALADDIN under contract number NF 62-376 and ALCOM ESPRIT

Project Nr. 7141. A preliminary version appeared in the Proceedings of SWAT'94,

LNCS Vol. 824, Springer-Verlag, 1994. We would like to thank the anonymous

referees of SWAT for their accurate and useful remarks. We are also thankful to

Moti Yung for his help in the �rst steps of this work.

References

[1] D. Dolev, J.Y. Halpern and H.R. Strong, On the Possibility and Impossibility of Achiev-
ing Clock Synchronization, Journal of Computer Systems Science 32 (1986) 230{
250.

[2] S. Mahaney and F. Schneider, Inexact Agreement: Accuracy, Precision and Graceful
Degradation, in Proc. 4th ACM Symposium on Principles of Distributed Comput-
ing, Aug. 1985, 237{249.

[3] J.L. Welch and N. Lynch, A New Fault-Tolerant Algorithm for Clock Synchronization,
Information and Computation 77 (1988) 1{36.

[4] J. Halpern, B. Simons, R. Strong And D. Dolev, Fault-Tolerant Clock Synchronization,
in Proc. 3rd ACM Symposium on Principles of Distributed Computing, Aug. 1984,
89{102.

[5] A. Arora, S. Dolev and M. Gouda, Maintaining Digital Clocks in Step, Parallel Pro-
cessing Letters 1 (1991) 11-18.

[6] M.G. Gouda and T. Herman, Stabilizing Unison, Information Processing Let-
ters 35 (1990) 171{175.

[7] E.W. Dijkstra, Self Stabilizing Systems in Spite of Distributed Control, Communica-
tion of the ACM 17 (1974) 643{644.

[8] M. Schneider, Self-stabilization, ACM Computing Surveys 25 (1993) 45{67.
[9] S. Dolev and J.L. Welch, Wait-Free Clock Synchronization, in Proc. 12th ACM Sym-

posium on Principles of Distributed Computing, Aug. 1993, 97{108.
[10] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming Lan-

guages and Systems 13 (1991) 124{149.
[11] L. Lamport, On Interprocess Communication. Distributed Computing 1 (1986) 86{

101.
[12] R. Karp and V. Ramachandran, Parallel Algorithms for Shared Memory Machines, in

Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity, ed. J.van Leeuwen, (Elsevier, Amsterdam 1990).

[13] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. (Morgan Kaufmann, 1992).

[14] K. Hwang, Advanced Computer Architectures, Parallelism, Scalability, Pro-
grammability (McGraw-Hill, 1993).

[15] M. Papatrianta�lou and Ph. Tsigas, Wait-Free Consensus in In-Phase Multiprocessor
Systems, in Proc. 7th IEEE Symposium on Parallel and Distributed Processing,
Oct. 1995, 312-319.

