
View-Projection Animation for

3D Occlusion Management ?

Niklas Elmqvist ∗,1, Philippas Tsigas

Department of Computer Science & Engineering, Chalmers University of
Technology, Göteborg, Sweden

Abstract

Inter-object occlusion is inherent to 3D environments and is one of the challenges
of using 3D instead of 2D computer graphics for visualization. Based on an analy-
sis of this effect, we present an interaction technique for view-projection animation
that reduces inter-object occlusion in 3D environments without modifying the ge-
ometrical properties of the objects themselves. The technique allows for smooth
on-demand animation between parallel and perspective projection modes as well
as online manipulation of view parameters, enabling the user to quickly and eas-
ily adapt the view to reduce occlusion. A user study indicates that the technique
provides many of the occlusion reduction benefits of traditional camera movement,
but without the need to actually change the viewpoint. We have also implemented
a prototype of the technique in the Blender 3D modeler.

Key words: occlusion management, occlusion reduction, 3D visualization

1 Introduction

Three-dimensional computer graphics provides considerable potential for in-
formation visualization [4]. However, there is an increased overhead associated
with using 3D over conventional 2D graphics [6,7]. In general, 3D graphics im-
poses a high cognitive load on users trying to gain and maintain an overview

? This is an extended version of a paper that previously appeared in the ACM
Conference on Advanced Visual Interfaces 2006.
∗ Corresponding author.

Email addresses: nickelm@acm.org (Niklas Elmqvist),
tsigas@cs.chalmers.se (Philippas Tsigas).
1 Present address: INRIA/LRI, Bât 490, Université Paris-Sud XI, 91405 Orsay
Cedex, France. Phone: +33 (0)1 69 15 61 97, Fax: +33 (0)1 69 15 65 86.

Preprint submitted to Elsevier 30 August 2007

of the environment, and often cause disorientation, confusion, and sometimes
even nausea (see for example [17,26]). One of the central issues behind this
high cognitive load is occlusion, the phenomenon that nearby objects hide
more distant objects in 3D even if the objects are not overlapping in space [8].

Why is occlusion a problem in 3D visualization environments? There are three
basic issues. First, and perhaps most importantly, there is a discovery problem
if an object is occluded, since then the user may never know that it exists.
Secondly, even if the user is aware of the existence of an occluded object, there
is an accessibility problem, since the user will have to move the viewpoint in
some nontrivial way in order to retrieve the information encoded in the object.
Finally, even if the user is able to discover and access individual occluded
objects in the world, the high-level task of spatially relating the objects to
each other can be difficult. The latter task is of particular importance to
visualization applications, where objects may be nodes in a graph or events
on a timeline.

In this paper, we explore the occlusion problem in more detail, attempting to
build a theoretical model for its causes and parameters and also to identify
possible solution strategies. Using this model, we develop an interaction tech-
nique for view-projection animation that aims to reduce inter-object occlusion
in 3D environments without modifying the geometrical properties of the envi-
ronment itself, nor the objects in it. The technique allows for smooth animation
between the conventional perspective projection mode, which mimics human
vision in the real world and is commonly used for 3D visualizations, and par-
allel projection mode, where the depth coordinate is ignored and objects are
assigned screen space according to their actual geometrical size, regardless of
their distance to the viewpoint. While this causes many depth cues to become
lost and thus some of the visual realism, the relationships between the objects
are more important for the information visualization applications we consider
in our work, as discussed above.

A formal user study conducted on our technique in relation to traditional per-
spective projection shows that it provides the same occlusion reduction capa-
bilities of moving the camera around the environment to disambiguate occlu-
sion, but without the need to actually change the viewpoint. This means that
users run a lower risk of becoming disoriented when navigating 3D space. They
are also significantly more correct when solving tasks using view-projection an-
imation. The cost for this increased correctness is instead significantly longer
task completion times; users essentially trade speed for accuracy when using
our technique.

This paper begins with a review of existing work in the area (Section 2). We
then launch ourselves into a theoretical treatment of the occlusion problem
and its human-computer interaction aspects, mapping out the problem space

2

and its components (Section 3). After that, we describe the view-projection
animation technique itself (Section 4). This is followed by an overview of the
formal user study we conducted (Section 5), for both exploring the occlusion
problem as well as comparing our new technique to normal perspective views,
and the results we collected from it (Section 5). We close the paper with a
discussion (Section 7) and some conclusions (Section 8).

2 Related Work

While most work on improving the usability of 3D visualizations attacks the
higher-level problem of navigation, there also exists a number of papers dealing
more directly with object discovery and access in complex 3D environments.
The Worlds-in-Miniature technique [25] uses a miniature 3D map of the en-
vironment to support both discovery and access, worldlets [10] provide both
global overview maps as well as local views optimized for detail, bird’s eye
views [12] combine overview and detail views of the world, and balloon force
fields [9] inflate to separate occluding objects. None of these makes direct use
of the view projection to improve perception; however, temporally controlled
non-linear projections [23] have been used to great effect in improving navi-
gation and perception of 3D scenes.

Projections are intrinsic to computer graphics, but are mostly limited to linear
perspective projections. CAD programs have traditionally made use of par-
allel projection, often through multiview orthographic projections where two
or more views of the same object are shown on planes parallel to the princi-
pal axes. Carlbom and Paciorek [5] (see also [18]) give a complete overview
of planar geometric projections and their various advantages and disadvan-
tages in different situations. Baldonado et al. [2] describe design principles
and common practice for visualization systems employing multiple views.

Recent developments in the area also include multiprojection rendering, where
several perspectives are combined into one, mainly for artistic purposes. Agra-
wala et al. [1] compose views of multiple cameras, where each object is as-
signed to a specific camera perspective, allowing for creative scene composi-
tion akin to the work of famous painters. Singh [22] uses a similar approach,
but smoothly combines the multiple viewpoints into an interpolated virtual
camera in view space instead of composing the images of disjoint cameras on
an image-level. While only slightly related to our technique, these works give
valuable insight into the manipulation of projection transforms. Our technique
can also be compared to glances [19], with the perspective view as the base
view and the parallel view as the glance.

Our projection animation technique allows for interactive manipulation of

3

camera properties beyond the traditional position and orientation parame-
ters. Prior work in this area includes the IBar [24] camera widget, which is
a comprehensive camera control that provides intuitive ways of manipulating
these parameters for the purposes of 3D scene composition. Another approach
uses image-space constraints to solve for the camera parameters given a num-
ber of control points [13]. Our work is again focused on reducing the impact
of objects obscuring other objects rather than direct camera control, and the
camera manipulations provided by our technique only give additional means
to achieve this.

The family of non-pinhole cameras introduced by Popescu et al. is of particu-
lar relevance to the technique described in this paper. Occlusion cameras [16]
and depth-discontinuity cameras [20] are examples of such cameras applied to
image-based rendering where parts of occluded surfaces that are likely to be-
come visible soon are sampled and integrated into the output. In more recent
work, the framework is extended to a general non-pinhole camera model [21]
that can be used for both computer graphics as well as visualization appli-
cations. However, this approach was not primarily developed for occlusion
management for visual tasks and has to our knowledge not yet been formally
evaluated with human subjects.

Also, the view-projection animation technique described in this paper bears
close resemblance to the orthotumble technique presented by Grossman et
al. [15] and its predecessor, the animated view transitions described in [14],
but the purpose of these are primarily for maintaining and understanding 3D
models rather than reducing occlusion. In addition, our approach uses a more
correct algorithm for the “dolly-and-zoom” effect, whereas the orthotumble
algorithm is based on linear matrix interpolation.

Finally, view-projection animation is just one of many high-level approaches
to managing occlusion in 3D visualization; see [8] for a comprehensive survey
of 3D occlusion management and a taxonomy describing its design space.

3 The Occlusion Problem

The occlusion problem space in 3D environments is defined by the intrinsic
properties of the environment, their interaction with human cognition, the
visual tasks involved, and the ensuing effects caused by the occlusion. The en-
vironment and its geometrical properties interact with human vision, causing
occlusion of objects and leading to loss of correctness and productivity. In this
section, we give a general introduction to these issues as a background to the
view-projection technique presented in this paper.

4

See our taxonomy paper for more detail on this theoretical framework as well
as the complete design space of occlusion management techniques [8].

3.1 Model

We represent the 3D world U by a Cartesian space (x, y, z) ∈ R3. Objects in
the set O are volumes within U (i.e. subsets of U) represented by boundary
surfaces (typically triangles). The user’s viewpoint v = (M, P) is represented
by a view matrix M that includes the position and orientation of the user, as
well as a projection matrix P that includes view parameters such as viewport
dimensions, focal length, far and near clipping plane, etc.

A line segment r is blocked by an object o if it intersects any part of o. An
object o is said to be occluded from a viewpoint v if there exists no line segment
r between v and o such that r is not blocked. Analogously, an object o is said
to be visible from a viewpoint v if there exists a line segment r between v and
o such that r is not blocked. An object o is said to be partially occluded from
viewpoint v if o is visible, but there exists a line segment r between v and o
such that r is blocked.

An object can be flagged either as a target, an information-carrying entity, or a
distractor, an object with no intrinsic information value. Importance flags can
be dynamically changed. Occluded distractors pose no threat to any analysis
tasks performed in the environment, whereas partially or fully occluded targets
do, potentially causing decreased performance and correctness.

Figure 1 shows a diagram of this basic model formulation. Here we see three
objects A, B, and C, the first of which is a distractor and the other two targets.
The shaded area represents areas invisible to the user from the current view.
It is easy to see in this diagram that A is fully visible (but is a distractor), B
is partially occluded, and C is occluded.

A set of viewpoints V is said to be complete if there exists no object that is
occluded in all of the viewpoints vi. For instance, from the figure it is clear
that the set V = {v0, v1} is complete for the simple environment given in
the example (in fact, for this simple situation, it is possible to find a single
viewpoint from which all objects are visible).

It is possible to introduce a temporal dimension to this model and discuss
concepts like transient occlusion and invariant occlusion. We will ignore this
aspect in this thesis, however, and consider only temporally invariant situ-
ations. Some of the solutions we develop will still be applicable to dynamic
situations.

5

A

B

C

view frustum

user viewpoint (M, P)

v

v

1

0

r

field of view

T
T

D

Fig. 1. Basic model for 3D occlusion. Target objects are flagged with “T” and
distractors with “D”.

3.2 Visual Tasks

The occlusion problem typically occurs in the following three visual tasks :

• object discovery – finding all targets t ∈ O in the environment;
• object access – retrieving graphically encoded information associated with

each target; and
• spatial relation – relating the spatial location and orientation of a target

with its context.

Other visual tasks that are of relevance include object creation, deletion and
modification; in this treatment, however, we consider these to be special cases
of discovery and access with regards to inter-object occlusion, and consisting
of the same subtasks as these three basic visual tasks.

3.3 Analysis

We can observe that all visual tasks are severely hampered by the existence of
fully occluded objects. More specifically, for the purposes of object discovery,
a fully occluded object will be impossible to discover without the use of some

6

occlusion management strategy, and identifying whether the object is a target
never becomes an issue. Analogously for object access, the visual search will
fail, and so will the perception of the object’s visual properties. As a result,
both tasks will affect the efficiency and correctness of users solving tasks using
a visualization, but clearly, threats to object discovery are the most serious: if
the user is unaware of the existence of an object, she will have no motivation
to look for it and access never becomes an issue.

Partial occlusion, on the other hand, has a different effect on these tasks. For
object discovery, users may have difficulties distinguishing object identity if
too large a portion of the object is occluded. In this situation, the user may
either miss the object entirely, count the same object multiple times, or believe
different objects are part of the same object. Object access, on the other hand,
will succeed in the visual search, although the perception of the object may
still fail due to important parts of it being occluded.

Spatial relation, necessary for many complex interactions and visualizations,
requires overview of the whole world, and is thus severely affected by both
partially and fully occluded objects.

3.4 Environment Properties

The geometrical properties of the visualization environment are of special
interest in this framework because they allow us to characterize the visualiza-
tion and determine the nature of the occlusion problems that may arise. These
properties can also be used to decide which occlusion management strategies
are applicable for a specific situation.

In this treatment, we identify three main geometrical properties of the envi-
ronment that interact to cause inter-object occlusion and influence the three
basic visual tasks associated with the environment:

• object interaction – spatial interaction of objects in the environment;
• object density – amount of objects in the environment with regard to its

size; and
• object complexity – detail level of individual objects in the environment.

Obviously, these are high-level properties that only generally describe an en-
vironment without going into detail on its actual content. Nevertheless, in
the following sections we shall see how these property dimensions can serve
as powerful reasoning tools for describing a 3D environment and selecting a
suitable solution strategy for it.

7

3.4.1 Object Interaction

The object interaction property dimension describes how the individual ob-
jects in the environment interact spatially with each other, i.e. whether they
touch, intersect or merely reside close to each other. There are five ordinal
levels to this parameter (see Figure 2 for a visual overview):

• none – no spatial interaction between objects (realistically only applicable
for singleton objects);

• proximity – objects are placed in such close proximity (without intersecting)
that they occlude each other from some viewpoint;

• intersection – objects intersect in 3D space (without one fully containing
another) such that they occlude each other;

• enclosement – one or several objects combine to fully enclose objects (with-
out containing them) such that they are occluded from any viewpoint ex-
ternal to the enclosing objects; and

• containment – objects are fully contained in other objects such that they
are occluded from any viewpoint.

Examples of these interaction levels exist in all kinds of 3D visualizations:
proximity for nodes in 3D node-link diagrams, intersection for visualization of
constructive solid geometry (CSG), enclosement for 3D objects placed inside
larger objects (i.e. the walls of a virtual house), containment for 3D medical
CAT scan data, etc.

(a) proximity (b) intersection (c) enclosement (d) containment

Fig. 2. Object interactions that may cause occlusion in 3D environments.

3.4.2 Object Density

The object density is a measure of the number of objects inhabiting the 3D
environment; it follows naturally that the more objects per volume unit we
are dealing with, the greater the chance and impact of occlusion will be. For
environments containing a singleton object, naturally only self-occlusion can
occur.

8

3.4.3 Object Complexity

The third geometrical property with an impact on the occlusion characteristics
of an environment is the complexity of the objects in the environment. For
complexity, we refer to the detail level of the 3D objects, i.e. typically the
number of triangles (or other 3D primitives, such as quads, lines, and points)
that make up the object, but we also include attributes such as color, material,
and texture in this parameter. It follows that the more complex an object is,
the more information it can potentially encode, and the larger the impact
occlusion has on identification and perception of the object.

4 View-Projection Animation

The idea behind our technique for view-projection animation is to combine
the major virtues of parallel and perspective projections: that (i) perspective
projections offer a realistic view of a 3D environment akin to our perception of
the real world, and that (ii) parallel projections offer a more exact view of the
environment (in the sense that direct measurements can be made on the screen
space). See Figure 5 for a side-by-side comparison. Furthermore, the nature of
parallel projection means that inter-object occlusion is reduced in comparison
to perspective projection since objects are assigned screen space according to
their geometrical size only, regardless of their distance to the camera. Using
perspective projection, a tiny object can fill the whole viewport if located
sufficiently close to the viewpoint.

By combining these two projection modes into the same interaction technique,
we are potentially able to enjoy the best of both worlds: the view defaults to
perspective projection when the user is navigating the space normally, but
allows for easy switching (glancing) to parallel projection when the user needs
to perform object discovery or access. Furthermore, the transition between
perspective and parallel projections, and vice versa, is smoothly animated to
allow the user to maintain context of the environment and the projection at
all times with a minimum of cognitive overhead. The transition also provides
additional information on the structure of the 3D scene.

In addition to transitions back and forth between perspective and parallel
projections, we augment our technique with functionality to change the center
of projection as well as to modify the field-of-view angle in the perspective
projection mode. Changing the center of projection gives an additional means
for the user to arbitrate between occluding objects, and by gaining control of
the field of view, the user can smoothly zoom in and out of the 3D environment
at will. See Figure 3 for more details.

9

Perspective Orthographic
ProjectionProjection

COP Change

FOV Change

start "proj":release

"proj":press

"shear":press "shear":release"util":release

"util":release

"util":release

mouse motion (x + y)mouse motion (x + y)

mouse motion (y)

"util":press"util":release

"shear":press "shear":release

Cavalier
Projection

Projection
CabinetDOP Change

Fig. 3. State diagram for the projection animation interaction technique.

Ctrl AltPROJ U

S

TIL

HEAR

Fig. 4. Example interface mapping for the interaction technique (this setup is used
in our prototype implementation).

For our interaction technique we define three input buttons, labeled Proj,
Util, and Shear, respectively; these can be mouse or keyboard buttons (see
Figure 4 for an example input mapping). In addition, the technique also cap-
tures mouse motion for some parameter changes, notably the field-of-view
and center-of-projection (direction-of-projection for parallel mode) modifica-
tion states. The parallel projection mode has a number of pre-defined oblique
projection modes that the user can cycle between: orthographic (head-on par-
allel projection) versus cavalier and cabinet projections, where the direction
of projection is set at fixed values. Note that for all parallel projection modes,
the release of the Proj input button will smoothly revert the projection back
to the default perspective mode. Reverting to the default state will also reset
all view parameters, such as centering the center (or direction) of projection
and setting the focal length to the default value.

10

Fig. 5. Two images of the same environment from the same viewpoint using per-
spective (left) and parallel (right) projection.

A

B

A

B
CC

per1 par2v = (M, P) v = (M, P)

Fig. 6. Comparison of perspective (left) and parallel (right) projection modes in
terms of occlusion. Object B is occluded by object A for perspective viewing but
is visible in parallel projection mode. On the other hand, object C is visible in
perspective mode, yet falls outside the viewing field in parallel mode.

4.1 Analysis

In the terminology of Section 3, view-projection animation dynamically mod-
ifies the view projection matrix V = P (t) as a function of a time parameter
t and a matrix P (t). This may cause some objects that were previously oc-
cluded to become visible. No other properties are modified, implying that the
technique is non-invasive. Figure 6 gives an example of the visibility of three

11

objects for both perspective and parallel modes.

We can categorize the view-projection animation technique as part of a more
general solution strategy based on dynamic manipulation of the view projec-
tion to favorably present objects and minimize occlusion in the environment.
In terms of the taxonomy of occlusion management techniques [8], this tech-
nique is a projection distorter with the following properties:

Primary purpose: discovery
Disambiguation strength: proximity
Depth cues: somewhat low
View paradigm: twin integrated views
Interaction: active
Target invariances: appearance (location and geometry distorted)

More specifically, the view-projection animation technique is primarily de-
signed as a transient glance intended for discovering the presence of occluded
targets, whereas access and relation would be performed after manipulating
the view accordingly. Because occlusion management is performed in the view
space, enclosement and containment cannot be handled, only occlusion caused
by object proximity. Furthermore, due to parallel views discarding the depth
coordinate of 3D objects, the technique does not retain very strong depth
cues. The interaction is active and in the control of the user and the nature
of modifications to the projection matrix means that only the appearance of
targets is invariant, not location or geometry.

View-projection animation clearly improves object discovery by providing the
user with means to avoid nearby objects hiding more distant ones. Toggling
between the projection modes yields two different perspectives on the envi-
ronment as well as intervening views during the smooth animation between
them, strongly facilitating unguided visual search and, to some extent, identi-
fication, by disambiguating between occluding objects. Object access benefits
much less from the technique; previous knowledge of the target’s location is
of little use when the view space is non-linearly transformed by the technique;
on the other hand, the animation often allows users to track objects during
the projection transition, potentially aiding access as well.

The applicability of the technique is limited with respect to intersecting ob-
jects: since we do not transform the space itself, enclosed and contained objects
will remain occluded even after the projection transformation. As will be seen
in the user study at the end of this paper, the technique performs well at low
to medium-sized object density.

12

4.2 Projection Transitions

Transitions between various projection states are performed through simple
linear interpolation between the source and destination projection transforms.
In the case of the parallel-to-perspective transition (and its inverse), however,
a linear interpolation will yield unsatisfactory results due to the non-linear
relation between these two projections. For this case, we need to explore the
matrix M that relates the two projection matrices Ppar and Pper.

As discussed above, a parallel view transform represents the situation where
the focal length of the camera is infinite. The transition from perspective to
parallel view can be approximated in a real-life camera by a so-called “dolly
and zoom” operation, where the camera is moved backwards at the same time
as the focal length is increased (i.e. zoomed in). By keeping these parameters
balanced, the focused object in the camera view will maintain the same size
and shape, but the rest of the scene will appear to be “flattened”. We simulate
this effect in our transition between perspective and parallel projection.

Note that the focal point for the animation is placed in the center of the
bounding box containing the 3D objects. Objects in the plane centered on this
point and parallel to the viewing plane will thus remain the same geometrical
screen size during the animation.

4.3 Implementation

We have implemented our interaction technique in a C++ application called
PMorph. This application consists of a 100×100×100 unit-sized cube popu-
lated with n boxes with randomized geometrical and graphical properties. The
3D rendering is performed using OpenGL. The application provides mouse-
driven view controls with a camera that can be orbited and zoomed in and
out around a focus point in the center of the environment (see Figure 4 for the
controls for the prototype). The implementation of the interaction technique
itself hooks seamlessly into the input handlers of the windowing system and
requires no additional modification to the implementation of the 3D environ-
ment or the 3D objects.

4.4 Case Study: Blender Implementation

In order to study the feasibility and flexibility of our projection animation
technique, we also implemented it inside the Blender [3] 3D modeling pack-
age. Blender is a very powerful and widely used 3D software suite that is

13

freely available as Open Source under the GPL license. Our implementation
integrates seamlessly into Blender and allows modelers to animate between
parallel and perspective projections in different 3D windows. The software
naturally already supported these projection modes prior to our modifications,
so we changed the projection code to perform a smooth animation between
the two matrices. In addition to this, we introduced the capability for users
to change the center of projection while in orthographic mode, providing an
additional way to reduce occlusion.

Figure 7 shows a screenshot of the modified Blender software. There are no
actual user interface changes to the application except a text in the currently
selected viewport that indicates whenever the view is being animated or when
the user is changing the center of projection. In general, a projection-control
widget such as the IBar [24] would be a useful addition to any 3D model-
ing software like Blender, and state information about the view-projection
animation technique could then easily be implemented into it.

While a 3D modeler is not the primary target platform for our technique (even
though Grossman et al. [14,15] use the effect for this very purpose), this case
study shows that the technique can indeed be implemented seamlessly inside
existing 3D applications with only small modifications to the old code.

5 User Study

We have conducted a formal user study with two main motivations: (i) to
empirically investigate the impact of occlusion on object discovery efficiency
in 3D environments, and (ii) to study the performance of users given access to
our view-projection animation technique in comparison to users with a normal
perspective view.

5.1 Subjects

We recruited 26 subjects, six of which were female, from the undergraduate
engineering programs at our university. No previous experience of 3D appli-
cations was required. Ages ranged from 20 to 40 years of age, and all subjects
had normal or corrected-to-normal vision.

14

Fig. 7. Blender implementation screenshot. Note the parallel view (left) showing
geometric features not visible in the perspective view (right).

5.2 Equipment

The experiment was conducted on a Pentium III 1 GHz desktop PC with 512
MB of memory and running the Linux operating system. All tasks were carried
out using our prototype implementation. The display was a 19” monitor with
the main visualization window fixed at 640× 480 size.

5.3 Task

The view-projection animation technique is primarily aimed at 3D informa-
tion visualization applications, such as 3D scatterplots and similar. Thus, we
designed the task to model this kind of visualization. Subjects were asked to
perform object discovery in a simple 100× 100× 100 environment filled with
3D boxes by counting the number of boxes of a given color. Target colors were
restricted to one of the primary RGB colors (i.e. red, green, or blue), and
all distracting objects were configured to contain no elements of that color
component. Each task instance was fully randomized, including the position,

15

orientation, and size of the distractors. At least 1% and at most 10% of the
total number of objects were targets. Box dimensions (both targets and dis-
tractors) ranged from 1% to 12.5% of the environment dimensions. Intersection
but no enclosement or containment was allowed. A simple 20 × 20 line grid
was rendered at the bottom of the environment to facilitate user orientation.

The camera focus point was fixed at the center of the environment and the
orientation was randomized within 60◦ from the horizontal. In addition, the
camera position was also randomized and offset sufficiently from the focus
point so that all objects in the scene were visible. Field-of-view angle for the
perspective view was fixed at 60◦. For the dynamic camera, the users could
freely orbit (rotate) and dolly (move closer or further away) the camera around
the focus point.

5.4 Design

The experiment was designed as a repeated-measures factorial analysis of vari-
ance (ANOVA), with the independent variables Density (two levels, “low”
or “high”), Camera (“static” or “dynamic”, i.e. a fixed or a user-controlled
camera), and PMorph (“on” or “off”, i.e. whether the projection animation
technique was available or not), all of them within-subjects. The dependent
variables were the number of found target objects and the completion time for
each task. Subjects received the PMorph and Camera conditions in random-
ized order to avoid systematic effects of practice; for the Density condition,
the ordering was low to high.

Users performed the test in sets of 10 tasks for each condition. Each task
scenario was completely randomized, with either 50 or 200 total objects in the
environment depending on the density, and up to 10% of them being targets.
See Table 1 for the complete experimental design.

For each specific condition, subjects were instructed in which features (dy-
namic or static camera, projection animation on or off) were available to them.
Tasks were given automatically by a testing framework implemented in the
software and answers were input by the user directly back into the framework,
thus requiring no intervention by the test administrator. The software silently
recorded the completion time, total target number, and found target number
for each task. Trial timing started as soon as each new task was presented,
and ended upon the subject giving an answer.

Each session lasted approximately thirty to forty minutes. Subjects were given
a training phase of up to five minutes to familiarize themselves with the con-
trols of the application.

16

With 26 participants and 10 search tasks for each of the 8 conditions, there
were 2080 trials recorded in total. After having completed the full test, subjects
were asked to respond to a post-test questionnaire (see Table 2) where they
were asked to select their combination of projection mode (view-projection or
normal perspective) and camera mode (static or dynamic) of preference for a
number of different aspects.

Density Camera PMorph Objects Targets

low static off 50 1-5

low static on 50 1-5

low dynamic off 50 1-5

low dynamic on 50 1-5

high static off 200 1-20

high static on 200 1-20

high dynamic off 200 1-20

high dynamic on 200 1-20
Table 1
Experimental design. All three factors were within-subjects. The order of the
“PMorph” and “camera” conditions were randomized to counterbalance learning
effects.

Task Description

Q1 Which modes did you prefer with respect to ease of use?

Q2 Which modes did you prefer with respect to efficiency of solving the
tasks?

Q3 Which modes did you prefer with respect to enjoyment?

Q4
Which modes helped you feel the most confident about having discovered
all objects in the scene?

Q5 Which modes did you feel were the fastest to use?

Q6
Overall, which modes would you choose for performing this task in your
daily work?

Table 2
Post-test questionnaire. For each question, participants were asked to rank both
view-projection animation versus normal perspective mode, as well as static versus
dynamic camera.

6 Results

We divide the results from the user study into completion times, correctness,
and subjective ranking categories. Note that for the correctness measure, we
derive the cumulative errors for each task set from the sum of the differences

17

 0

 50

 100

 150

 200

 250

 300

Hi/OnHi/OffLow/OnLow/Off

co
m

p
le

ti
o

n
 t

im
e

(s
ta

ti
c

ca
m

er
a)

 50

 100

 150

 200

 250

 300

Hi/OnHi/OffLow/OnLow/Off

co
m

p
le

ti
o

n
 t

im
e

(d
y

n
am

ic
 c

am
er

a)

Fig. 8. Mean completion times for solving a full task set for static (left) and dynamic
(right) camera types (standard deviations shown as error bars). Participants with
standard perspective projection completed their tasks significantly faster than those
using view-projection animation for both low and high density environments.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Hi/OnHi/OffLow/OnLow/Off

e
rr

o
r

ra
ti

o
 (

st
a
ti

c
 c

a
m

e
ra

)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Hi/OnHi/OffLow/OnLow/Off

er
ro

r
ra

ti
o

 (
d

y
n

am
ic

 c
am

er
a)

Fig. 9. Mean error ratios for solving a full task set for static (left) and dynamic
(right) camera types (standard deviations shown as error bars). Participants using
view-projection animation were significantly more accurate than those with stan-
dard perspective projection for both low and high density environments.

between the total number of targets and the found targets for each task. The
error ratio is defined as the cumulative error divided by the sum of the total
number of targets for the task set, i.e. the number of errors per target.

6.1 Time

Overall, the view-projection animation technique caused participants to take
longer time to solve tasks when using a static camera, but did not significantly
affect completion times for a dynamic camera. Not surprisingly, participants
took significantly more time when using a dynamic camera than a static one,
as well as more time for high than low object density.

Averaging results from the static and dynamic camera modes, the mean com-
pletion time for a full task set (10 tasks) using normal perspective projec-
tion was 128.093 (s.d. 7.803) seconds, as opposed to 162.311 (s.d. 9.697) sec-
onds for projection animation. This is also a significant difference (F (1, 25) =
38.752, p < 0.001). Not surprisingly, the main effect for density was significant

18

(F (1, 25) = 108.887, p < 0.001), with mean completion times for low and high
conditions of 81.384 (s.d. 4.025) and 209.20 (s.d. 14.086) seconds, respectively.

Figure 8 summarizes the results for the individual density conditions. For
the low density condition, the mean completion time was 75.796 (s.d. 4.012)
and 86.972 (s.d. 4.420) seconds for the normal projection and the projection
animation technique. For the high density, the completion times were instead
180.414 (s.d. 12.680) and 236.995 (s.d. 16.053) seconds, respectively. Both of
these differences are significant (F (1, 25) = 19.363, p < 0.001 versus F (1, 25) =
30.797, p < 0.001).

Furthermore, for the low density case using a static camera, the mean com-
pletion time was 69.737 (s.d. 4.298) versus 89.152 (s.d. 4.339) for normal pro-
jection versus projection animation; also a significant difference (F (1, 25) =
36.638, p < 0.001). Similarly, for the low density case using a dynamic camera,
the completion time was 83.817 (s.d. 4.933) versus 85.387 (s.d. 5.256) seconds;
this is not a significant difference, however (F (1, 25) = 0.226, p = 0.639). In the
case of the high density condition with a static camera, the mean completion
time was 114.049 (s.d. 5.114) for normal perspective projection as opposed to
200.245 (s.d. 14.683) for projection animation, a clearly significant difference
(F (1, 25) = 53.824, p < 0.001). Finally, for the high density case using a dy-
namic camera, the completion times were 246.778 (s.d. 22.461) versus 273.745
(s.d. 20.998), a nonsignificant difference (F (1, 25) = 2.504, p = 0.126).

Analogously to other factors, the main effect on completion time for the cam-
era mode was significant (F (1, 25) = 46.874, p < 0.001); static camera com-
pletion time averaged at 117.267 (s.d. 6.266) seconds, whereas the dynamic
camera completion time average was 173.137 (s.d. 11.569).

6.2 Correctness

The view-projection animation technique helped participants to be more cor-
rect for a static camera, but did not significantly improve correctness for a
dynamic camera. In total, participants were more accurate for dynamic over
static camera, as well as for low over high object density.

Averaging static and dynamic camera modes, the mean error ratio for a full
task set (10 tasks) using normal perspective projection compared to projection
animation was 0.095 (s.d. 0.003) versus 0.055 (s.d. 0.003), respectively. This is
a statistically significant difference (F (1, 25) = 75.757, p < 0.001). Again, den-
sity had a significant impact on correctness (F (1, 25) = 407.290, p < 0.001);
the average error ratio for the low density condition was 0.022 (s.d. 0.002), to
contrast with 0.127 (s.d. 0.005) for the high density condition. This suggests
that occlusion does negatively affect object discovery efficiency.

19

See Figure 9 for an overview of additional correctness results. For the low
density, the mean error ratio was 0.033 (s.d. 0.004) for normal projection and
0.012 (s.d. 0.003) for projection animation, versus 0.157 (s.d. 0.006) and 0.097
(s.d. 0.006) for the high density case. Both of these pair-wise differences are
significant (F (1, 25) = 13.493, p = 0.001 and F (1, 25) = 55.176, p < 0.001,
respectively).

Furthermore, in the low density case using a static camera, the ratio was
0.60 (s.d. 0.008) versus 0.019 (s.d. 0.005) for normal projection versus projec-
tion animation, respectively; this was also a significant difference (F (1, 25) =
14.595, p = 0.001). Analogously, for the low density case using a dynamic cam-
era, the ratio was 0.006 (s.d. 0.003) versus 0.004 (s.d. 0.002); this, however, was
not a significant difference (F (1, 25) = 0.240, p = 0.629). On the other hand,
in the high density case using a static camera, the average error ratio was 0.234
(s.d. 0.009) for normal perspective and 0.115 (s.d. 0.007) for projection ani-
mation. This is again a significant difference (F (1, 25) = 183.217, p < 0.001).
In comparison, for the high density case using a dynamic camera, the ratio
was 0.081 (s.d. 0.008) versus 0.080 (s.d. 0.008), also not a significant difference
(F (1, 25) = 0.006, p = 0.941).

Finally, the camera factor had considerable bearing on correctness; error ratios
for static camera averaged at 0.107 (s.d. 0.004), whereas dynamic camera
error ratios averaged at 0.043 (s.d. 0.003), a significant difference (F (1, 25) =
199.284, p < 0.001).

6.3 Subjective Rankings

The rankings given by the participants in the post-test questionnaire are over-
all positive and in favor of our projection animation technique; see Table 3
for an overview. The Q2 and Q6 questions, relating to perceived efficiency
and preference, are of special interest, and are significantly in favor of our
technique (65% and 73%, respectively). Subjects also consistently ranked a
dynamic camera over a static camera.

7 Discussion

This paper presents two main contributions: (i) an analysis of the space of the
occlusion problem in 3D environments, and (ii) the view-projection anima-
tion technique used to reduce inter-object occlusion for any 3D visualization.
Figure 10 summarizes the results from the user study in a scatter plot show-
ing both completion times and correctness. As shown by the figure, both of

20

Task Factor (a) Projection Mode (b) Camera Mode

Normal PMorph Undec. Static Dynamic Undec.

Q1 Ease-of-use 58% 35% 7% 15% 85% 0%

Q2 Efficiency 23% 65% 12% 12% 88% 0%

Q3 Enjoyment 19% 69% 12% 0% 100% 0%

Q4 Confidence 23% 69% 8% 15% 85% 0%

Q5 Speed 50% 46% 4% 39% 54% 7%

Q6 Overall 15% 73% 12% 0% 96% 4%
Table 3
Post-test ranking results of normal perspective projection versus view-projection
animation as well as static over dynamic cameras.

S/L

D/H

S/H

D/L

S/H

D/H

S/LD/L

 50

 100

 150

 200

 250

 300

 0 0.05 0.1 0.15 0.2 0.25
error ratio

normal
pmorph

co
m

p
le

ti
o
n
 t

im
e

Fig. 10. Summary of correctness (horizontal) and completion time (vertical) results
for both normal perspective (blue squares) and view-projection animation (red di-
amonds). (S = static camera; D = dynamic camera; L = low density; H = high
density)

these contributions are validated by our results; we see that increasing ob-
ject occlusion leads to significantly reduced discovery efficiency, and that the
availability of projection animation significantly boosts efficiency in all object
density conditions, respectively. In addition, by giving users control over the
viewpoint, the impact of the occlusion problem is significantly diminished. On
the other hand, this comes at the cost of longer completion times; the partic-
ipants spent much more time solving tasks when having access to projection
animation or a controllable camera, essentially trading speed for accuracy.

21

This last finding is typical of many advanced interaction techniques—giving
users access to a new tool for solving a task more accurately often means that
more time is spent taking advantage of the new information the tool provides.
Completion time may increase, but so will accuracy (Fitts’ law [11] is a classic
example of this for pointing-like tasks, but similar models can be applied to
more complex interaction techniques and tasks). How to balance this tradeoff
depends on the context and the user task.

It is particularly interesting to study whether a user-controlled camera is suf-
ficient to negate the occlusion problem, and whether the projection animation
technique presented here is necessary. There is no clear benefit of projection
animation over a traditional dynamic camera. However, we claim that pro-
jection animation is orthogonal to controllable cameras, and that they com-
plement each other. Furthermore, our informal observations during the user
study indicated that users with access only to a controllable camera performed
significantly more view changes than when having access to both a control-
lable camera and projection animation. All 3D view changes incur a risk of
loss of context and orientation, especially for high object densities, and so it is
in our best interest to keep the amount of such changes low. The advantage of
view-projection animation is that it can give some of the benefits of a movable
camera, yet without actually having to change the viewpoint. Nevertheless, we
suggest that a combination of the two conditions will work best for practical
applications.

Parallel projection assigns screen space to objects proportional to their geo-
metrical size regardless of the distance to the camera, but the drawback is
that the viewing volume is a box instead of a pyramidal frustum as for per-
spective projection. This means that peripheral objects will be lost in parallel
mode, essentially rendering these objects impossible to discover. By smoothly
combining both parallel and perspective projection into a single interaction
technique, we are able to sidestep this problem and get the best of both worlds
from the two projections.

A potential drawback of the technique is that the use of parallel projection
leads to a loss of some depth cues in a 2D image of the environment (more
specifically relative and familiar size as well as relative height). However, the
spring-loaded nature of the interaction allows users to switch easily back and
forth between projection modes to disambiguate potential depth conflicts be-
tween objects. Also, for the information visualization applications we primarily
consider for our technique, depth cues are less important than the relationships
between the 3D objects.

As indicated by the analysis of the presented technique (see Section 4.1),
projection animation has a rather low disambiguation strength and can realis-
tically only handle proximity-based occlusion. Indoor or outdoor scenery, such

22

as for Virtual Reality 3D walkthroughs, will be less tractable to this approach.
On the other hand, the technique is designed primarily for information visual-
ization applications, which are more akin to the 3D scatterplot task employed
in the user study.

Finally, another weakness of view-projection animation is that it only merges
two separate projections of the same 3D scene from the same viewpoint. Need-
less to say, two projections are far from enough to manage occlusion in the
general case, and approaches like worldlets [10] recognize this by providing for
a large, unspecified number of simultaneous views of a 3D world. However,
each new view has diminishing returns in terms of new visible objects, and
also entails users having to allocate a part of their attention to yet another
view. The solution used in the view-projection animation technique is a good
two-view compromise optimized for higher speed yet retaining good accuracy.

8 Conclusions

We have presented an interaction technique for the seamless integration of per-
spective and parallel projection modes, allowing users to combine realism with
accuracy, as well as reducing inter-object occlusion in 3D environment views.
Results from a user study conducted on a prototype version of the technique
show that occlusion in 3D environments has a major impact on efficiency, but
that our technique allows for significant improvements in both object discov-
ery and object access. Our technique treats 3D objects as immutable entities
and requires no changes to the implementation or representation of the 3D
environment, and should thus be possible to integrate with almost any 3D
visualization.

Acknowledgments

Many thanks to the developers of the Blender project for their help on inte-
grating the technique into the Blender3D modeller. Thanks to the anonymous
reviewers for their many constructive comments.

References

[1] M. Agrawala, D. Zorin, T. Munzner, Artistic multiprojection rendering, in:
Proceedings of the Eurographics Workshop on Rendering Techniques, 2000.

23

[2] M. Q. W. Baldonado, A. Woodruff, A. Kuchinsky, Guidelines for using multiple
views in information visualization, in: Proceedings of the ACM Conference on
Advanced Visual Interfaces, 2000.

[3] Blender, see http://www.blender3d.org (Aug. 2007).

[4] D. A. Bowman, C. North, J. Chen, N. F. Polys, P. S. Pyla, U. Yilmaz,
Information-rich virtual environments: theory, tools, and research agenda,
in: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, 2003.

[5] I. Carlbom, J. Paciorek, Planar geometric projections and viewing
transformations, ACM Computing Surveys 10 (4) (1978) 465–502.

[6] A. Cockburn, Revisiting 2D vs 3D implications on spatial memory, in:
Proceedings of the Australasian User Interface Conference, 2004.

[7] A. Cockburn, B. McKenzie, 3D or not 3D?: Evaluating the effect of the third
dimension in a document management system, in: Proceedings of the ACM CHI
2001 Conference on Human Factors in Computing Systems, 2001.

[8] N. Elmqvist, P. Tsigas, A taxonomy of 3D occlusion management techniques,
in: Proceedings of the IEEE Conference on Virtual Reality, 2007.

[9] N. Elmqvist, M. E. Tudoreanu, Evaluating the effectiveness of occlusion
reduction techniques for 3D virtual environments, in: Proceedings of the ACM
Symposium on Virtual Reality Software and Technology, 2006.

[10] T. T. Elvins, D. R. Nadeau, D. Kirsh, Worldlets – 3D thumbnails for wayfinding
in virtual environments, in: Proceedings of the ACM Symposium on User
Interface Software and Technology, 1997.

[11] P. M. Fitts, The information capacity of the human motor system in controlling
the amplitude of movement, Journal of Experimental Psychology 47 (1954) 381–
391.

[12] S. Fukatsu, Y. Kitamura, T. Masaki, F. Kishino, Intuitive control of “bird’s
eye” overview images for navigation in an enormous virtual environment,
in: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, 1998.

[13] M. Gleicher, A. Witkin, Through-the-lens camera control, in: Computer
Graphics (SIGGRAPH ’92 Proceedings), 1992.

[14] T. Grossman, R. Balakrishnan, G. Kurtenbach, G. W. Fitzmaurice, A. Khan,
W. Buxton, Interaction techniques for 3D modeling on large displays, in:
Proceedings of the ACM Symposium on Interactive 3D Graphics, 2001.

[15] T. Grossman, R. Balakrishnan, G. Kurtenbach, G. W. Fitzmaurice, A. Khan,
W. Buxton, Creating principal 3D curves with digital tape drawing, in:
Proceedings of the ACM CHI 2002 Conference on Human Factors in Computing
Systems, 2002.

24

[16] C. Mei, V. Popescu, E. Sacks, The occlusion camera, Computer Graphics Forum
24 (3) (2005) 335–342.

[17] O. Merhi, E. Faugloire, M. Flanagan, T. A. Stoffregen, Motion sickness, console
video games, and head mounted displays, Human Factors(in press).

[18] J. C. Michener, I. B. Carlbom, Natural and efficient viewing parameters, in:
Computer Graphics (SIGGRAPH ’80 Proceedings), 1980.

[19] J. S. Pierce, M. Conway, M. van Dantzich, G. Robertson, Tool spaces and
glances: Storing, accessing, and retrieving objects in 3D desktop applications,
in: Proceedings of the ACM Symposium on Interactive 3D Graphics, 1999.

[20] V. Popescu, D. G. Aliaga, The depth discontinuity occlusion camera, in:
Proceedings of the ACM Symposium on Interactive 3D Graphics, 2006.

[21] V. Popescu, J. Dauble, C. Mei, E. Sacks, An efficient error-bounded general
camera model, in: Proceedings of the Third International Symposium on 3D
Data Processing, Visualization, and Transmission, 2006.

[22] K. Singh, A fresh perspective, in: Proceedings of Graphics Interface, 2002.

[23] K. Singh, R. Balakrishnan, Visualizing 3D scenes using non-linear projections
and data mining of previous camera movements, in: Proceedings of
AFRIGRAPH, 2004.

[24] K. Singh, C. Grimm, N. Sudarsanam, The IBar: a perspective-based camera
widget, in: Proceedings of the ACM Symposium on User Interface Software
and Technology, 2004.

[25] R. Stoakley, M. J. Conway, R. Pausch, Virtual Reality on a WIM: Interactive
worlds in miniature, in: Proceedings of the ACM CHI’95 Conference on Human
Factors in Computing Systems, 1995.

[26] T. A. Stoffregen, L. J. Hettinger, M. W. Haas, M. M. Roe, L. J. Smart, Postural
instability and motion sickness in a fixed-base flight simulator., Human Factors
42 (2000) 458–469.

25

