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Abstract. In this paper, we study the problem of identifying misbe-
having network communications using community detection algorithms.
Recently, it was shown that identifying the communications that do not
respect community boundaries is a promising approach for network in-
trusion detection. However, it was also shown that traditional community
detection algorithms are not suitable for this purpose.

In this paper, we propose a novel method for enhancing community
detection algorithms, and show that contrary to previous work, they pro-
vide a good basis for network misbehavior detection. This enhancement
extends disjoint communities identified by these algorithms with a layer
of auxiliary communities, so that the boundary nodes can belong to sev-
eral communities. Although non-misbehaving nodes can naturally be in
more than one community, we show that the majority of misbehaving
nodes belong to multiple overlapping communities, therefore overlapping
community detection algorithms can also be deployed for intrusion de-
tection.

Finally, we present a framework for anomaly detection which uses
community detection as its basis. The framework allows incorporation
of application-specific filters to reduce the false positives induced by
community detection algorithms. Our framework is validated using large
email networks and flow graphs created from real network traffic.

1 Introduction

Network intrusion detection systems are widely used for identifying anomalies in
network traffic. Anomalies are patterns in network traffic that do not conform
to normal behavior. Any change in the network usage behavior, for example
caused by malicious activities such as DoS attacks, port scanning, unsolicited
traffic, and worm outbreaks, can be seen as anomalies in the traffic.

Recently, it was shown that network intrusions can successfully be detected
by examining the network communications that do not respect the community
boundaries [9]. In such an approach, normality is defined with respect to social
behavior of nodes concerning the communities to which they belong and intrusion
is defined as “entering communities to which one does not belong”.

A community is typically referred to as a group of nodes that are densely
interconnected and have fewer connections with the rest of the network. However,
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there is no consensus on a single definition for a community and a variety of
definitions have been used in the literature [13,19,28]. For network intrusion
detection, Ding et al. [9] defined a community as a group of source nodes that
communicate with at least one common destination. They also showed that
a traditional community detection algorithm which is based on a widely used
definition, i.e., modularity, is not useful for identifying intruding nodes.

In this paper, we extend and complement the work of Ding et al. [9] by looking
into other definitions for communities, and investigate whether the communities
identified by different types of algorithms can be used as the basis for anomaly
detection. Our hypothesis is that misbehaving nodes tend to belong to multiple
communities. However, a vast variety of community detection algorithms par-
tition network nodes into disjoint communities where each node only belongs
to a single community, therefore they cannot be directly used for verifying our
hypothesis. Therefore, we propose a simple novel method which enhances these
disjoint communities with a layer of auxiliary communities. An auxiliary com-
munity is formed over the boundary nodes of neighboring communities, allowing
nodes to be members of several communities. This enhancement enables us to
show that, in contrary to [9], it is possible to use traditional community detection
algorithms for identifying anomalies in network traffic.

In addition to traditional community detection algorithms, another class of
algorithms exist which allow a node to belong to several overlapping commu-
nities [26]. In this study, we compare a number of such overlapping algorithms
with our proposed enhancement method for non-overlapping community detec-
tion algorithms for network anomaly detection.

Finally, we propose a framework for network misbehavior detection. The
framework allows us to incorporate different community detection algorithms
for identifying anomalous nodes that belong to multiple communities. However,
since legitimate nodes can also belong to several communities [28], application-
specific filters can be used for discriminating the legitimate nodes from the anti-
social nodes in the community overlaps, thus reducing the induced false positives.

We have evaluated the framework by using it for network intrusion detection
and unsolicited email detection in large-scale datasets collected from a high-speed
Internet backbone link. These types of misbehavior have traditionally been very
hard to detect without inspecting the content of the traffic. To conclude, we show
that by using our methodology, it is possible to effectively detect misbehaving
traffic by only looking at the network communication patterns.

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 presents our proposed method for uncovering community over-
laps. The framework is presented in Section 4. Section 5 summarizes our findings
and experimental results. Finally, Section 6 concludes our work.

2 Related Work

Anomaly detection has been extensively studied in the context of different ap-
plication domains [6]. In this study, we propose a new graph-based anomaly
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detection method for identifying network intrusion and unsolicited email in real
network traffic. Although there has been considerable amount of research on de-
tecting these types of misbehavior, it is still a challenge to identify anomalies by
merely investigating communication patterns without inspecting their content.

A taxonomy of graph-based anomaly detection methods can be found in [2].
A number of previous studies have proposed methods for finding unusual sub-
graphs, anomalous substructure patterns, and outlier nodes inside communities
in labeled graphs [11,21,14]. In this study, we merely use the graph structure
and therefore we consider only plain graphs without any labels.

Akoglu et al. [3] proposed a method to assign anomaly scores to nodes based on
egonet properties in weighted networks. Our framework allows us to incorporate
such properties as application-specific filters. Sun et al. [25] proposed a method
for identifying anomalous nodes that are connected to irrelevant neighborhoods
in bipartite graphs. Ding et al. [9] showed that although finding the cut-vertices
can be used for intrusion detection, more robust results can be achieved by using
clustering coefficient in a one-mode projection of a bipartite network. Moreover,
they showed that using a modularity maximization community detection algo-
rithm [7] is not suitable for spotting network intruders.

In this paper, we revisit the problem of finding anomalous nodes in bipar-
tite/unipartite plain graphs by using community detection algorithms. We de-
ploy an alternative definition for an anomaly as suggested in [9] and confirm their
finding that maximizing modularity is not suitable for identifying intruders on
its own. However, we show that there are several types of algorithms which are
useful for misbehavior detection if enhanced with auxiliary communities.

3 Community Detection

In this section, we introduce a novel approach which enables us to deploy existing
community detection algorithms for identifying anomalies in network traffic.

3.1 Auxiliary Communities

In this paper, we introduce the concept of auxiliary communities. An auxiliary
community is added over the boundary nodes of disjoint communities, forcing
nodes to become members of more than one community.

The most basic approach is to introduce one auxiliary community for each
boundary edge between two different communities. However, a boundary node
can have multiple boundary edges. Therefore, an improvement over the above
approach is to add only one auxiliary community over a boundary node and all
its boundary edges, covering all its neighbors that are members of other external
communities (Algorithm 1). Our approach can be further refined to consider the
whole one-step neighborhood, i.e., egonet, of a boundary node as an auxiliary
community instead of just its boundary neighbors.

Ding et al. [9] defined a community in a directed bipartite network as a group
of source nodes that have communicated with at least one common destination.
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Fig. 1. Auxiliary communities

In a bipartite network, there are two distinct sets of source nodes and destination
nodes. Based on this definition, the source nodes that belong to the egonet of
a destination node form a community. In a unipartite network, a distinct set
of source and destination nodes does not exist. Therefore, we apply the above
definition of communities only to the sink nodes which have only incoming edges
(Algorithm 2).

Algorithm 1. Neighboring Auxiliary
Communities (NA)

Input: a graph G(V,E); a non-
overlapping community set C;

Output: auxiliary community set A;
1. for all v ∈ V do
2. Com(v) = {C ∈ C : v ∈ V (C)};
3. for all u ∈ Neighbors(v) do
4. if Com(v) �= Com(u) then
5. A ← A ∪ {u, v};
6. end if
7. end for
8. A ← A∪ A;
9. end for

10. return A

Algorithm 2. Egonet Auxiliary Com-
munities of Sinks (EA)

Input: a graph G(V,E); a non-
overlapping community set C;

Output: auxiliary community set A;
1. for all v ∈ V do
2. Com(v) = {C ∈ C : v ∈ V (C)};
3. for all u ∈ Neighbors(v) do
4. if Com(v) �= Com(u) and

Sink(u) then
5. A ← Egonet(u);
6. A ← A ∪A;
7. end if
8. end for
9. end for

10. return A

Figure 1 shows a comparison of the proposed methods for adding auxiliary
communities. It can be seen that each approach places the intruding node (black
node) in different auxiliary communities (grey communities). The main differ-
ence of our methods is that Algorithm 1 only adds neighboring auxiliary (NA)
communities over the boundary nodes, whereas Algorithm 2 also allows the
neighbors of the boundary sink nodes to be covered by egonet auxiliary (EA)
communities. Therefore, a misbehaving node which is not in the boundary of its
community can still belong to multiple communities by using Algorithm 2.

The complexity of adding auxiliary communities for a network with a degree
distribution pk = k−α, is O(nk3−α

max), where n is the number of nodes, kmax is
the highest degree, and α is the exponent of the degree distribution.
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Table 1. Community detection algorithms. n and m denote the number of nodes and
edges, respectively, kmax is the maximum degree, t is the number of iterations, and α
is the exponent of the degree distribution.

Algorithm Complexity

Overlapping

LC [1] O(nk2
max)

LG [12] O(nm2)
SLPA [27] O(tm)
OSLOM [18] O(n2)

DEMON [8] O(nk3−α
max)

Non-Overlapping
Blondel (also known as Louvain method) [5] O(m)
Infomap [22] O(m)

Auxiliary
NA (Neighboring Auxiliary Communities) O(nk3−α

max)

EA (Egonet Auxiliary Communities) O(nk3−α
max)

3.2 Community Detection Algorithms

In this paper, we use a number of well-known and computationally efficient (over-
lapping) community detection algorithms, which are listed in Table 1. Our goal
is to investigate which definition of a community and which types of algorithms
are most suitable for network misbehavior detection.

LC and LG find overlapping communities in a graph based on the edges. LG,
induces a line graph from the original network to which any non-overlapping
algorithm can be applied. In this paper, we uses a weighted line graph with self-
loops, E, and refer to LG using this graph as LG(E). SLPA and OSLOM are both
node-based methods and have very good performance [26]. Finally, DEMON is an
state-of-the-art node-based, local, overlapping community detection algorithm.

The non-overlapping algorithms used in this study also have very good per-
formance [17]. Blondel greedily maximizes modularity and unfolds a hierarchical
community structure with increasing coarseness. In this study, we consider the
communities identified at both the last and the first level of the hierarchy and
refer to them as Blondel and Blondel L1, respectively. We also use the commu-
nities formed by Blondel as input to OSLOM, which modifies these communities
in order to improve their statistical significance. Finally, Blondel L1 is also used
to partition the nodes in the induced line graphs by LG(E).

4 Framework

This section presents our framework for community-based anomaly detection.
Algorithm 3 shows the first component of our framework, where overlapping
algorithms can be directly used, but non-overlapping algorithms only after being
enhanced with auxiliary communities.

The second component of our framework consists of a set of graph properties
which are used as filters. Our hypothesis is that intruding nodes are likely to
be placed in community overlaps. However, non-misbehaving nodes can also
belong to more than one community, and basing detection merely on community
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overlaps, can lead to false positives. Therefore, these filters are used to reduce
the induced false positives by the community detection algorithms.

Algorithm 3. Community-based
anomaly detection

Input: a graph G(V,E); a community
detection algorithm CD ;

Output: a set AS of 〈v, score(v)〉;
1. Set AS = ∅; Set C = ∅; Set A = ∅;
2. C = CD(G);
3. if CD is non-overlapping then
4. A ← Auxiliary(G, C);
5. C ← C ∪ A;
6. end if
7. for all v ∈ V do
8. score(v) ← Filters(v, G, C);
9. AS ← 〈v, score(v)〉;

10. end for
11. return AS

Algorithm 4. Application-specific fil-
ters

Input: a node v; a graph G(V,E); a
set of communities C; weights wi ∈
[0, 1] s.t.

∑
wi = 1; user-defined

threshold values ti, where i is the
index of the property;

Output: an anomaly score score(v);
1. Coms(v) = {C ∈ C : v ∈ V (C)};
2. φ1(v) = |Coms(v)|;
3. φ2(v) = |Coms(v)|/|Neighbors(v)|;
4. φ3(v) = 1− ClusteringCoeff(v);
5. φ4(v) = OutDeg(v)/Deg(v);
6. φ5(v) = Deg(v)/EdgeWeights(v);
7. score(v) =

∑
wiI(φi(v), ti);

8. return score(v)

The framework uses a simple method for combining the extracted properties.
For each node v in the graph, the anomaly score is calculated as score(v) =∑

iwiI(φi(v), ti), where i is the index of the property which is being aggregated,
wi is a weight for property φi where

∑
wi = 1, and I(φi(v), ti) is an indicator

function which compares the value of a graph property φi(v) to a corresponding

threshold value ti such that I(φi(v), ti) =

{
1, φi(v) > ti
0, otherwise.

The threshold values and weights are dependent on the type of data and prior
knowledge of normal behavior, which is necessary for anomaly detection and
can be achieved from studies of anomaly-free data. Finally, the anomaly score
score(v) can be used to quantify to what extent a node v is anomalous.

The properties presented in Algorithm 4 are examples of community and
neighborhood properties that we have used as filters in our experiments for
intrusion and unsolicited email detection. The selection of appropriate filters
depends on the application of anomaly detection.

Network intruders are normally not aware of the community structure of the
network, and therefore communicate to random nodes in the network [23]. It is
expected to be very expensive for attackers to identify the network communities,
and even if they do, limiting their communication with the members in the same
community can inversely affect their gain. Therefore, the number of communities
per node, as well as the ratio of the number of communities per node over
the number of its neighbors, which correspond to φ1 and φ2 in Algorithm 4,
respectively, are expected to be promising properties for finding intruders.

The rest of the properties, are graph metrics that correspond to the social
behavior of nodes and can be extracted from the direct neighborhood of the
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nodes. We have used these properties for detecting unsolicited email (Section 5.3)
and therefore in the following we explain them in the context of spam detection.

The clustering coefficient of a node is known to have a lower value for spam-
mers than legitimate nodes [15,20]. Property φ3 calculates one minus the clus-
tering coefficient so that spammers are assigned higher values. It has also been
shown that spammers are mostly using randomized fake source addresses and
therefore it is not expected that they receive many emails [16]. Property φ4 cal-
culates the ratio of the out-degree over the degree of the nodes, which is expected
to be high for the spammers. Finally, it has been shown that spammers tend to
use the fake source email address to send only a few spam, and target each
receiving email address only once [16]. Therefore, the degree of a node over its
edge weights, property φ5, is expected to be higher for spammers than legitimate
nodes, where the edge weights correspond to the number of exchanged emails.

5 Experimental Results

We have evaluated the usability of different algorithms in our framework using
two different datasets which were generated from network traffic collected on a
10 Gbps Internet backbone link of a large national university network.

Flow Dataset. The flow level data was collected from the incoming network
traffic once a week during 24 hours for seven weeks in 2010 [4]. The flows were
used to generate bipartite networks where source and destination IP addresses
form the two node sets. The malicious source addresses in the dataset were
taken from the lists reported by DShield and SRI during the data collection
period [10,24]. This dataset is used to compare our approach with the method
proposed by Ding et al. [9] for network intrusion detection. The datasets are
similar with respect to the ground truth and only differ with respect to the
collection location and the sampling method used.

Email Dataset. This dataset is generated from captured SMTP packets in
both directions of the backbone link. The collection was performed twice (2010
and 2011), where the duration of each collection was 14 consecutive days. This
dataset was used for generating email networks, in which email addresses repre-
sent the nodes, and the exchanged emails represent the edges. The ground truth
was obtained from a well-trained content-based filtering tool1 which classified
each email as legitimate (ham) or unsolicited (spam).

5.1 Comparison of Algorithms

In this section, we present a comparison of the algorithms using the email
dataset. Figure 2a shows the percentage of ham and spam nodes (averaged over
the 14 days in 2010), which are placed in multiple communities by different algo-
rithms. It can be seen that many ham nodes belong to more than one community,

1 SpamAssassin (http://spamassassin.apache.org) which provided us with an esti-
mated false positive rate of less than 0.1% and a detection rate of 91.4%.

http://spamassassin.apache.org
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Fig. 2. Percentage of nodes in multiple communities in email dataset (2010)

which is an expected social behavior. It can also be seen that, most algorithms
place the majority of spammers into more than one community, except OSLOM
and Blondel which tend to form very coarse-grained communities.

The figure also shows that, regardless of which non-overlapping algorithm
being used, adding egonet auxiliary communities (Algorithm 2) places more
spam than ham nodes into several communities compared to adding neighboring
auxiliary communities (Algorithm 1). The reason is that NA communities are
only added over the boundary nodes, however, EA communities also allow the
neighbors of the boundary sink nodes to be covered by auxiliary communities.

Finally, Figure 2b shows that a higher percentage of spammers belong to more
than eight communities compared to legitimate nodes. The same observation
holds for the data collected in 2011. Therefore, we can confirm that both fine-
grained algorithms enhanced with EA communities, and overlapping algorithms
can be used to spot misbehaving nodes based on the number communities to
which they belong.

5.2 Network Intrusion Detection

It has been shown that a non-overlapping community detection algorithm (which
maximizes modularity) is not suitable for identifying intruders in network flow
data [9]. In this study, we have further investigated the possibility of using dif-
ferent community detection algorithms, including a modularity-based one, by
using auxiliary communities for network intrusion detection.

One example of network intrusion is port scanning, where a scanner searches
for open/vulnerable services on selected hosts. Current intrusion detection sys-
tems are quite successful in identifying scanners. In this paper, we just verify
the possibility of detecting scanners using a community-based technique.

We generated one bipartite graph from the flows collected for each day. As an
example, the flow graph generated from the first day of data contained 51,720
source nodes sending 93,113 flows to 32,855 destination nodes. This includes
607 malicious nodes (based on DShield/SRI reports) that have sent 7,861 flows.
We made the assumption that the malicious source nodes that have tried to
communicate with more than 50 distinct destinations are suspected of scanning.
Figure 3a shows the ROC curves for seven different days. These curves show the
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Fig. 3. Performance of different algorithms for network misbehavior detection

trade-off between the true positive rate (TPR) and the false positive rate (FPR).
We have used Blondel L1 enhanced with egonet auxiliary communities (EA), and
have only used property φ1, i.e., the number of communities to which a node
belongs, as the filter. It can be seen that this approach yields high performance
with mean area under curve (AUC) of 0.98, where around 90% to 100% of
malicious scanners are detected with a FPR of less than 0.05. This observation
confirms that our framework is successful in identifying scanners.

Network intrusion attacks are not limited to scanning attacks, therefore we
have also tried to identify other malicious (DShield/SRI) sources and have com-
pared our approach with the method proposed by Ding et al. [9]. Our exper-
iments show that the performance of both methods are quite consistent with
mean AUC 0.60 (standard error 0.009) for the method by Ding et al. and 0.62
(standard error 0.015) for our approach using LG(E) as the overlapping commu-
nity detection and properties φ1 and φ2 as filters. Overall, these results confirm
that the community structure of a network provides a good basis for network
intrusion detection and both non-overlapping communities enhanced with EA
communities and overlapping communities can indeed be used for this purpose.

5.3 Unsolicited Email Detection

Our experimental comparison of community detection algorithms in Section 5.1
showed that most of the studied algorithms place spammers into multiple com-
munities. In this section, we investigate how these algorithms can be used in our
framework to detect these spammers only by observing communication patterns.

For this study, we have generated one email network from the emails col-
lected for each day. The community detection algorithms were applied to the
undirected and unweighted giant connected component of each email network.
The edge directions and weights were later taken into account for adding aux-
iliary communities and calculating different graph properties. We consider an
email address to be a spammer if it has sent more than one spam to more than
one recipient. As an example, the email network generated from the first day
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Fig. 4. Area under the ROC curve for spam detection over time

of data in 2010, contains 167,329 nodes and 236,673 edges, where 23,628 nodes
were spammers sending 126,145 spam emails. It is important to note that the
vast majority of the spammers have not sent large volumes of email and there-
fore a simple volume-based detection method would not be suitable for spammer
detection.

Figure 3b shows the ROC curves for our spam detection method using different
algorithms and the community-based properties φ1 and φ2. It can be seen that
OSLOM, which aims at forming statistically significant communities fails to
identify spamming nodes. It can also be seen that a node-based overlapping
algorithm, SLPA, and an edge-based algorithm, LG(E), perform similarly, and
the AUC (not shown in the figure) is identical for both algorithms (0.76).

Figure 3b also shows the ROC curves for non-overlapping algorithms which
are enhanced with our auxiliary communities. It can be seen that Blondel, which
aims at optimizing modularity, performs very poor. This observation is in accord
with the observation in [9] that a modularity maximization algorithm is not
suitable for anomaly detection due to its resolution limit. However, Blondel L1
(first level in the community hierarchy of Blondel), which forms finer granularity
communities, performs dramatically better than its last level using either type of
the auxiliary communities. Moreover, it can be seen that adding EA communities
leads to better results compared to NA communities.

Overall, our experiments for different days in both email datasets showed
that Blondel L1 and Infomap enhanced with EA, SLPA, LG(E), and DEMON all
perform well with respect to placing spamming nodes into multiple communities.
In practice, low false positive rates are essential for spam detection, therefore
both Blondel L1 with EA communities and LG(E) that allow us to, on average,
detect more than 25% and 20% of spamming nodes, respectively, for different
days with very low FPR (less than 0.01) are the most suitable algorithms.

These results confirm that our method for adding EA communities to enhance
non-overlapping algorithms yields not only comparable, but even better, results
than an overlapping algorithm. Although both Blondel L1 with EA communities
and LG(E) use the same modularity-based algorithm as their basis (we have
applied Blondel L1 on the induced line graph of LG(E)), adding EA communities
has also a lower complexity than inducing weighted line graphs (Table 1).

As mentioned earlier, our framework allows us to incorporate a number of
application-specific filters to reduce the induced false positives (Algorithm 4).
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Figure 3c shows a comparison of the spam detection using filters based on com-
munity properties (φ1 and φ2 only) and the combination of community and
neighborhood properties (φ1 - φ5) for the first day of data in 2010. It can be
seen that use of additional filters improves the detection (the same observation
also holds for the algorithms not shown).

Finally, Figure 4 shows the AUC for spam detection using our framework
with LG(E) and Blondel L1 enhanced with EA communities over 14 days during
2010 and 2011. It can be seen that the results are quite stable over time and the
AUC of our method for adding EA communities compared to a more complex
overlapping algorithm is much better when only community properties are used.

6 Conclusions

In this paper, we have evaluated the performance of community detection algo-
rithms for identifyingmisbehavior in network communications.This paper extends
and complements the previous work on community-based intrusion detection, by
investigating a variety of definitions for a community, introducing auxiliary com-
munities for enhancing traditional community detection algorithms, and showing
that, in contrary to previous work, these algorithms can indeed be deployed as the
basis for network anomaly detection.

We have also provided a framework for community-based anomaly detection
which allows us to find the nodes that belong to multiple communities by ei-
ther using auxiliary communities or overlapping algorithms. It also enables us to
deploy neighborhood properties, which are indicative of social behavior, for dis-
criminating the nodes that naturally belong to more than one community from
the anti-social ones. The applicability of our framework for identifying network
intrusions and unsolicited emails was evaluated using two different datasets com-
ing from traffic captured on an Internet backbone link. Our experiments show
that our framework is quite effective and provides a consistent performance over
time. These results suggest that detecting community overlaps is a promising
approach for identifying misbehaving network communications.
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