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Abstract

Resource allocation is an essential class of problems, which includes
many fundamental concurrency control problems. A signi�cant amount
of research has been devoted to the group of these problems, which share
a common part in their name: philosophers (dining, drinking, mobile,...)
We survey some of the main developments in this �eld.

1 Introduction

Taking into account that time, space, devices and control are all resources shared
among the entities of a distributed system, the resource allocation problem class
includes most of the fundamental concurrency control problems. Resources can be
concrete or abstract entities, such as critical sections, printers, �les, CPUs, critical
sections, bandwidth, they can be reusable or not (e.g. seats and tickets in airline
reservation systems, respectively), they can be identical or distinct. Depending
on the type of the resources and combinations of them (e.g. devices and time, in
the sense of real-time requirements), we have di�erent instances (with variations
of de�nitions and names) of the problem: e.g. mutual exclusion, k-exclusion [15]
scheduling, processor allocation, load balancing [6, 9], real-time scheduling [33],
non-reusable-resource allocation [28], banker-like resource allocation [21], are some
examples.

Many of the types and aspects of the problem are well-studied and the existing
literature on them is extensive. Moreover, the research interest in the �eld remains
high, both because of its breadth, as well as because of the demand in the corre-
sponding applications areas. In this short paper we can only cover a few of the many
interesting results of the �eld. In particular, we survey some of the main develop-
ments in the literature on the dining, drinking and mobile types of philosophers
formulation of the problem of reusable-resource allocation.
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2 The problems

The core of the problem is that processes ask for reusable) resources (maybe several
of them concurrently, for bounded time use); each resource can be used by only one
process at a time.

The problem of dining philosophers was described by Dijkstra [13]:

\... the problem is the Five Dining Philosophers. The life of a philosopher
consists of an alternation of thinking and eating:

cycle begin think ;
eat

end.

Five philosophers, numbered from 0 through 4 are living in a house where
the table is laid for them, each philosopher having his own place at the table:

1

23

4

0

Their only problem|besides those of philosophy| is that the dish served

is a very di�cult kind of spaghetti, that has to be eaten with two forks.

There are two forks next to each plate, so that presents no di�culty: as a

consequence, however, no two neighbours may be eating simultaneously."

In the generalised dining philosophers problem [26], each philosopher has an arbi-
trary number of neighbours, with each one of whom he shares one fork and he needs
all of these forks in order to eat.

The drinking philosophers problem, introduced by Chandy and Misra in [11]
is a generalisation of the dining philosophers. Each philosopher has, as before, an
arbitrary number of neighbours with each one of whom he shares one bottle; each
time that it becomes thirsty, it requires a (pre-speci�ed) subset (which may di�er
each time) of its incident bottles in order to drink.

The integration of mobility introduces new issues and problems [7, 23]. Now
the philosophers do not just sit, but are able to move. The ability of a philosopher
(also called mobile host in this setting) to be reachable while moving requires some
wireless form of communication, which supports broadcast communication within
a speci�c region, called a cell . To provide communication between di�erent cells,
a speci�c host, called cell agent or base station is associated with each cell. The
set of cell agents are interconnected and can communicate with each other in pairs.
In order to satisfy a communication request of a mobile host, the respective cell
agent should allocate, depending on the bandwidth required, a certain number of
wireless channels1 to it [22]. The wireless channels should be chosen by the cell
agents in such a way that no interference between signals can occur. A solution to
the mobile channel allocation problem should guarantee that if a channel is used for
a communication session of a mobile host (philosopher) in a speci�c cell, it should

1Wireless channels are divisions of the frequency spectrum provided for broadcast com-
munication; the signal carried on a wireless channel is carried on the respective frequency.
Henceforth, the terms \channel" and \frequency" are used interchangeably.



not be used concurrently for other communication sessions, except in distant cells,
outside the scope of the signal. Note that the set of frequencies that are potentially
possible to be used in each cell are the same (i.e. frequencies are re-used in each cell).
However, the free frequencies at a cell agent are the frequencies of the spectrum that
are not in use in that cell or in any of the cells within the scope of the signal, and
it is only from this set of frequencies channels that may be allocated to satisfy the
requests at this cell. (Requests that cannot be satis�ed can be dropped.) Note that
the set of free frequencies for a base station changes over time. Furthermore, the
same frequency could potentially belong to the set of free frequencies of two adjacent
base stations and hence, even when a base station is picking channels from its own
set, it needs to ensure that there is no interference.

To solve the philosophers problems, an algorithm must ensure the following:

Exclusion (safety ): no resource should be used simultaneously by more than one
processes. The important distinctions between these three types of problems
are with respect to exclusion and can be summarised as follows: The dining
problem disallows neighbours to eat simultaneously. The drinking problem
allows neighbours to drink simultaneously, provided that they need to drink
from di�erent (pre-speci�ed) bottles. The mobile problem allows neighbours
the possibility to choose di�erent frequencies to use, so that they make it
possible to operate simultaneously (i.e., situations in which adjacent base
stations decide to pick the same frequency so that one of them has to wait for
the other to release the frequency (thereby resulting in response times that
depend on the duration that the frequencies are in use) can (and should) be
avoided).

No deadlock (progress): among a set of non-failed processes which need to use
the resources, some of them should be able to do so after bounded time.

Starvation Freedom (fairness): as long as a process does not fail, the response
time for its requests is bounded.

The system is described with an interference graph (or con
ict graph) G =
(V;E), where nodes represent processes (philosophers, or, in the mobile setting cell
agents) and edges represent resource con
icts: an edge between two nodes implies
con
ict in case these processes try to access the respective resource(s) simultane-
ously. If a pair of philosophers in the drinking and dining setting have (potential)
con
icts in more than one resources, the interference graph has multiple edges be-
tween them, one for each resource (for reasons that will be obvious in the next
section). The maximum degree in the graph is denoted by �. In the drinking
philosophers, each process vi has an associated set of variables that speci�es each
time the bottles that it needs in order to drink. In the mobile philosophers, each
cell agent vi has an associated number ri, which denotes the number of pending
requests at that cell each time.

Each process vi (1 � i � n) is able to communicate (with messages or shared
memory) with its neighbours in G. Usually no assumption is made on the speeds of
the processes or on the communication delays.

The metrics of interest for the evaluation of solutions are (we are interested in
the worst-case):

Response time: this is the delay between the time that a process develops the
need to use the resources and the time it is able to do so. It is measured in



� units of the upper bound of the time that a process needs to use the
resources (notice that in the mobile problem it is undesirable to relate
the response time to this measure), and/or,

� depending on the underlying communication medium, in units of the
maximum message transmission delay in the network or in units of the
duration of access to each shared variable.

It should be stressed that these bounds are not assumed for the sake of the
correctness of the solutions, nor for the sake of being used by the solutions,
but only for the sake measuring the response times.

Communication complexity: again, depending on the underlying communica-
tion medium, this is measured in number of accesses to shared variables, or
in number of messages exchanged.

Fault Tolerance: The concept of failure locality has been introduced [12] to
measure the e�ect of process stopping failures. An algorithm has failure locali-
ty m if a process is free from starvation even if some process outside its m-
neighbourhood has failed by stopping. (The m-neighbourhood of a process is
the set of processes within distance m from it.)

Request Satis�ability (relevant to the mobile philosophers problem): Because
the number of resources to be used is limited and the solution selects the
resources to be used, here it is important that a solution also aim at maxi-
mizing the number of satis�able requests; clearly this implies that the solution
should adapt fast to temporal variations in channel demand in di�erent cells.

3 No symmetric dining solution

First of all, it should be mentioned that there can be no (deterministic) solution
[27] to the dining philosophers problem if the system is completely symmetric, i.e.
if processes, initial local states, local variables and resources are identical. The
idea is that in such a system, a continuous round-robin execution of one step by
each process, will always result again in symmetric states, which implies that if one
philosopher is eating, then all of them will be eating at the same time, hence the
exclusion property will be violated.

Rabin and Lehmann in [32] gave a probabilistic solution to the dining philoso-
phers problem, in which symmetry is broken with probabilistic choices. Each pro-
cess' trying (to get its incident forks) section consists of iterations. In each iteration,
it chooses a �rst fork randomly and waits as long as necessary to obtain it. After
that, it just checks once to see if the second fork is available, in which case it picks
it and proceeds to eat. If it is not available, it gives up on this iteration, puts the
�rst fork down and proceeds to the next iteration.

Theorem 1 (Rabin and Lehmann 1981 [32]) The Lehmann and Rabin algo-
rithm [32] is a solution for the dining philosophers problem; it guarantees exclusion
and starvation freedom; it also guarantees progress with probability 1.



4 Dining by collecting forks one by one

The basic line of this approach is that a hungry philosopher, in order to eat, has to
compete to get the forks that it needs one by one, by executing for each one a mutual
exclusion protocol with the other processes that may ask for that fork. Depending
on the type of communication provided by the underlying system, this can be made
using any mutual exclusion network protocol (e.g. the one by Ricard and Agrawala
[17]), or semaphores, or ReadModifyWrite variables, or a resource controller for
each resource (the controller can be centralised [17], or distributed [1]). In this
way, exclusion is guaranteed by the underlying mutual exclusion protocol used. To
guarantee absence of deadlock, the order in which resources (forks) are asked for is
important.

Hence the approach dictates some ordering of the resources in some way. This
can be done by random choices, as in the solution by Rabin and Lehmann [32], or
deterministically, in a way that de�nes a partial order among the resources, such
that the resources that can be asked by each process are totally ordered. The latter
can be achieved by edge colouring the con
ict graph (or, as in the approach taken
by Lynch in [26], by vertex colouring the resource graph, in which the nodes are the
resources in the system and pairs of nodes are connected by an edge if there is at
least one processes that may ask for both them).

So, the asymmetry in this approach is based on colouring the resources. Assume
C colours are used. (Arbitrary graphs can be coloured in a distributed manner with
� + 1 colours [5, 27], while for planar ones 6 is su�cient [18].)

4.1 LeftRight algorithm and its generalisation

In a direct application of this approach, discussed and analysed by Lynch in [26, 27]
(algorithm Colouring), all that each hungry process needs to do is to pick up its
forks (resources) in an increasing colour order. In the original problem where the
philosophers sit at a round table, this is the LeftRight solution [27]: if a philosopher
is sitting on a seat with even number it picks up �rst its left and then its right fork,
while if it is sitting on a seat with odd number it picks up �rst its right and then
its left fork.

Note that waiting for resources introduces waiting chains among the processes.
A process vi waiting for resource with colour 1 is essentially waiting for another
process vj that holds that resource; vj may in turn be waiting for a resource with
colour 2, and in this way, there may be waiting chains of processes of length equal to
the number of colours, C. The maximum length of waiting chains is the maximum
distance (in the interference graph) between two processes, such that one process can
delay the other2. Note that the process in the high-colour end of the chain will be
able to eat and this guarantees progress (i.e. deadlock avoidance) in the system. This
(together with the respective liveness properties of the underlying mutual exclusion
algorithms used) also guarantees liveness in the dining philosophers solution.

The analysis of the response time of the algorithm, which can be found in [26, 27],
shows that its response time is dependent only on local measures of the network
(the maximum contention m at a resource, the number of colours and not on global

2Recall the de�nition of failure locality and note that the maximum length of the process
waiting chains speci�es also the failure locality of the algorithm.



measures (i.e. it is independent of the total number of processes and resources in
the system). However, the response time is exponential in these measures.

Theorem 2 (Lynch 1981 [26, 27]) The Colouring algorithm [26, 27] is a solu-
tion for the dining philosophers problem; its response time is O(CmC), its com-
munication complexity is O(C) times the communication complexity of the mutual
exclusion algorithm used and its failure locality is C.

4.2 Restricting the waiting chain length

Styer and Peterson in [34] came up with interesting ideas to reduce the length of
maximum process waiting chains and hence, improve both the response time and the
failure locality. They �rst propose a dynamic algorithm, which attempts to eliminate
waiting chains by having each process, when it sees that a resource is unavailable,
release all currently held resources and start competing for the �rst one again. Such
a solution has maximumwaiting chain length (and hence, failure locality) only 1, but
may easily result in starvation. They balanced this behaviour by having the process
release (in decreasing colour order) only at most half of the resources it has picked,
if it encounters a reserved resource (and start competing from that \back-tracked"
point. This ensures maximum waiting chain length at most logC. To avoid
starvation behaviour due to \back-tracking" and re-entering the competition from an
earlier point, Styer and Peterson introduced some synchronisation mechanism, which
they call fence protocol . This can be thought of as an asynchronous synchronization
barrier (see Fig. 2), equivalent to each philosopher asking for permission to cross,
and waiting until receiving one from each one of its neighbours. Provided that a
philosopher that has already crossed it defers giving permission to its neighbours
until it �nishes eating, this rptocol guarantees that each philosopher will have to
wait for each of its neighbours at most once before eating.

Theorem 3 (Styer and Peterson 1988 [34]) The Styer and Peterson algorithm
[34] is a solution for the dining philosophers problem; its response time and commu-
nication complexity are O(�logC) and its failure locality is logC.

5 Dining (drinking) by collecting forks (resp.
bottles) concurrently

Here the processes do not ask for the resources one by one, but they request all
of them concurrently. The approach implies some symmetry braking among the
processes in order to resolve con
icts (as opposed to symmetry breaking among the
resources in the previous section).

5.1 Approach based on dynamic con
ict resolution

This is due to Chandy and Misra [11]. Consider the dining philosophers problem and
assume an initial acyclic orientation of the con
ict graph. (An acyclic orientation
can be obtained by e.g. �rst executing a distributed vertex colouring protocol and
then orienting each edge from the higher to the lower colour. Arbitrary graphs can
be coloured in a distributed manner with � + 1 colours [5], while for planar ones 6



is su�cient [18].) The orientation of an edge represents a priority relation between
its endpoint-processes, pointing to the one with higher priority. This can be used
to resolve con
icts between them. A node which is a sink in this orientation can
have all the forks that it needs and hence can start eating. After �nishing eating, it
reverses the direction of all of its incident edges, thus giving priority (resp. the forks)
to its neighbours. By reversing all incident edges concurrently, the acyclicity of the
orientation is preserved (there will be new sinks, who will eat next and repeat the
same procedure) and hence, deadlock is avoided. Clearly, exclusion is guaranteed,
since no neighbouring processes can eat simultaneously. Also, the change of the
direction of a relevant edge after each eating session of its endpoint-processes implies
that they can only take fair turns in eating, which guarantees starvation freedom.

This procedure, except from solving the dining philosophers problem, provides a
mechanism to maintain a dymanic acyclic con
ict resolution scheme, which can be
used to solve other synchronisation and concurrency control problems. Chandy and
Misra demonstrated its use in solving the drinking philosophers problem: each time
two thirsty neighbouring philosophers want to drink from the same bottle, they use
the above con
ict resolution scheme to break the symmetry. The �nal algorithm
consists of tho algorithms, executed concurrently, one that manages forks (forks
are used as auxiliary resources to resolve contention for the bottles) and one that
manages bottles. A thirsty philosopher also becomes hungry , not for excluding its
neighbours from drinking simultaneously (because they are allowed to if they do not
need common bottles), but to get the forks (i.e. direct its incident edges towards
it), in order to resolve con
icts with them in case such con
icts arise.

Because of its dynamic nature, the protocol avoids the exponential behaviour
of [26], but on the other hand, the maximum waiting chain length can be of size n
and this can be seen as follows: The chains of the initial orientation get modi�ed
by becoming longer at their \tails" and shorter at their \heads" due to the edge-
reversal mechanism. In an asynchronous system, due to di�erences in the speed
of the processes and the communication lines, these modi�cations may result in
waiting chains of arbitrary length.

The algorithm is very well presented in detail in [11]. Welch and Lynch gave
a modular presentation of the above algorithm in [37]. Murphy and Shankar have
also presented a quick rephrasement and some nice enhancements in [30].

Theorem 4 (Chandy and Misra 1984 [11]) The Chandy and Misra algorithm
[11] is a solution for the dining and drinking philosophers problem; its response time
is O(n), its communication complexity is O(�) and its failure locality is n.

Analysis of the concurrency attainable by such a scheme has been given by
Barbosa and Gafni in [8]. A good source of reading more on acyclic orientations,
labelling and e�cient ways to get them is a paper by Attiya et.al. [3]. The drinking
philosophers has also been solved by Ginat et. al. in [19], with the use of times-
tamping [25] (thus avoiding to run the \dining layer" of Chandy and Misra) with
the same worst case response time and communication complexity between zero and
twice the number of bottles needed for drinking.

5.2 Approach based on distributed queues

The �rst solution in this approach is by Awerbuch and Saks in [6]. They consider a
dynamic system, in which each process may request any resource in each session. In



sink nodes

Figure 1: Solution using orientation

this dynamic version, the dining and drinking philosophers problems are then the
same. The idea is to maintain a distributed queue that consists of a totally ordered
set of positions, each of which can hold one or more jobs (the term \job" is used
in the paper by Awerbuch and Saks [6] and the problem is treated as a dynamic
job scheduling problem; each job is a collective request by a philosopher for all the
resources it needs). New jobs are placed in the queue and progress through it in a
way that ensures that no two con
icting jobs can reach the head of the queue at
the same time. The algorithm in [6] is �rst described under the assumption that
requests come su�ciently separated in time, in a way such that two or more jobs
cannot enter the queue simultaneously. Then it is sketched how to cope with the
opposite with the use of randomness and last it is shown that randomness can be
removed, showing the following:

Theorem 5 (Awerbuch and Saks 1990 [6]) The Awerbuch and Saks algorithm
[6] is a solution to the (dynamic) dining/drinking philosophers problem; the worst
case response time and the communication complexity are O(�2 logU (where U is
the range of the set from which the identities of the processes are selected); its failure
locality is O(�).

A study of this technique under parametrisation of the process computation
power and the knowledge of the job execution times has been given by Bar-Ilan
and Peleg in [9]. The results are given for the synchronous model of computation
and communication and can be transformed to the asynchronous one modulo the
overhead of a global synchroniser [4], which also implies failure locality n.

5.3 Approach based on synchronisation barriers

This approach is based mainly on the idea of synchronisation barriers, such as the
fence protocol, introduced by Styer and Peterson in [34]. Choy and Singh extended
it and introduced an e�cient protocol for the dining philosophers in [12]. The
protocol assumes a priority (con
ict resolution) scheme, which can be a static acyclic
orientation or a node colouring. Actually, as also mentioned before in this paper, an
acyclic orientation can be obtained by �rst executing a distributed vertex colouring
protocol and then orienting each edge from the higher to the lower colour (arbitrary
graphs can be coloured in a distributed manner with � + 1 colours [5], while for



planar ones 6 is su�cient [18]). So assume an initial vertex colouring of the graph
that will serve as a priority scheme. Assume C colours are used. The core of the
idea is that between neighbouring philosophers that are hungry at the same time,
the one with smaller colour should have priority. This is as in the Chandy and
Misra [11] idea, but in this case it is static. As such, it might lead to starvation of a
philosopher with high colour, due to preemption by its lower coloured neighbours.
To avoid this, some synchronisation (double doorway protocol) is used (see Fig. 2).

1. The �rst (asynchronous) doorway is very much like the fence protocol of Styer
and Peterson [34], which was introduced to avoid starvation. It is equivalent to
each philosopher asking for permission to cross, and waiting until receiving one
(and once) from each one of its neighbours. Provided that a philosopher that
has already crossed the doorway defers giving permission to its neighbours
until it �nishes eating, this doorway guarantees that each philosopher will
have to wait for each of its neighbours at most once before eating. On the
other hand, because of its asynchronous nature, \staggered" crossing of the
doorway can preempt the fork acquisition process of a philosopher multiple
times per trying session, and can result in some exponential response time
[12, 34].

2. The second (synchronous) doorway is equivalent to the philosopher waiting
until it �nds an instant when none of its neighbours is past this second door-
way. This doorway alone guarantees that after the time instant that a philoso-
pher vi crosses it (modulo the message transmission delay for its neighbours
to receive the respective synchronisation message), none of its neighbours can
cross it until vi �nishes eating. On the other hand, it can result in starvation,
depending on the neighbours' timing.

3. However, the two doorways combined cancel each other's de�ciencies and
guarantee at mostO(C�) waiting time for a philosopher to cross them (Fig. 2).

4. After having crossed both doorways, a process vi has to wait for its neighbours
(only those that are also past both doorways), to pass to it the prij privileges.
The way that privileges are requested and passed from one node to the other is
such that the maximum length of any process waiting chain is bounded by four
at any time instant in any execution [12]: A node �rst requests the privileges
from its higher priority neighbours and then from the lower priority ones. A
competing node vi, which has crossed both doorways, gives the privilege to
a lower priority neighbour only if it has not collected the privileges from all
its higher priority neighbours; otherwise it defers answering until it �nishes
eating. On the other hand, vi gives the privilege to a higher priority neighbour
if it has not collected all the other privileges. This mechanism guarantees that
the maximum length of any process waiting chain is bounded by four (two
for the doorways and two for the forks) at any time instant in any execution;
hence the failure locality is also four.

Theorem 6 (Choy and Singh 1992 [12]) The Choy and Singh algorithm [12] is
a solution to the dining philosophers problem; the worst case response time and the
communication complexity are O(C�) (where C is the length of the longest directed
path under an initial acyclic orientation or the number of colours of an initial vertex
colouring of the con
ict graph) and its failure locality is 4.
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Figure 2: The double doorway synchronisation

Tsay and Barodia in [36] suggested a combination of the dynamic con
ict resolu-
tion protocol of Chandy and Misra [11] and the preemptive fork collection strategy of
Choy and Singh [12] (without the synchronisation barriers) that solves the problem
with failure locality 2, but at the cost of having response time 0(n2),

6 Solving the mobile philosophers problem

Recall that in this setting the philosophers move between cells. Within each cell
broadcast communication is supported. Inter-cell communication is supported via
the cell-agents (base stations). The frequencies to be allocated to the philosophers
should be chosen by the cell agents in such a way that guarantees that if a channel is
used for a communication session of a mobile host (philosopher) in a speci�c cell, it
should not be used concurrently for other communication sessions, except in distant
cells, outside the scope of the signal. The free frequencies at a cell agent are the
frequencies of the spectrum that are not in use in that cell or in any of the cells
within the scope of the signal, and it is only from this set of frequencies channels
that may be allocated to satisfy the requests at this cell. (Requests that cannot be
satis�ed can be dropped.) Note that the set of free frequencies for a base station
changes over time. Furthermore, the same frequency could potentially belong to
the set of free frequencies of two adjacent base stations and hence, even when a



base station is picking channels from its own set, it needs to ensure that there is no
interference.

Here, besides e�ciency in time and communication, since the number of re-
sources to be used is limited and the solution selects the resources to be used, here
it is important that a solution also aim at maximizing the number of satis�able
requests (request satis�ability); this implies that the solution should adapt fast to
temporal variations in channel demand in di�erent cells.

The problem of allocating frequencies to mobile philosophers by the base stations
(cell agents) can be viewed and analysed as a generalised version of the list colouring
problem, as presented by Garg, Papatrianta�lou and Tsigas in [16]. In the list
colouring problem, every node of the graph has associated with it a list of colours
which in our case are the set of free frequencies. The requirement is to �nd a
proper vertex-colouring of the graph such that each vertex is coloured with one of
the colours in its list. The list colouring problem was introduced in [14]; sequential
protocols for solving it can be found in [2, 24, 35]. The relation between the classical
list colouring and the channel allocation problems has also been noticed in [29]. In
the generalised version [16], each node vi needs to be coloured with a certain number
of colours from its list | the number of colours required for a node being the number
of pending requests (ri) at the base station at that time. If each colour is viewed
as a frequency, solving the mobile philosophers channel allocation problem reduces
to solving the long-lived distributed generalised version of the list colouring. Thus
any protocol for the list colouring problem that is long-lived , i.e. it can be invoked
multiple times, with lists and requests that vary in time, can be used for solving the
channel allocation problem in a dynamic manner.

The list chromatic number �l(G) of G is the smallest number k for which, for
any assignment of a list Li of size at least k to every node vi 2 V (G) it is possible
to colour G so that every vertex gets one colour from its list. If �l(G) � k then G
is said to be k-choosable. The list sizes that are necessary/su�cient to list colour G
give a way to measure the e�ciency of a solution with respect to request satis�ability
as the size of the free spectrum which is su�cient to ensure that the node properly
satis�es its pending requests.

6.1 Sequential solutions for list colouring (bounds for
the request satis�ability)

List colouring a graph generalises the vertex colouring problem and is hence NP-
hard [10]. The best known achievable (with sequential algorithms) bounds with
respect to list sizes are:

\�+1" bound: Given a graph of maximum degree �, one straightforward way of
colouring it with �+1 colours is to consider vertices one at a time and assign
them a colour di�erent from their neighbours. This simple strategy can be
adapted to list-colouring { for each vertex we pick a colour from its list that
is di�erent from the colours of its neighbours. Therefore, if each list is of size
at least � + 1 we can always list-colour the graph.

\Outgoing-neighbours requests" bound: If we have an initial acyclic orien-
tation of the edges of the graph then we could �rst colour all vertices that are
sinks (no two sinks are adjacent) by picking an arbitrary colour from their
lists. We then remove these sinks and colour the new sinks created taking care



to assign them a colour di�erent from their (already coloured) neighbours. It
is now easy to see that a list colouring is always possible if each vertex has a list
of size more than its out-degree in the initial orientation, which is much better
than the upper bound given in the previous paragraph. Alon and Tarsi [2]
use linear algebraic techniques to argue that lists of these sizes are su�cient,
even when the initial orientation of the edges is not acyclic, provided that it
satis�es some properties with respect to the number of Eulerian subgraphs.

Special case: planar graphs: An elegant argument due to Thomassen [35] shows
that every planar graph is 5-choosable. This is optimal since there are planar
graphs known which are not 4-choosable [38].

6.2 Distributed solutions for the mobile philosophers

The problem has been studied in the distributed setting initially by Prakash et.al.
[31]. It has been analysed as a multiple mutual exclusion problem and has been
solved with the use of timestamps as in [19]; that algorithm gives response time and
failure locality of O(n) and no guarantees for the request satis�ability.

Garg et.al [16] have shown how to derive the generalised distributed equivalent
of the solution of the previous section that list colours a graph given an initial acyclic
orientation. An acyclic orientation can be obtained by �rst vertex colouring G (in
a distributed manner, with C colours, where C can be � + 1 for arbitrary graphs
[5] or 6 for planar ones) and then orienting each edge from the higher to the lower
colour.

Starting from such an acyclic orientation, let the sinks concurrently and inde-
pendently list-colour themselves �rst (cf. Fig. 1). There is no con
ict between them
when they choose colours since no two sinks are adjacent. The sinks communicate
to their neighbours the colours they chose and reverse the orientation of the incident
edges, by e.g. using a privilege token for each edge, similarly as forks are used in
the Chandy and Misra dynamic con
ict resolution algorithm [11]. The resulting
orientation is again acyclic, so the new sinks can list-colour themselves next. By
repeating this procedure, in time proportional to the length of the longest possible
directed path, all the nodes of the graph will be list-coloured, provided that for
each node, the sum of the number of its requests and of those of its outgoing-edge
neighbours in the initial orientation does not exceed its list size. This scheme not
only works for the case when each node is interested in choosing colours once (one-
shot protocol), but it can also o�er as a long-lived solution, as a token-passing-like
protocol [8, 11]; any process that becomes a sink at some point holds a privilege to
choose frequencies if it has pending requests. However, this approach has a serious
drawback, as the chains of the initial orientation get modi�ed in time and in an
asynchronous system they can become of length up to n. This implies the need of
some form of synchronization (as local as possible). The synchronisation mechanism
of [12] is shown to be appropriate to solve the new synchronisation issues, too. The
resulting protocol (DET-DLC in [16]) uses the same initial acyclic orientation as
above and employs the double doorway synchronisation (Fig. 2) and the privilege
release mechanisms. Besides, in order that the neighbours of a process vi have a
correct view of their free frequency sets when they are choosing, vi informs them
about the frequencies it picked and waits for acknowledgements before it signals
them for the doorways (so that only after consistency of views has been attained



will they be able to compete to make their own choices). When a frequency is not
used any more, vi informs its neighbours to update their sets.

Request Satis�ability of DET-DLC [16]: A node, after having crossed the �rst
doorway, will, in the worst case, have to wait for all its neighbours to select frequen-
cies. Since this does not happen more than once, it follows that vi is guaranteed to
get ri frequencies if, for the set f of its free frequencies at that time it holds:

jf j � ri +
X

vj2N(vi)

rj

Therefore, the solution guarantees the corresponding (for the distributed generalised
long-lived setting) version of the \Outgoing-neighbours requests" bound (i.e. the
best known to be achievable) regarding the request satis�ability. To achieve this,
the protocol uses some extra synchronisation, which implies a small overhead in the
response time. On the question whether it is possible to achieve that good request
satis�ability without the need for extra synchronisation, it has been shown in [16],
that the use of randomisation can help, and achieves the equivalent of the \�+ 1"
bound presented in the previous section (i.e. the second best known upper bound
for the request satis�ability achievable in a sequential manner).

The idea of the randomised protocol (RAND-DLC in [16]) is for each node vi
to pick randomly, an � fraction of the colours (frequencies) in its free set; thus each
colour in the list is picked with a probability �. The node then runs a handshaking
phase to check with its neighbours to ensure that some colour it picked is not picked
by a neighbour; the colour is dropped if such is the case. Thus a colour picked by
two neighbours could potentially be dropped by both of them. Since no answers are
deferred the maximum waiting chain length is one.

Request Satis�ability of RAND-DLC [16]: Since the colour is retained when
none of the neighbours picks it and since the number of neighbours who could be
picking colours is at most �, the probability that a colour is retained is at least
(1 � �)�. Let Xj be a random variable that is 1 if the jth colour in the list (of
some vi) is acquired (and is 0 otherwise). Then the probability that Xj = 1 is at
least �(1 � �)�. Let further X = X1 +X2 + : : : +Xf be the sum of these random
variables. The expected value of the random variable X is at least f � �(1 � �)�

which is maximised when � = 1=(� + 1). For this choice of �, the expected number
of colours acquired is at least

� =
f

�

�
1� 1

� + 1

��+1

� f

4�

Since X is the sum of independent Bernoulli trials, Cherno�'s bounds [20] bound
the probability that the number of colours acquired is at least (1 � �)� to give for

� =
q

2
�
, that the probability that we acquire ��p

2� colours is at least 1� e�1.

Theorem 7 (Garg, Papatrianta�lou and Tsigas 1996 [16]) Algorithms DET-
DLC and RAND-DLC [16] are solutions to the mobile philosophers problem.
Algorithm DET-DLC guarantees worst case response time is O(C�) (where C is
the length of the longest directed path in G under an acyclic orientation), the com-
munication complexity is O(C�) and the failure locality is 4.
Algorithm RAND-DLC has failure locality 1. With the exchange of 3� messages and



in 3 rounds of communication a node vi gets at least r = ��p
2� frequencies with

probability at least 1 � e�1, where � = f

4�
and f is the number of free frequencies

for vi at that point of the execution.
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